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1. Introduction 

The five senses constitute some of the most substantial elements of the human nature. 
Beyond their importance in daily life and perception of the world, they play crucial role in 
knowledge acquisition as well. For instance, medicine was one of the first domains where 
the conceptual tools of rationality and empiricism were combined with techniques of 
investigation to make the human body an object of knowledge (Foucault, 1973). In this 
context, the techniques mentioned above are based on the application of senses in order to 
acquire medical knowledge. More precisely, vision and hearing became specific objects of 
knowledge over the course of the 19th century, supplemented through technique and 
technology. Thus, seeing and hearing are to be understood as fundamentally and absolutely 
different modes of not only knowing the world, but also reaching a medical diagnosis.  

A branch of medicine closely associated with one of these techniques, namely visual 
inspection, is gastroenterology. In the field of gastroenterology, vision is widely understood 

as the fundamental mode of knowing the state of the gastrointestinal (GI) tract. The advent 
of medical imaging technologies, such as radiography (in the wider sense), tomography and 

especially endoscopy, promoted this thesis (Lorenz et al., 1993; Rutgeerts et al., 1980) by 
enabling the visual examination without demanding to gain physical access. In case of 

visual inspection, as in case of auscultation, there are specific properties observed in order to 
assess the image content, no matter how simple or sophisticated the imaging technology is. 

During a stethoscope examination, for instance, the clinician attempts to identify frequency, 
pitch and duration deviations from the normal lung sounds. Similarly, during the 

observation of a medical image, there are image properties, corresponding to the acoustic 
ones of the pulmonary system, which may reveal the existence of illness. In the case of 

endoscopic GI tract images, these features essentially include texture, color and shape. The 
procedure that a clinician subconsciously follows in order to examine the images and reach 

a diagnosis is to seek for distortions. Distortions mainly in texture and color of the examined 
tissue, as compared to the features considered empirically or conceptually healthy. While 

color and shape are quite tangible approaches, the concept of texture is more abstract and 
subjectively defined and interpreted; however, embodies valuable information that can be 

used to identify or describe an image (Haralick et al., 1973). The vagueness of this concept is 
evidenced by the fact that there is no universally agreed-upon definition of what image 

texture is and, in general, different researchers use different definitions depending upon the 
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particular area of application (Tuceryan & Jain, 1998). The most widely used and accepted 
definition of texture in the field of medical image analysis, which is also adopted in this 

chapter, is the one that defines texture as the spatial variation of pixel intensities. In other 
words, texture describes the relationship between the intensities of neighbouring pixels (not 

necessarily adjacent). Texture is a fundamental characteristic that entails substantial 
information about the structural arrangement of surfaces and their relationship to the 

surrounding environment. This information may be applied to estimate shape, surface 
orientation, depth changes and construction materials. Texture is an innate property of 

virtually all surfaces; the grain of the wood, the weave of a fabric, the pattern of crops in a 
field, rugae on the mucous membrane of the stomach, the mucosa of colon and small intestine. 

An example of various texture patterns is given in Fig. 1. This structural information has been 
proven crucial for medical image analysis and interpretation (Miller & Astley, 1992; Xie et al., 

2005). This is the case especially for gastroenterology where the internal mucous membranes of 
the digestive tract exhibit strong textural features and distinctive patterns. For instance, an 

eroded ulcerous region or a protruded cancerous tissue is visually distinguished, mainly, by 
its alternated texture. Another image property also important for abnormal tissue evaluation is 

color. Ulcers, for instance, exhibit greenish-yellow hues while an active bleeding spot is 
characterized by deep red tones. On the contrary, the normal intestinal mucous membrane is 

reddish-pink in color. Nevertheless, color cannot be utilized as a standalone objective modality 
for abnormal tissue detection, since it is not perceptually uniform. The perceived color is 

highly conditioned by the nature and the amount of ambient luminosity (Berlin & Kay, 1969). 
Despite the color constancy effect (Foster et al., 1997) of the human color perception system, 

whereby the color perception of objects remains relatively constant under varying 
environmental and visual conditions, serious color variations and color casts exist because of 

the intervention of an endoscope or a camera between the intestinal tissue and the physician's 
eye. For these reasons, gastroenterologists use color and texture information together, as the 

visual clues, along with other complementary examinations (i.e., blood tests, urine tests etc.), in 
order to reach a diagnosis.  

 

Fig. 1. Digital images with visibly different texture regions: a) grain of wood, b) water, c) 
cloth, d) corn crops, e) forest, f) grass, g) stomach, h) colon, i) esophagus. 

The advent of Wireless Capsule Endoscopy (WCE) and the gastroenterologists' requirement 
for faster and more secure diagnoses necessitated the development of effective intestinal-
disorder recognition systems and automated WCE image analysis/inspection techniques. 
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The aim of WCE image processing techniques is to help the physician draw more reliable 
conclusions by generating enhanced and more informative images. During an examination 
with a stethoscope the physician instructs the patient how to breathe in order to get the best 
possible auscultation. In a similar way, a gastroenterologist who reviews an endoscopic 
video would desire the images to be as much informative as possible, but, without the 
opportunity to either give instructions to the patient or guide the capsule. The automated 
intestinal-disorder recognition systems target to detect potential regions of abnormal tissue 
in order to help the physician reach a diagnosis more quickly. This is particularly essential 
in WCE due to the vast amount of images produced (over 55.000) and the highly time-
consuming task of reviewing them (more than two hours) (Maieron et al., 2004). The fact that 
abnormal findings might not be clearly apparent to the naked eye further renders computer-
aided image analysis imperative. It is not rare that abnormal findings are visible in only one 
or two WCE frames and easily missed by the physician. Additionally, contrast between 
malignant and normal tissue may be present but below the threshold of human perception. 
The human visual system fails to detect certain textured patterns. Julesz, an experimental 
psychologist, was an early pioneer in the visual perception of texture. He verified that 
human eye can discriminate textures that differ up to second order statistics (Julesz, 1975). 
In other words, a deliberate amount of effort is required to discriminate between two 
textures with identical second order statistics. Last but not least, the young age of WCE 
implies that most clinicians are inexperienced in this examination and automatic diagnostic 
systems could be great tools for those who wish to become experts in WCE. In this context, 
automatic inspection and analysis of WCE images is of immediate need. 

From the aforementioned perspectives, it becomes clear that the auxiliary automatic 
diagnostic systems should exploit the texture and color features of the endoscopic images. 
Many efforts and computational approaches towards WCE image analysis have been 
reported in the literature. More specifically, researchers are concerned with malicious tissue 
detection which refers to detection of abnormal regions, such as tumors, polyps, bleeding 
and ulcer. To cope with this matter, traditional pattern recognition methods are applied, 
utilizing both chromatic and achromatic image domains. In particular, detection of 
abnormal patterns is achieved by employing local color features (Li & Meng, 2007), texture 
unit number (NTU) transformation and texture spectrum (Kodogiannis et al., 2007a, 2007b) 
and synergistic methodologies, such as L-G graphs and image registration (Bourbakis, 2005). 
Local binary patterns (Iakovidis et al., 2006) with the aid of G-statistic (Wang et al., 2006), co-
occurrence matrices (Ameling et al., 2009), and discrete wavelet transform in conjunction 
with second-order statistics (Karkanis et al., 2007; Magoulas, 2006) contributed to polyp and 
tumor detection. Regarding ulcer recognition, the related research is quite limited, no matter 
how common and important this disease is. The techniques proposed include feature 
extraction from a curvelet-based uniform local binary pattern (Iakovidis et al., 2006; Li & 
Meng, 2009b), chromaticity moments calculated with the aid of Chebychev polynomials (Li 
& Meng, 2009a), texture spectrum (Kodogiannis et al., 2007b), MPEG-7 descriptors (Coimbra 
& Cunha, 2006) and Red-Green-Blue (RGB) pixel values evaluation (Gan et al., 2008). 
However, their success rate is limited.  

This chapter sheds light upon one of the main issues of the WCE image analysis field, i.e., 
the overall detection enhancement of one of the most common diseases in the GI tract, 
namely ulcer; hence, enriching the inadequate existing literature. This goal is achieved by 
emphasizing on efficient elicitation of the structure characteristics of ulcerations and by 
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introducing new feature vectors (FVs). In particular, this chapter describes the use of 
innovative computer vision approaches towards the evaluation of ulcer-related content of 
WCE images. These approaches are similar to those employed by physicians in clinical 
practice to reach a diagnosis, i.e., the concept of color-texture characteristics. More 
specifically, they include sophisticated image processing tools with robust mathematical 
background, drawn from the field of Multi-Resolution Analysis, resulting in discrimination 
between ulcer and healthy regions. Additionally, innovative feature extraction algorithms, 
structured in both space and space-frequency domains, are presented, along with their 
application to real WCE data, collected from patients with ulcerous diseases. The chapter 
concludes by pointing out the potential of the proposed approaches towards efficient 
automated ulcer detection systems that will moderate the labour of the gastroenterologist 
and, consequently, the cost of the WCE examination. 

2. Wireless Capsule Endoscopy (WCE) 

In gastroenterology, the most common and established technique to visually inspect the GI 
tract and diagnose its diseases is endoscopy. The traditional endoscopic examinations 
applied for diagnosis in the upper and lower part of the GI tract, including esophagus, 
stomach, duodenum, terminal ileum and colon, are highly invasive causing discomfort to 
the patients. The visual inspection of the entire small intestine, in particular, has posed a 
challenge to gastroenterologists due to the strain of physically reaching it. Its important 
length and numerous windings make the examination extremely difficult, painful and not 
always possible, since usually there is a dead space in the middle part. Some imaging 
techniques used for the small intestine inspection include enteroclisis, small bowel follow 
through, push, sonde, and double balloon enteroscopy. Nevertheless, they are deeply 
inconvenient for the patients and require highly experienced gastroenterologists. 

In 2000, advances in high integration and miniaturization allowed the researchers of Given 
Imaging to draw the attention of the GI community by unveiling what is now called 
endoscopic capsule. Wireless capsule endoscopy (WCE) (Iddan et al., 2000) is a novel medical 
procedure, which has revolutionized endoscopy, as it has enabled, for the first time, a painless 
and effective diagnosis inside the GI tract. A WCE system consists of the capsule endoscope, a 
data recorder system and computer software for WCE data processing. The capsule endoscope 
is a disposable, pill-shaped device which consists of a CMOS camera, four light sources, two 
batteries and a radio transmitter. The patient shallows the capsule which captures images of 
the GI tract at a speed of two frames per second (fps). These images are compressed with JPEG 
algorithm and transmitted wirelessly to a special recorder attached to the patient’s waist. The 
entire process lasts approximately 8 hours until the batteries exhaust. Finally, the images 
stored in the recorder are downloaded to a computer and the physicians, with the aid of the 
special software, can review the images and analyse potential sources of various GI diseases. 
The capsule travels along the digestive tract with the physiological peristalsis, without the 
need for air insufflation and sedation. Thus, the examination of the entire small intestine has 
become the most comfortable endoscopic examination for the patient to undergo. In this way 
WCE is suitable even for children and elderly. 

WCE has proven invaluable in evaluating various diseases of the small bowel (Friedman, 
2004; Pennazio, 2005), such as obscure bleeding (Mylonaki et al., 2003), polyps and 
neoplasm, Crohn's disease, celiac disease and mucosal ulcers (Aronott & Lo, 2004). Ulcer is 
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one of the most common lesions of the GI tract that affects approximately 10% of the people. 
The most usual causes are Helicobacter pylori bacteria and use of nonsteroidal anti-
inflammatory drugs (NSAID). Ulcer is a chronic inflammatory sore or erosion on the 
internal mucous membranes that arises in small intestine, especially in duodenum (the 
upper part of the small intestine) and in stomach. Some serious diseases are associated with 
ulcer, like Crohn's disease and ulcerative colitis. Although ulcer by itself is not lethal, 
complications are capable of causing death. That is the reason why early diagnosis and 
treatment is extremely essential. 

2.1 Side effects 

WCE is a well-tolerated and safe procedure with very few and rare complications. The main 
risk of WCE is capsule retention. Despite the small diameter of the capsule, a narrowing of 
the small bowel may cause it to become retained at a site of stricture. However, retention is 
estimated to occur in less than 1% of cases (Liao et al., 2010). The 2005 International 
Conference on Capsule Endoscopy reached a consensus stating that a capsule would be 
deemed to have been retained if it could be shown to be remaining in the GI tract more than 
two weeks, without symptoms, after it had been ingested. The causes of capsule retention 
are bowel obstructions narrower than the size of the capsule (11mm diameter). Small bowel 
strictures are a frequent complication of Crohn's disease (Cheifetz et al., 2006) and prolonged 
use of NSAID (Meredith et al., 2009). The risk of capsule retention is also high for patients 
with a history of bowel obstruction or a previous gastrointestinal surgery. In case of 
retention, the removal of the capsule is most commonly performed by surgery (Barkin & 
Friedman, 2002), often resecting the obstructing lesion at the same time. However, there are 
cases where the removal is possible with traditional endoscopic techniques.  

In order to reduce the risk of retaining the capsule, a barium small bowel examination 
should be performed or a biodegradable patency capsule (Fig. 2) (Riccioni et al., 2003) 
should be digested prior to WCE. However, two studies (Meredith et al., 2009) indicated that 
small bowel follow through radiography (SBFT) investigations were not effective at 
excluding patients at risk of retention. Additionally, patients with abnormal SBFT can have 
successful WCE. The patency capsule is exactly the same size as the capsule endoscope but it 
is made from lactose, with 10% barium sulphate to make it radiopaque, and surrounded by  

 

Fig. 2. Schematic drawing of a biodegradable patency capsule. 
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a cellophane coating. It has a timer plug which is slowly dissolved by gastric fluids, giving a 
disintegration time of 40-100 hours post ingestion, and contains a very small radiofrequency 
identification tag (RFID) which can be used to tract its location in the small bowel without 
the use of ionizing radiation. The patency capsule remaining in one area for a large period of 
time can suggest retention. Early experience with this biodegradable capsule indicates that it 
allows accurate and objective evaluation of potentially obstructing small bowel lesions prior 
to WCE (Belvin et al., 2003; Cauendo et al., 2003). Although the patency capsule is mostly 
soluble, there needs to be further research to determine whether its use will reduce the risk 
of the patient, requiring surgery to remove there is a pathological stricture present. 
Successful passing of this patency capsule intact and without pain can provide evidence that 
a capsule endoscope will have a similar successful journey. 

To conclude, the retention of a capsule endoscope can be a significant complication 
procedure, requiring corrective surgery. Whilst the overall risk of retention is low, factors 
that increase this risk include known or suspected Crohn's disease, a history of NSAID use 
and previous small bowel surgery. Taking a careful medical history can identify those 
patients at higher risk of retention, and for those identified, the administration of a patency 
capsule allows the assessment of the patient's risks from swallowing a small bowel WCE. 

2.2 Advances in wireless capsule endoscopy 

WCE is still an under development technology, which may change endoscopy forever. 
However, there are technical limitations that raise some serious questions. Will capsule 
endoscopy replace traditional upper gastrointestinal endoscopy and colonoscopy? Will 
capsule endoscopy be able to deliver therapy? The answer is probably yes, but, there are 
major challenges that the capsule technology needs to overcome, to compete with probe 
gastroscopy and colonoscopy. As mentioned before, WCE is especially recommended for 
exploration of the small bowel, while it exhibits poorer diagnostic efficacy for the 
examination of esophagus, stomach and colon (Van Gossum et al., 2009). The 
limitations/challenges include: power management, camera speed and image quality, 
controllable manoeuvring, and interventional capabilities (Swain, 2008).  

The first endoscopic capsule, due to limited power supply, ceased image capturing before 
crossing the entire GI tract. It was even possible that transmission stopped before the end of 
ileum, in case of extended residence in stomach. Consequently, visualization of colon was 
impossible. In this context, researches were directed towards a more energy efficient 
capsule, capable of exploring the entire digestive tract. Technological advances allowed 
researchers to make radical changes in WCE design and energy supply (Moglia et al., 2009). 
In particular, two breakthroughs took place. Firstly, the advent of more efficient battery 
materials (i.e., carbon nanotubes and buckytubes) led to batteries smaller in size with better 
electrical conductivity leaving room for a third battery in the capsule with a slight increase 
in size. Secondly, an intelligent power management system was introduced in the data 
recorder that saves energy by regulating the image transmission rate and applying a sleep 
mode to the capsule. The recorder recognizes the location of the capsule inside the GI tract 
and adjusts the transmission rate accordingly. The capturing of images starts half an hour 
after ingestion to allow travelling to the target area (sleep mode). When the capsule arrives 
in stomach, the recorder recognizes it and maintains a slow transmission rate of six images 
per minute. The recorder is also able to detect when the capsule enters small intestine and 
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raises the transmission rate. Additionally, the recorder identifies if the capsule is in motion 
or stationary. If the capsule is moving the camera captures up to 35 images per second. Last 
but not least, the recorder has the intelligence to notify the patient with a sound signal and a 
vibration to ingest a prokinetic agent if the capsule resides in stomach for over an hour. This 
new design and technical achievements are very impressive. Yet the critical question to be 
addessed is whether this new capsule endoscope leads to improved diagnostic performance 
compared to traditional colonoscopy. Studies (Adler & Metzger, 2011) indicate that the 
diagnostic yield of WCE in colon has increased but still cannot surpass colonoscopy.  

Currently, researchers intensely strive to unravel the issue of limited energy store inside the 
capsule by developing external wireless power transmission systems (Carta et al., 2010). These 
approaches are based on magnetic fields and three-dimensional (3D) coils through a process 
that is known as inductive coupling. According to this phenomenon, an alternating magnetic 
field induces electrical voltage and electrical current to a coil that resides inside the field. Thus, 
the concept is to create a magnetic field around the human body that will transmit power to 
the capsule. To accomplish this, the capsule is equipped with windings of very thin copper 
wires (Fig. 3) around a ferrite core towards all three directions (3D coil). Ferrite is a lightweight 
material with efficient electromagnetic characteristics that support the formation of magnetic 
field. The existence of a ferrite core inside a coil has the effect of locally intensifying the 
magnetic field; hence, increasing the amount of collected power. On the contrary, the absence 
of the ferrite core would necessitate a larger coil for the same amount of received power. 
External power transmission systems seem promising and safe. Over 300mW usable power 
can be delivered while the maximum specific adsorption rate (SAR) does not exceed 0,329 
W/Kg (Xin et al., 2010), under the basic restrictions of the International Commission on Non-
ionizing Radiation Protection (ICNIRP). However, there are major issues to deal with. The 
orientation of the capsule inside the body highly affects the stability of the received power. The 
amount of received power may drop over 55% for specific orientations which affects the 
proper operation of the capsule. Moreover, there is extensive power loss (over 70mW) in the 
electronic circuit that accompanies the coil inside the capsule. Another, equally important, 
problem is the stability of the external magnetic field which is altered by the human body. 
Despite the aforementioned issues, great steps forward have been made and it is likely, in the 
near future, an externally powered capsule endoscope to be realized.  

The development of imaging technology and miniaturization resulted in size reduction of 
the image sensors and expansion of the camera angle of view. A wider viewing angle means  

 

Fig. 3. 3D coil inside capsule endoscope for wireless power transmission (Carta et al.,2010). 
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more panoramic images. Smaller cameras contributed to increased free space inside the 
capsule, and as a result, the inclusion of a second camera. The twin camera capsule with a 
wider angle of view combined with the increased transmission frame rate enabled 
esophageal WCE (Waterman & Granlnek, 2009) with promising diagnostic efficiency. The 
size reduction of image sensors is, also, expected to result in increasing number of pixels 
and solve the problem of low resolution WCE images. New and more efficient image 
compression algorithms will, additionally, assist towards quality and color enhancement. 
Image compression is essential in WCE in order to significantly reduce the size of the image 
and, consequently, the storage space and transmission time required. However, the 
compression procedure lowers image quality by smoothing the razor-sharp details.  

Gastroenterologists eagerly look forward the day that they will be able to control and steer 
the capsule endoscope as they do in standard endoscopy. This would give them control in 
maintaining the capsule steady in selected areas and hold the view in order to examine 
carefully the opposite wall of the bowel. To solve this problem, magnetic manoeuvring has 
recently become a thrust research area. The proposed approaches rely on a magnetic field 
applied to the capsule from the exterior of the patient, exploiting the principle that a magnet 
inside a magnetic field aligns with the direction of the field. The magnetic field can be used 
to control the movement trajectory, the position and the orientation of the endoscopic 
capsule. By changing the direction of the magnetic field, the direction of the capsule also 
changes. For this purpose, various techniques have been proposed in order to make an 
endoscopic capsule responsive to an external magnetic field. These include either magnetic 
parts and induction coils to be arranged inside the capsule, or magnetic shells to be 
reversibly applied to the capsule externally (Capri et al., 2007) (Fig. 4). Capsule motions can 
readily be induced with hand-held/hand-guided magnets, as demonstrated even in the 
esophagus and stomach of a volunteer (Swain, 2010). This system is only available for 
research purposes. Nevertheless, the main issue related to the development of a clinically 
applicable technique is the generation and precise control of a stable magnetic field, really 
capable of guaranteeing accurate and reliable manoeuvrings of an endoscopic capsule. Such 
techniques start to emerge (Capri et al., 2011; Gao et al., 2010) and the realization of a self-
propelled capsule is close.  

 

Fig. 4. Capsule with magnetic shield for controllable maneuvering (Capri et al., 2011). 

At present, WCE remains just a diagnostic tool that has yet to prove its potential. The 

endoscopic capsule is passive and cannot obtain biopsies, aspirate fluid, deliver drugs or 

brush lesions for cytology. The main pressure is to reduce the capsule size, which will 
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release space that could be used for other interactive functions, and maximize power 

supply. New engineering methods for constructing tiny moving parts, miniature actuators 

and even motors into capsule endoscopes are being developed. However, these moving 

components require considerable amounts of power. Another limitation to therapeutic 

capsule endoscopy is the low mass of the capsule endoscope (approximately 4 grams). A 

force exerted on tissue, for example, by biopsy forceps may push the capsule away from the 

tissue. Opening small biopsy forceps to grasp tissue and pull it free will require different 

solutions to those used at conventional endoscopy. All these interventional capabilities seem 

to be something of a pipe dream at present but the huge technological leaps pave the way 

for an active therapeutic capsule.  

The ideal WCE of the gastroenterologist’s imagination should be remote controlled and 
capable of performing an ordinary biopsy as well as stop bleeding using adrenaline injection 
or a heat probe. The ultimate capsule would include special detectors for white blood cells 
and be able to measure various cytokines, pH, temperature and pressure, in addition to 
delivering drugs. Finally, the optimal WCE needs to contain a computerized system for 
automatic detection of pathologies, such as ulcer and polyps, in order to overcome the 
drawback of time-consuming viewing the video (Fireman, 2010). Technology for improving 
the capability of the future generation capsule is almost within grasp and it would not be 
surprising to witness the realization of these giant steps within the coming decade. 

3. The concept of image decomposition 

Automated knowledge extraction from medical images is a fast growing field of interest for 
the researchers. The attainment of this objective requires image decomposition to its 
components that will disclose the inherent structural characteristics of the image. In this 
context, this section presents Bidimensional Ensemble Empirical Mode Decomposition, a 
novel tool for image analysis. 

3.1 Empirical Mode Decomposition (EMD) 

In 1998, Huang et al. introduced a novel, intuitive and alternative signal decomposition 
technique for time-frequency analysis, namely Empirical Mode Decomposition (EMD) 
(Huang et al., 1998). The major characteristic of EMD that renders it superior to traditional 
analysis methods, such as Fourier and Wavelets, is its adaptive nature. The decomposition 
does not require the use of a priori basis function. On the contrary, it is totally data driven. 
The concept that lies behind EMD is the existence of oscillations in every signal, at a very 
local level. Therefore, its target is to seek and reveal these inherent oscillatory modes, called 
Intrinsic Mode Functions (IMFs). EMD is designed to estimate IMFs of a signal so that, no 
matter how complicated the signal is, it embeds. A given signal x(t) can be decomposed into 
n IMFs as: 

x岫t岻=布 ci(t)

n

i=1

+rn(t), (1) 

where 潔沈(t) is ith IMF (IMF i) and rn(t) is the low frequency trend of x(t) (residue). The highest 
frequency component of x(t) corresponds to the lowest value of index i, i.e., 潔怠(t) (IMF 1). 
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While the value of i increases, lower frequency components are obtained. An example is 
given in Fig. 5a, where the signal is decomposed into five IMFs plus residue. The process to 
calculate each 潔沈(t) is called sifting process. The local extrema are defined and interpolated, 
resulting in two fitting curves, one for the maxima and one for the minima. Then, the mean 
curve is calculated and subtracted from the signal. This procedure continues until a 
stopping criterion is satisfied. The signal that remains after the last subtraction is 潔怠(t). Next, 潔怠(t) is subtracted from the initial signal and the remainder constitutes the new initial signal 
on which the above procedure is applied in order to extract the following IMFs until the 
desired number is obtained. 

3.2 Ensemble EMD (EEMD) 

Despite the great advantage of EMD, deficiency arises when the extrema of the original 
signal are unevenly distributed. In such a case, the IMFs are incorrectly calculated, since 
either a single IMF contains signals of widely disparate scales or a single mode of 
oscillations resides in two or more IMFs. This phenomenon is called mode mixing and an 
example is depicted in Fig. 5b. It is clear that the first two IMFs, apart from the high 
frequency component of the signal, incorrectly include a low frequency oscillation. To 
overcome this issue, Huang et al. proposed a noise-assisted version of EMD, namely 
ensemble EMD (EEMD) (Wu & Huang, 2009). EEMD requires the generation of an ensemble 
that contains multiple copies of the original signal that are distorted by white Gaussian 
noise, different for each copy, of finite amplitude. EMD is applied on every member of the 
ensemble and the final IMFs of the initial signal are derived by averaging the corresponding 
IMFs of each member of the ensemble. The concept of EEMD is grounded on the intuitive 
characteristics of white noise. White noise populates the whole time-frequency space 
uniformly and, as a result, establishes proper reference scales for the IMFs. The inherent 
modes of the signal are triggered by the noise and are projected accurately on the correct  

 

Fig. 5. (a) EMD analysis, (b) mode mixing phenomenon, (c) ensemble EMD analysis. 
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scales. The IMFs of each ensemble member are noisy but the final average IMFs are noise-
free, since white noise cancels itself for a large number of ensemble members. Figure 5c 
presents the correct decomposition (using EEMD) of the signal in Fig. 5b. IMFs 1-3 include 
only the high frequency components while IMF5 contains the sinusoidal oscillation of the 
initial signal. 

3.3 Bidimensional EEMD (BEEMD) 

A multidimensional approach of EMD is required in case of a multidimensional signal. The 
extension of EMD in two dimensions (2D), namely Bidimensional EMD (BEMD), is an 
alternative multi-resolution analysis technique for image analysis and pattern 
discrimination. BEMD decomposes a 2D signal in 2D IMFs in the same way as eq. (1) 
demonstrates. However, there are two approaches for the realization of 2D extension. The 
first approach treats 2D data (images) as a collection of 1D slices (rows/columns) and 
applies 1D EMD on each row/column of the image (pseudo-BEMD). The second approach 
directly transplants the idea of 1D EMD algorithm in 2D data (genuine BEMD) after 
applying the appropriate changes (for example, fitting surfaces replace fitting curves). The 
first approach has the advantage of higher speed, while the latter exhibits improved 
performance, since the correlation among rows/columns of the image is taken into account. 
Bidimensional EEMD is the extension of EEMD in 2D (Wu et al., 2009). 

4. Texture extraction 

Texture is a major property of any image that is useful in machine vision applications, 

especially for medical purpose. There are many approaches for texture analysis proposed in 

the literature. This paragraph describes the concept of Differential Lacunarity, an efficient 

tool for texture features extraction and identification.  

4.1 Lacunarity Analysis (Lac) 

Lacunarity (Lac) was introduced by Mandelbrot (Mandelbrot, 1993) as a fractal property, 
counterpart to fractal dimension (Mandelbrot, 1982), that describes the texture of a fractal. 
Fractal dimension is a measure of how much space is filled without consideration about the 
space-filling characteristics of data. In other words, two datasets with identical fractal 
dimensions can have distinct patterns with great differences in appearance. The 
introduction of Lac addressed this issue. Lac analyzes how space is filled and consequently, can 
discriminate textures and natural surfaces that share the same fractal dimension. In this direction, 
Lac has been used as a general technique to analyze patterns of spatial dispersion (Plotnick 
et al., 1996). The term “lacunarity” has been used to evaluate and describe the distribution of 
gap sizes along datasets. A set with gaps of widely disparate sizes is considered 
heterogeneous and is characterized by high Lac, while a homogeneous set, with uniform 
gap sizes, exhibits lower Lac. It should be highlighted that homogeneous sets at large scales 
can be quite heterogeneous when examined at smaller scales and vice versa. From this 
perspective, Lac can be considered as a scale dependent tool to measure the heterogeneity or 
texture of an object (Gefen et al., 1983). 

Various algorithms have been proposed to calculate and quantify Lac, but the most popular 

are based on the “gliding box algorithm” (GBA) (Allain & Coitre, 1991) that is 
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straightforward and computationally simple. GBA is applicable on binary datasets, 

although it can be extended to real datasets by converting the numerical data to dyadic by 

thresholding (Plotnick et al., 1996). 

4.2 Differential Lacunarity Analysis (DLac) 

Most real life, image analysis applications need to extract texture information from either 

grayscale or color images without the option of thresholding. To this end, Dong (Dong, 
2000) introduced a new version of Lac, namely Differential Lacunarity (DLac), suitable for 

grayscale image analysis. DLac is calculated by a differential box counting method. This 
algorithm employs a gliding box r of size r x r pixels and a gliding window w of size w x w 

pixels with r<w. Window w is initially positioned at the up left corner of the image and, by 
moving one by one columns to the left, scans the whole image. For every position of the 

window w, box r is placed inside the window at the up left corner and scans the image 
pixels bounded by the window (Fig. 6a) in order to calculate a value called “box mass”. In 

other words, window w designates a region of the image (different each time until the entire 
image is covered) on which box mass is calculated with the aid of box r. According to the 

pixel values included in the box (r x r neighborhood) a column of more than one cubes of 
size (r x r x r) may be needed to cover the image intensity surface (Fig 6b). Numbers 1, 2, ... 

are assigned to the cubes from bottom to top and the differential height of the column n(i,j) 
is calculated (i, j is the position of the box). Let the minimum and maximum pixel values 

reside in the cubes u and v, respectively. The differential height of the column is defined as 

n(i,j) = v - u - 1. (2)

As the box glides inside the window, the sum 

M = 布 n(i,j),
i,j

 (3)

   
               (a)          (b) 

Fig. 6. (a) gliding box (green) and gliding window (black) movement throughout the image, 
(b) differential box counting method for box mass calculation (box size r=3, window size 
w=9, differential height of the column n=3-1-1=1). 
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is the box mass of the window w at a specific place. Let n(M,r) be the number of windows w 
with box mass M calculated by a box r. The probability function Q(M,r) is obtained by 
dividing n(M,r) by the total number of windows. The DLac of the image at scale r given a 
window w is defined as  

Λ(r) = 
∑ M2Q(M,r)M[∑ MQ(M,r)]M

2
. (4)

5. The proposed automated ulcer tissue identification scheme 

This section presents our proposed approach for color-texture-based automatic 
discrimination between ulcer and healthy tissue from WCE images. The color-texture 
concept was motivated by gastroenterologists' clinical practice, where the colour and texture 
properties of WCE images are utilized for reaching a diagnosis. More specifically, our 
scheme, named AR-DLac, combines BEEMD analysis to achieve adaptive image refinement 
(AR) with DLac analysis for efficient extraction of ulcer texture information. BEEMD-DLac 
combination for WCE image analysis was firstly introduced in (Charisis et al., 2010b). The 
overall structure of the propose scheme is depicted in Fig. 7. 

 

Fig. 7. The proposed AR-DLac scheme. 

5.1 Color information 

Each pixel in an image is characterized by a 3D color vector, i.e. three values that determine 
the color of the pixel. Various colour spaces exist to represent colour information. One of the 
most common color spaces is the hardware-oriented RGB (Red-Green-Blue). The majority of 
digital cameras, including the camera of a WCE system, utilize image sensors that capture 
colour images on the basis of the RGB model. In RGB, each colour is determined by the 
amount of red (R), green (G) and blue (B) present in the colour. In this context, a coloured 
WCE image comprises from three monochromatic components, one for each colour (R, G 
and B), whose combination provides the final colourful image. 
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Previous studies (Charisis et al., 2010a, 2011) have shown that RGB is the most efficient space 
for WCE image analysis (compared to other colour spaces, i.e., HSV and CIE Lab). More 
specifically, the majority of ulcer texture information resides in green component of the RGB 
space. This conclusion coincides with the yellow-greenish appearance of ulcer regions. Thus, 
the proposed AR-DLac scheme is applied on the green channel extracted from each image. 

5.2 Image denoising 

The next step of our approach includes image purification by applying a denoising 
procedure. In order to facilitate texture-pattern extraction, the images need to be refined and 
smoothed by eliminating any distorting information. Endoscopic images from a WCE 
examination are prone to misleading content. Hardware limitations (quality of the image 
sensor and lens, non-adjustable light source) and adverse filming conditions (non-uniform 
lighting, reflections of the light on intestinal juices and lens cover, peptic content) are likely 
to cause high levels of noise to reside in total or part of the image (e.g., underexposed). To 
address this issue, we apply BEEMD analysis and each image is decomposed in eight 2D 
IMFs and residue. The first two IMFs contain the high frequency components of the image, 
i.e., the noise that may exist. Therefore, they are discarded and not utilized in the 
subsequent analysis and for image reconstruction. Figure 8 presents a worst case scenario, 
where artificial high level noise was added to an ulcer image. The distorted image is 
decomposed with BEEMD into eight IMFs and residue. The result (reconstructed image) 
proves that BEEMD is capable of dealing successfully with extreme cases of noise. Sheer  

 

Fig. 8. Ulcer image with high-level, artificial noise decomposed in 8 IMFs plus residue and 
purified by BEEMD analysis. 
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noise reduction would be achieved by extracting three or four IMFs only. However, we opted 
for eight, since our target is to decompose the image to its components towards examining 
how intestinal information is distributed on a broad range of frequency scales and create a 
new, reconstructed image that reveals more efficiently ulcer texture information.  

The motive for using BEEMD instead of other denoising techniques, such as Gaussian filter 
or wavelets, lies on the characteristics of the WCE images and the properties of BEEMD. The 
spatial characteristics of noise in WCE images and the spatial-frequency information 
representation of BEEMD, combined with its adaptive-to-the-data nature, provides a great 
advantage over a simple Gaussian filter. Moreover, ulcer regions are characterized by many 
and varying appearances and irregular shapes and sizes and do not have strong directional 
elements. Consequently, a tool, free from directional limitations, that permits multi-scale 
analysis is essential. Wavelet analysis has poor orientation selectivity (horizontal, vertical, 
diagonal) rendering BEEMD as a more efficient option. 

5.3 AR-DLac scheme 

In order to follow the WCE image characteristics and focus upon the ones that mostly relate 
to ulcer, an AR approach was developed. The aforementioned capabilities of EMD were 
exploited by developing a new DLac-based approach for the optimized selection of IMFs 
that correspond to ulcer characteristics of a WCE image. Towards this direction, DLac 
analysis is applied to every IMF of a decomposed image. The selected IMFs are used either 
to reconstruct a new image (R-case), or provide separate images (NR-case) that represent 
specific modes of oscillations coexisting in the initial WCE image. Apart from the optimal 
IMF selection, we are able to investigate how ulcer texture information are distributed 
across the frequency scales of WCE images. 

5.3.1 Proposed DLac analysis 

The great advantage of DLac is the ability to perform texture analysis in various scales. The 
coarseness of the scale is primarily determined by the size of window w, which designates the 
size of the neighbourhood for box mass calculation; the greater the window, the coarser the 
analysis scale. In the case of ulcer tissue recognition, a multi-scale texture analysis is required 
considering the great variability in size and appearance of ulcer regions. In this context, DLac 
is calculated for a variety of window sizes, given a constant, relative small box size r, in order 
to achieve pattern analysis at different scales, while identifying slight variations in 
neighbouring pixels (due to small value of r). An example of DLac-w (r=3, w=4-30) curves that 
correspond to images b, d, e and f from Fig. 1 is given in Fig. 9a. The curves are distinct, 
however, obvious discrimination is not achieved. To deliver greater differentiation between 
the curves an identical reference level has to be secured (Hadjileontiadis, 2009). Thus, DLac-w 
curves are normalized to the DLac value that corresponds to the smallest w. The resulting 
curves (Fig. 9b) provide quite clear discrimination between the four patterns. From now on, 
any reference to DLac-w curves implies normalized curves.  

5.3.2 Optimized IMF selection 

The selection of optimum IMFs is based on the characteristics of DLac-w curve of each IMF. 

The motive for such an approach lies in the concept that IMFs with possible useful texture  
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                (a)            (b) 

Fig. 9. DLac (a) and normalized DLac (b) curves for various window sizes (4 to 30 pixels) for 
images b, d, e and f from Fig. 1. 

information should provide DLac-w curves that bear resemblance to the curves estimated 
on ulcer images. In this context, it has been observed that the slope of DLac-w curves of 
ulcer images lies within specific limits for the majority of ulcer cases. This observation led us 
to a slope-based criterion for IMF selection. The IMFs that provide DLac curves with slopes 
within the limits, specified by DLac curves of ulcer images, were selected. Figure 10 shows 
the selection probability of each IMF. According to the diagram, IMF5, IMF6 and IMF8 were 
selected for the majority of images implying that the information included in these IMFs 
should be taken under consideration.  

 

Fig. 10. Selection probability for each IMF. 

5.3.3 DLac-based feature vector 

In image pattern detection applications, feature vector (FV) is the set of features that 
characterize and represent an image and are utilized for the discrimination between various 
patterns. The DLac-based FV extraction was implemented in two different approaches, 
following the R-case and NR-case scenario. From a general perspective, the previously 
described DLac-w curve is used to form the FV. In our approach DLac-w curve is calculated 
for w=5-30 pixels. These 26 DLac values consist an extensive FV, subject to the "curse of 
dimensionality". The essence of reducing the feature space dimension without omitting any 
crucial information introduces the concept of modelling DLac-w curves with another 
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function L(w). The normalized DLac-w curves in Fig. 9b expose an attitude that bears 
resemblance to the one of hyperbola. On this ground, the function 

L(w) = 
a

wb
+c, w=[5-30], (5)

was chosen to model the normalized DLac-w curves (Hadjileontiadis, 2009). Parameter a 
represents the concavity of hyperbola, b portrays the convergence of L(w), and c is the 
translational term. The best interpretation of DLac-w by the model L(w) is computed as the 
solution of a least squares problem where parameters a, b, c are the independent variables. 
Parameters a, b, c embody the global behaviour of the DLac curve, i.e., all the substantial 
information. However, preliminary studies have shown that local behaviour of DLac curve 
is also important in ulcer tissue classification. Consequently, FV consists of parameters a, b, 
c plus five DLac values that correspond to the five smallest values of w (i.e., L(6) - L(10); L(5) 
is discarded as it always equals to one due to normalization). The values L(6) – L(10) were 
selected empirically after exhausting experiments. In this manner, FV embodies both local 
and global trend of DLac curve achieving a significant size reduction (eight rather than 26 
values). 

More specifically, in R-case scenario the selected IMFs and the residue recompose a new 
image on which the DLac-w curve is calculated and FV is extracted (FVR) as described 
above. In NR-case scenario, the final FV (FVNR) contains the FV from each selected IMF (FVi, 
i=3 to 8). However, different number of IMFs is selected for every image with the 
subsequent problem of changing FV size. To address this issue, FV is designed to include 
the FVs from IMFs 5, 6 and 8 (i.e., FVNR = {FV5, FV6, FV8}) which are the most frequently 
chosen IMFs (Fig. 10) for all images in the dataset, implying that they contain the majority of 
beneficial information. Last but not least, the ability of texture information of each 
individual IMF to discriminate ulcer from normal images is investigated. In this case, the 
final FV (FVindiv) consists of the FV from an individual IMF, different each time, i.e. FVindiv = 
FVi for i=1 to 8. IMFs 1 and 2 are included, despite their noise contamination, for an overall 
assessment.  

5.4 Classification 

The last step of ulcer detection scheme is the classification procedure. This procedure 
involves the classification of extracted FVs into healthy/ulcerous and is accomplished by 
algorithms called "classifiers". The target of a classifier is to identify the population (e.g., 
healthy or abnormal) to which a FV belongs on the basis of a training set of FVs whose 
population is already known. It is usual that 90% of the sample dataset is used for training 
the classifier and 10% for testing. This procedure is repeated ten times (10-fold cross 
validation) with random training and test sets in order to acquire more accurate results. The 
classification performance is measured with the aid of accuracy (acc.), sensitivity (sens.) and 
specificity (spec.) indexes. The average acc., sens. and spec. are obtained in case of 10-fold 
cross validation technique. Various classification algorithms have been proposed in the 
literature. For an extensive evaluation of the classification performance of the proposed AR-
DLac scheme, the widely used classification algorithms, i.e., LDA (Linear Discriminant 
Analysis), QDA (Quadratic Discriminant Analysis), MD (Mahalanobis Distance) 
(Krzanowski, 2000), and SVM (Support Vector Machine) (Cristiani & Shawe-Taylor, 2000), 
were adopted.  
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6. Experimental phase 

The WCE images used in this study for the development and assessment of the proposed 
approach were drawn from six patients with ulcerous diseases, such as unexplained 
ulceration, ulceration from NSAID, ulcerative colitis and Crohn's diseases, who have 
undertaken a WCE examination in NIMTS Gastroenterology Clinic in Athens, Greece. The 
examinations were conducted with Pillcam SB (Given Imaging) WCE system. Rapid Reader 
6.0 software (Given Imaging) was employed to export the images from the video sequence.  

The dataset collected consists of 87 ulcer and 87 normal images. An example of the two 
categories is given in Fig. 11. The images were obtained by manual segmentation of the 
initial, complete WCE images. Two gastroenterologists reviewed the endoscopic video and 
manually isolated regions of interest (ROI), as the ones shown in Fig. 11, according to their 
expertise and upon agreement. It must be highlighted that the 87 ulcer images were 
obtained from 87 different events (ulcer regions) to achieve the lowest possible similarity. 
Furthermore, the normal images include both simple and confusing healthy tissue (folds, 
villus, bubbles etc.) in order to hamper the discrimination process. The ROI for the normal 
images varies from 110x110 to 220x220 pixels whereas the crop area of the ulcer images 
depends on the size, shape and position of the ulcer. The variety in ROI sizes does not affect 
the tissue discrimination procedure, since the feature vectors extracted from the images are 
utilized as the basis for comparison instead of the images themselves. 

 

Fig. 11. An example of ulcerous (left) and normal (right) region of interest. 

7. Results and discussion 

The performance of the proposed AR-DLac scheme is evaluated through the experimental 
results derived from the application of the introduced approach to the dataset described in 
§6. To this end, results from every individual IMF analysis as well as results from both AR-
DLac implementation scenarios (i.e., R-case and NR-case) are presented in this section.  

7.1 Individual IMFs 

Table 1 tabulates the classification performance achieved by the texture information 
extracted from each individual IMF (FVindiv=FVi, where FVi is the feature vector constructed 
from IMFi as described in §5.3.3) for all classifiers. The highest classification rates obtained 
for each IMF are noted in bold. The format %±% corresponds to mean acc., sens. and spec. ± 
standard deviation.  

The low classification rates for IMFs 1-2 denote their inefficiency in discriminating between 
ulcer and normal tissue. The performance of IMF1, in terms of classification accuracy, ranges 
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from 51.9% to 61.3%, while the one of IMF2 varies from 53.3% to 62.0%. The sensitivity 
index is even lower (up to 29.1 percentage points) for the majority of classifiers (i.e., LDA, 
QDA and SVM). This performance implies that the texture information that lies in IMFs 1 
and 2 is not eligible for ulcer detection. This behaviour is consistent with the concept of 
noise “contamination” of IMF1-2 and validates the noise reduction procedure described in 
§5.2 and illustrated in Fig 8. IMFs 1-2 contain the high frequency components of the image 
(i.e., the noise) and, therefore, should be discarded. On the contrary, the classification 
accuracy of IMF3-8 is 24.8% to 35.5% improved. IMF3 and IMF5 exhibit the lowest (77.4%) 
and highest (84%) performance (in terms of accuracy), respectively. Despite the superior 
classification rates, the performance of individual IMFs indicates that texture information 
that resides in a single image component is inadequate for efficient ulcer detection. 
Additionally, low classification sensitivity (<76%) suggests extensive misidentification of 
ulcer regions as healthy. It should be highlighted that IMFs 5, 6 and 8, that are the most 
commonly selected IMFs (Fig. 10) in IMF selection procedure, deliver the three highest 
classification accuracy rates among the IMFs. The convergence of these results testifies the 
optimal IMF selection procedure. 

As far as the classification algorithms are concerned, the results in Table 1 imply that the 
most efficient classifiers include SVM and QDA. SVM achieves the best performance for the 
majority of IMFs (1-4, 8) due to its more advanced nature. However, the capabilities of QDA 
should not be underestimated since it exhibits 4.6, 5.7 and 4.8 percentage points higher 
classification accuracy than SVM for IMF5-7. LDA also proves competent, delivering slightly 
inferior performance. At last, MD is the most inappropriate classifier for our approach. The 
extremely high classification sensitivity (up to 99.2% for IMF6) in conjunction with the 
extremely low classification specificity (down to 15.6% for IMF6) denote over fitting to ulcer 
texture information. 
 

Classifier 
IMF 

1 2 3 4 5 6 7 8. 

LDA 

Acc. 55.1±1.7 58.7±1.7 76.9±0.9 78.9±0.7 81.6±0.6 80.0±1.1 78.7±1.0 82.3±0.8 

Sens. 35.9±2.4 51.8±2.4 71.1±1.4 71.3±1.4 70.4±0.9 72.2±1.7 73.4±1.5 82.1±1.4 

Spec. 74.4±2.1 65.5±2.4 82.8±1.4 86.5±0.7 92.7±1.1 87.7±1.6 83.9±1.4 82.5±0.7 

QDA 

Acc. 59.5±0.8 59.9±1.4 77.1±0.9 79.7±0.7 84.0±0.9 78.2±0.8 79.5±1.3 80.5±0.9 

Sens. 30.4±1.4 42.3±2.2 66.2±1.4 64.9±1.1 72.0±1.3 67.1±1.6 74.0±1.9 65.7±1.5 

Spec. 88.6±1.1 77.5±1.7 88.1±1.5 94.4±0.9 96.0±1.2 89.2±0.6 85.1±1.9 95.3±1.1 

MD 

Acc. 51.9±0.7 53.3±1.4 61.2±1.1 66.3±1.0 61.3±1.0 57.4±1.4 62.4±1.1 68.5±1.1 

Sens. 98.3±0.8 96.6±1.2 93.8±1.0 93.8±1.0 97.1±0.9 99.2±0.9 98.3±0.9 96.5±1.0 

Spec. 5.6±1.3 10.0±2.7 28.5±1.9 34.6±1.9 25.5±1.8 15.6±2.5 26.5±2.1 40.5±1.9 

SVM 

Acc. 61.3±1.6 62.0±1.5 77.4±1.1 79.8±1.0 79.4±0.8 72.5±1.1 72.7±1.1 82.5±0.5 

Sens. 42.9±2.0 59.8±1.8 74.2±1.2 75.9±1.3 74.3±1.0 64.1±1.6 62.4±1.3 67.7±0.9 

Spec. 79.8±2.2 64.2±2.6 80.5±1.6 83.5±1.6 84.5±1.3 80.9±1.3 83.1±1.7 93.3±1.0 

Table 1. Mean classification accuracy, sensitivity and specificity (%) for each individual IMF 
(FVi, i=1 to 8), for all classifiers (LDA, QDA, MD, SVM). 
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7.2 Reconstruction (R-case) – Non Reconstruction (NR-case) scenarios 

The proposed AR-DLac scheme, thoroughly described in §5.3, selects the optimum IMFs. In 
the reconstruction scenario (R-case) the selected IMFs and the residue reconstruct a new 
image from which the FV is extracted, while in non reconstruction scenario (NR-case) the 
FVs from the selected IMFs are concatenated in order to form the final FV. The results of 
both scenarios are tabulated in Table 2, for all classifiers. The best classification rates for each 
implementation scenario are notated in bold. The format %±% corresponds to mean acc., 
sens. and spec. ± standard deviation.  

 

Classifier 

Implementation scenario 

R-case NR-case 

Acc. Sens. Spec. Acc. Sens. Spec. 

LDA 95.5±0.5 94.8±0.8 96.2±0.4 89.2±0.9 84.3±1.7 94.1±0.4 

QDA 95.8±0.6 93.9±1.1 97.7±0.3 91.2±0.9 86.2±1.3 95.9±1.1 

MD 96.3±0.2 96.0±0.1 96.6±0.6 78.7±1.4 98.3±0.9 58.3±2.7 

SVM 96.7±0.6 96.5±0.3 96.9±0.9 89.7±0.8 87.5±1.0 91.9±0.9 

Table 2. Mean classification rates (%) for both R-case and NR-case scenarios, for all 
classifiers (LDA, QDA, MD, SVM). 

The most efficient performance of the proposed AR-DLac scheme is delivered in R-case 
scenario where the classification accuracy reaches 96.7% by exploiting SVM classifier. 
However, the difference between the most (SVM) and the least (LDA) efficient classifier is 
only 1.2 percentage points, in terms of accuracy, implying that the features extracted by the 
proposed analysis are quite robust, exhibiting advanced overall performance regardless of 
the classification algorithm engaged. It is also remarkable the fact that the high accuracy rate 
is accompanied by high and relatively consistent rates for both sensitivity (96.5%) and 
specificity (96.9%). These results indicate that AR-DLac scheme is capable of equally 
recognising ulcer and normal data without exhibiting bias towards a specific pattern. This 
behaviour applies to all examined classifiers since the difference between sensitivity and 
specificity does not exceed 2.6 percentage points.  

The classification results of the NR-case, suggest inferior performance of the AR-DLac 
scheme during the non reconstruction scenario. The most effective classifier for NR-case is 
QDA delivering 91.2% accuracy, 86.2% sensitivity and 95.9% specificity. These rates, 
compared to those of R-case, are 5.5, 10.3 and 1.0 percentage points lower, respectively. 
Even the worst scenario for R-case (LDA classifier) achieves 4.3 percentage points higher 
accuracy than QDA in NR-case. Moreover, the balance between sensitivity and specificity 
rates deteriorated ranging from 4.4 (for SVM) to 40 (for MD) percentage points. MD, as in 
the individual IMF case, fails to recognize correctly the normal images since the specificity 
rate is 58.3%. The divergence in performance between R-case and NR-case indicates that the 
recomposed image by the optimal IMFs and the residue represents more efficiently the 
intestinal texture information than the individual components of the image. This may be 
explained by the fact that in NR-case the trend of the image (residue) is ignored. Moreover, 
the fact that FVNR includes 3 IMFs x 8 features = 24 features in total (33% larger than FVR) 
may also affect the classification performance.  
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The comparison of the results in Tables 1 and 2 denotes the inability of a single IMF to 
separate ulcer from normal images. R-case and NR-case deliver 12.7 and 7.2 percentage 
points improved classification accuracy compared to the most effective IMF (i.e., IMF5), 
respectively. The superiority of NR-case suggests that the utilization of a group of 
individual IMFs is more fruitful than standalone IMF exploitation. 

8. Overall perspective and future work 

The aforementioned experimental results highlight the potential of the proposed scheme 
towards ulcer and healthy intestinal tissue discrimination. The optimum image components 
(IMFs) that contain the majority of texture information include IMFs 5, 6 and 8. Individual 
IMFs score up to 84% classification accuracy, while their exploitation as a group enhances 
the detection rate up to 91.2%. On the contrary, the refined image reconstruction process 
achieves 96.7% successful tissue identification. When compared with other approaches, the 
proposed scheme seems to be more effective exhibiting increased classification ability by 
using a smaller feature vector. One of the most efficient ulcer detection approaches 
(Kodogiannis et al., 2007b), used as a comparison baseline, employs 54 features (instead of 8) 
and results in 94.5% accuracy when applied to our dataset (Charisis et al., 2011). 

In spite of the promising performance of the proposed scheme, there are still some issues for 
improvements that should be taken under consideration for its use in a future computer 
aided diagnosis system. Firstly, the number of ulcer and normal images should be increased 
in order to secure maximum diversity between the ulcer cases, develop more robust 
algorithms and obtain more accurate conclusions. Secondly, automatic segmentation of the 
regions of interest (ROI) is mandatory. In our approach, WCE images are manually cropped 
to the ROI. A potential solution is to divide each WCE image (576x576) into small patches 
(64x64) and choose the patches that depict mucosa. These patches contain almost all possible 
ROI by covering the most valid area of the original WCE image. At last, the computational 
cost of the proposed techniques should be revised. In this work, the introduction of a real 
time application was not our objective. In this context, the computational cost of the current 
unoptimized MATLAB code is 9.3 seconds per ROI, considering an average size of 145x145 
pixels. BEEMD analysis consumes 83.4% of this time while DLac analysis and classification 
absorb 16.2% and 0.4%, respectively. When focusing on real time application, dedicated 
hardware and programming languages, more efficient implementation algorithms (for 
BEEMD and DLac) and multithreading programming should be considered. 

9. Conclusion 

Wireless capsule endoscopy (WCE) is a novel, non-invasive form of endoscopy that has 
started a new era for the visual inspection of the entire small bowel. A WCE system consists 
of a pill-shaped, wireless capsule that the patient swallows. The capsule, propelled by the 
natural bowel movements, captures and transmits images from the internal mucous 
membranes, along its journey through the digestive tract. Despite the revolution WCE has 
introduced, there are several limitations that pose serious questions about the competency 
of WCE compared to probe gastroscopy and colonoscopy. Some of the major challenges 
include camera speed/quality, power supply, controllable manoeuvring and interventional 
capabilities. Significant research is conducted towards this direction, various approaches 
have been proposed and the first achievements have emerged. A new capsule equipped 
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with two cameras and increased battery life has been developed for colon and esophagus 
examination. Magnetically remote controlling and wireless power transmission concepts are 
in experimental phase. Apart from the hardware-oriented limitations and approaches there 
is a major issue concerning the vast amount of data produced by a WCE examination. The 
optimal WCE needs to contain a computerized system for automatic detection of 
pathologies such as ulcer and polyps in order to overcome the drawback of time-consuming 
reviewing of the video (Fireman, 2010). In this context, researchers aim to develop automatic 
diagnosis systems. The main contribution of this work is the presentation of a novel tool for 
WCE image analysis and classification by exploiting color-texture features. This color-
texture perspective was inspired by the one the gastroenterologist usually adopts in clinical 
practice for successful diagnosis of pathologies and, especially, ulcer. The proposed AR-
DLac scheme is based on the ingenious combination of BEEMD and DLac, applied on the 
green component of WCE images in order to identify ulcerations. BEEMD, apart from an 
adaptive image denoising tool, was exploited to reveal the intrinsic components (IMFs) of 
the images in order to achieve data driven, adaptive image refinement (AR), boost the 
distinctness between normal and ulcer regions and facilitate DLac analysis to extract 
efficient texture characteristics. AR entailed optimum IMF selection, based on the structure 
patterns of IMFs disclosed by DLac. The optimum IMFs were used either to reconstruct a 
new, refined image, or provide separate images. The proposed AR-DLac approach was 
evaluated on selected WCE images, captured from patients, depicting ulcer and healthy 
tissue. Experimental results have shown that AR-DLac scheme exhibits quite satisfactory 
overall classification performance. Intestinal texture information is distributed along IMFs 3 
to 8; thus, the utilization of a single IMF for the detection procedure is not recommended. 
The classification performance of individual IMFs does not exceed 84% (classification 
accuracy), with IMF5 being the most efficient. When individual images (i.e., optimum IMFs) 
are employed (non reconstruction case) the performance improves and accuracy reaches 
91.2%. However, the best results are delivered in the reconstruction case, where accuracy, 
sensitivity and specificity exceed 96.5%. The advanced overall classification performance of 
AR-DLac approach paves the way for its use in a provisional automatic diagnosis system. 
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