214 research outputs found

    A neural-based minutiae pair identification method for touch-less fingerprint images

    Get PDF
    Contact-based sensors are the traditional devices used to capture fingerprint images in commercial and homeland security applications. Contact-less systems achieve the fingerprint capture by vision systems avoiding that users touch any parts of the biometric device. Typically, the finger is placed in the working area of an optics system coupled with a CCD module. The captured light pattern on the finger is related to the real ridges and valleys of the user fingertip, but the obtained images present important differences from the traditional fingerprint images. These differences are related to multiple factors such as light, focus, blur, and the color of the skin. Unfortunately, the identity comparison methods designed for fingerprint images captured with touch-based sensors do not obtain sufficient accuracy when are directly applied to touch-less images. Recent works show that multiple views analysis and 3D reconstruction can enhance the final biometric accuracy of such systems. In this paper we propose a new method for the identification of the minutiae pairs between two views of the same finger, an important step in the 3D reconstruction of the fingerprint template. The method is divisible in the sequent tasks: first, an image preprocessing step is performed; second, a set of candidate minutiae pairs is selected in the two images, then a list of candidate pairs is created; last, a set of local features centered around the two minutiae is produced and processed by a classifier based on a trained neural network. The output of the system is the list of the minutiae pairs present in the input images. Experiments show that the method is feasible and accurate in different light conditions and setup configurations

    An overview of touchless 2D fingerprint recognition

    Get PDF
    Touchless fingerprint recognition represents a rapidly growing field of research which has been studied for more than a decade. Through a touchless acquisition process, many issues of touch-based systems are circumvented, e.g., the presence of latent fingerprints or distortions caused by pressing fingers on a sensor surface. However, touchless fingerprint recognition systems reveal new challenges. In particular, a reliable detection and focusing of a presented finger as well as an appropriate preprocessing of the acquired finger image represent the most crucial tasks. Also, further issues, e.g., interoperability between touchless and touch-based fingerprints or presentation attack detection, are currently investigated by different research groups. Many works have been proposed so far to put touchless fingerprint recognition into practice. Published approaches range from self identification scenarios with commodity devices, e.g., smartphones, to high performance on-the-move deployments paving the way for new fingerprint recognition application scenarios.This work summarizes the state-of-the-art in the field of touchless 2D fingerprint recognition at each stage of the recognition process. Additionally, technical considerations and trade-offs of the presented methods are discussed along with open issues and challenges. An overview of available research resources completes the work

    A Translation And Rotation Independent Fingerprint Identification Approach

    Get PDF
    This thesis describes a new approach for fingerprint identification that will be shift and rotation independent. Detailed descriptions of directional filtering, foreground and background segmentation, feature extraction, and matching based on structural correlation are the main topics of this thesis. The fingerprint identification system consists of image preprocessing, feature extraction, and matching which run on a PC platform. The preprocessing step includes histogram equalization, block-based directional filtering, thinning, and adaptive thresholding to enhance the original images for successful feature extraction. The features extracted will be stored in the database for matching. The matching algorithm presented is a modification and improvement of the structural approach. A two-step process of local feature matching and global feature matching guarantees the correct matching results

    Security and accuracy of fingerprint-based biometrics: A review

    Get PDF
    Biometric systems are increasingly replacing traditional password- and token-based authentication systems. Security and recognition accuracy are the two most important aspects to consider in designing a biometric system. In this paper, a comprehensive review is presented to shed light on the latest developments in the study of fingerprint-based biometrics covering these two aspects with a view to improving system security and recognition accuracy. Based on a thorough analysis and discussion, limitations of existing research work are outlined and suggestions for future work are provided. It is shown in the paper that researchers continue to face challenges in tackling the two most critical attacks to biometric systems, namely, attacks to the user interface and template databases. How to design proper countermeasures to thwart these attacks, thereby providing strong security and yet at the same time maintaining high recognition accuracy, is a hot research topic currently, as well as in the foreseeable future. Moreover, recognition accuracy under non-ideal conditions is more likely to be unsatisfactory and thus needs particular attention in biometric system design. Related challenges and current research trends are also outlined in this paper

    Security and accuracy of fingerprint-based biometrics: A review

    Get PDF
    Biometric systems are increasingly replacing traditional password- and token-based authentication systems. Security and recognition accuracy are the two most important aspects to consider in designing a biometric system. In this paper, a comprehensive review is presented to shed light on the latest developments in the study of fingerprint-based biometrics covering these two aspects with a view to improving system security and recognition accuracy. Based on a thorough analysis and discussion, limitations of existing research work are outlined and suggestions for future work are provided. It is shown in the paper that researchers continue to face challenges in tackling the two most critical attacks to biometric systems, namely, attacks to the user interface and template databases. How to design proper countermeasures to thwart these attacks, thereby providing strong security and yet at the same time maintaining high recognition accuracy, is a hot research topic currently, as well as in the foreseeable future. Moreover, recognition accuracy under non-ideal conditions is more likely to be unsatisfactory and thus needs particular attention in biometric system design. Related challenges and current research trends are also outlined in this paper

    3D minutiae extraction in 3D fingerprint scans.

    Get PDF
    Traditionally, fingerprint image acquisition was based on contact. However the conventional touch-based fingerprint acquisition introduces some problems such as distortions and deformations to the fingerprint image. The most recent technology for fingerprint acquisition is touchless or 3D live scans introducing higher quality fingerprint scans. However, there is a need to develop new algorithms to match 3D fingerprints. In this dissertation, a novel methodology is proposed to extract minutiae in the 3D fingerprint scans. The output can be used for 3D fingerprint matching. The proposed method is based on curvature analysis of the surface. The method used to extract minutiae includes the following steps: smoothing; computing the principal curvature; ridges and ravines detection and tracing; cleaning and connecting ridges and ravines; and minutiae detection. First, the ridges and ravines are detected using curvature tensors. Then, ridges and ravines are traced. Post-processing is performed to obtain clean and connected ridges and ravines based on fingerprint pattern. Finally, minutiae are detected using a graph theory concept. A quality map is also introduced for 3D fingerprint scans. Since a degraded area may occur during the scanning process, especially at the edge of the fingerprint, it is critical to be able to determine these areas. Spurious minutiae can be filtered out after applying the quality map. The algorithm is applied to the 3D fingerprint database and the result is very encouraging. To the best of our knowledge, this is the first minutiae extraction methodology proposed for 3D fingerprint scans

    Latent Fingerprint Recognition: Fusion of Local and Global Embeddings

    Full text link
    One of the most challenging problems in fingerprint recognition continues to be establishing the identity of a suspect associated with partial and smudgy fingerprints left at a crime scene (i.e., latent prints or fingermarks). Despite the success of fixed-length embeddings for rolled and slap fingerprint recognition, the features learned for latent fingerprint matching have mostly been limited to local minutiae-based embeddings and have not directly leveraged global representations for matching. In this paper, we combine global embeddings with local embeddings for state-of-the-art latent to rolled matching accuracy with high throughput. The combination of both local and global representations leads to improved recognition accuracy across NIST SD 27, NIST SD 302, MSP, MOLF DB1/DB4, and MOLF DB2/DB4 latent fingerprint datasets for both closed-set (84.11%, 54.36%, 84.35%, 70.43%, 62.86% rank-1 retrieval rate, respectively) and open-set (0.50, 0.74, 0.44, 0.60, 0.68 FNIR at FPIR=0.02, respectively) identification scenarios on a gallery of 100K rolled fingerprints. Not only do we fuse the complimentary representations, we also use the local features to guide the global representations to focus on discriminatory regions in two fingerprint images to be compared. This leads to a multi-stage matching paradigm in which subsets of the retrieved candidate lists for each probe image are passed to subsequent stages for further processing, resulting in a considerable reduction in latency (requiring just 0.068 ms per latent to rolled comparison on a AMD EPYC 7543 32-Core Processor, roughly 15K comparisons per second). Finally, we show the generalizability of the fused representations for improving authentication accuracy across several rolled, plain, and contactless fingerprint datasets

    Palmprint Gender Classification Using Deep Learning Methods

    Get PDF
    Gender identification is an important technique that can improve the performance of authentication systems by reducing searching space and speeding up the matching process. Several biometric traits have been used to ascertain human gender. Among them, the human palmprint possesses several discriminating features such as principal-lines, wrinkles, ridges, and minutiae features and that offer cues for gender identification. The goal of this work is to develop novel deep-learning techniques to determine gender from palmprint images. PolyU and CASIA palmprint databases with 90,000 and 5502 images respectively were used for training and testing purposes in this research. After ROI extraction and data augmentation were performed, various convolutional and deep learning-based classification approaches were empirically designed, optimized, and tested. Results of gender classification as high as 94.87% were achieved on the PolyU palmprint database and 90.70% accuracy on the CASIA palmprint database. Optimal performance was achieved by combining two different pre-trained and fine-tuned deep CNNs (VGGNet and DenseNet) through score level average fusion. In addition, Gradient-weighted Class Activation Mapping (Grad-CAM) was also implemented to ascertain which specific regions of the palmprint are most discriminative for gender classification
    • …
    corecore