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Abstract

Touchless fingerprint recognition represents a rapidly growing field of research which
has been studied for more than a decade. Through a touchless acquisition process,
many issues of touch-based systems are circumvented, e.g., the presence of latent
fingerprints or distortions caused by pressing fingers on a sensor surface. However,
touchless fingerprint recognition systems reveal new challenges. In particular, a reliable
detection and focusing of a presented finger as well as an appropriate preprocessing of
the acquired finger image represent the most crucial tasks. Also, further issues, e.g.,
interoperability between touchless and touch-based fingerprints or presentation attack
detection, are currently investigated by different research groups. Many works have
been proposed so far to put touchless fingerprint recognition into practice. Published
approaches range from self identification scenarios with commodity devices, e.g.,
smartphones, to high performance on-the-move deployments paving the way for new
fingerprint recognition application scenarios.
This work summarizes the state-of-the-art in the field of touchless 2D fingerprint
recognition at each stage of the recognition process. Additionally, technical
considerations and trade-offs of the presented methods are discussed along with open
issues and challenges. An overview of available research resources completes the work.

Keywords: Biometrics, Fingerprint recognition, Touchless, Contactless, Finger image,
Finger photo

1 Introduction
Fingerprints, i.e., ridge and valley patterns on the tip of a human finger, are one of themost
important biometric characteristics due to their known uniqueness and persistence prop-
erties [1, 2]. Automated touch-based fingerprint recognition has been a topic of research
for several decades [3]. Nowadays, large-scale touch-based fingerprint recognition sys-
tems are not only used worldwide by law enforcement and forensic agencies, but they are
also deployed in the mobile market and in nation-wide applications [2, 4]. However, the
touch-based fingerprint capturing process suffers from distinct problems, e.g., signals of
low contrast caused by dirt or humidity on the sensor plate, latent fingerprints of previ-
ous users, or distortions due to elastic deformation of the finger caused by the pressure
which is put on the sensor plate [5]. In addition, an inconvenient acquisition process and

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13640-021-00548-4&domain=pdf
http://orcid.org/0000-0002-0985-7735
mailto: jannis.priesnitz@h-da.de
http://creativecommons.org/licenses/by/4.0/


Priesnitz et al. EURASIP Journal on Image and Video Processing          (2021) 2021:8 Page 2 of 28

hygienic concerns may lower the user acceptability of touch-based fingerprint systems
and hence, limit their deployment.
To tackle these shortcomings of touch-based fingerprint recognition systems, the first

touchless (also referred to as contactless) fingerprint recognition scheme was proposed by
Song et al. in 2004 [6]. Since then, a constantly growing number of contributions related
to this topic have been published each year by numerous research laboratories working
in the field of biometrics, as illustrated in Fig. 1. Conceptual advantages like a less con-
strained acquisition process pave the way for new applications, improves usability and
hence, user acceptance. Further, finger images acquired by a touchless sensor exhibit no
deformation and comprise no latent fingerprints. These major advantages motivated a
large amount of works published in recent years.
This work aims at providing a comprehensive overview of published scientific liter-

ature in the field of touchless fingerprint recognition. It is not intended to re-evaluate
proposed approaches as implementations of many works are not publicly available and
re-implementations might lack important optimizations or require specific sensor hard-
ware. Moreover, for technical details of surveyed approaches, the reader is referred to
the according publications. Where possible, results of published works are presented in a
comparative manner. If authors provided a single result in the publication text (e.g., in the
abstract or summary), those values are taken directly. Otherwise, a representative result
is chosen in good faith from the presented plots and tables.
While touchless fingerprint recognition technologies have been investigated for some

years, the corresponding literature is dispersed across different publication media and
overview works mostly focus on specific process modules. Parziale and Chen [7] elab-
orated on the differences of 2D and 3D acquisition technologies, processing strategies,
and quality aspects. Further, the authors gave an overview on presentation attack detec-
tion (PAD) schemes. Khalil and Wan [8] reviewed state-of-the-art algorithms along the
preprocessing pipeline and address PAD. Even though, their work highlights some impor-
tant issues in the field it lacks a comprehensive discussion of current approaches. Labati
et al. [5] conducted a comparative overview of 2D versus 3D touchless fingerprint recog-
nition and address the processing of touchless fingerprints to touch-based equivalent
fingerprints using unwrapping algorithms. Moreover, the authors provide a high-level

Fig. 1 Yearly amount of publications. Amount of publications in major conferences or journals since 2004
dedicated to the topic of touchless fingerprint recognition
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discussion of different feature extraction and comparison subsystems. A brief survey of
mobile touchless fingerprint recognition using smartphones as capturing device have
been presented by Malhotra et al. [9]. Mil’shtein and Pillai [10] present a short com-
parative review of touchless and touch-based schemes as well as a selective summary of
state-of-the-art touchless acquisition techniques. In addition, the authors briefly discuss
challenges of touchless recognition. Labati et al. [11] provided amore elaborated overview
of the whole recognition pipeline which is completed by a discussion of liveness detection
algorithms, nonidealities of current approaches, and a performance summary.
As previously mentioned, the published overview papers are mostly restricted to

particular subsets of the topic, i.e., subsystems of a touchless fingerprint recognition
system.
As the fact that the existing surveys are either not comprehensive or outdated, this work

aims at providing a more complete overview of the state-of-the-art of touchless 2D fin-
gerprint recognition. The first part is structured according to the pipeline of a touchless
fingerprint recognition system. It provides the reader brief overview of main processing
steps, as well as a detailed summary of proposed approaches. In a second part, an in-depth
discussion of issues and challenges is provided. Furthermore, available research resources
are described in detail. This summary primarily addresses biometric researchers and
practitioners aiming to gain an overview of the current state-of-the-art of the topic.
Apart from the standardized terms and definitions [12], the following taxonomy will be

used throughout this work:

• Finger image or finger photo refers to an image acquired using a touchless capture
device, e.g., smartphone camera, which contains one or more fingers of a subject.

• Fingerprint image refers to a finger image cropped to an area representing a
fingerprint, i.e., fingertips.

• Fingerprint refers to a preprocessed touchless fingerprint image or a fingerprint
captured by a touch-based sensor.

Furthermore, a distinction is made between the capturing of a finger image without any
preprocessing and the acquisition of a fingerprint image which includes an enhancement
by some preprocessing algorithms. It should be noted that the ISO/IEC 2382 Part 37
standard suggests the usage of the term capturing process [12].
The general biometric workflow of a touchless fingerprint recognition system is

sketched in Fig. 2. The first part of this work is structured accordingly: Section 2 describes
different finger image capturing approaches. In Section 3, the processing steps which are
necessary to achieve a high-quality biometric sample are described. Section 4 highlights
touchless quality assessment followed by a summary of feature extraction and compari-
son approaches in Section 5 and Section 6. The second part discusses different issues and
challenges in Section 7. An overview on touchless biometric databases is further given in
Section 8. Section 9 finally draws a conclusion.

2 Capturing process
During a touchless capturing process, one or more fingers are presented to an optical
capturing device. These devices can either be prototypical hardware designs assembled
by the researchers or general purpose devices which are adapted to the special needs of
touchless fingerprint recognition.
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Fig. 2 Modules of fingerprint recognition. Overview on the main modules (sub-systems) of a generic
touchless fingerprint recognition system

The National Institute of Standards and Technology (NIST) [13] published a guidance
document for the evaluation of touchless fingerprint capturing. The document accurately
defines requirements for the assembly of touchless fingerprint capturing devices with
respect to different application scenarios.
Figure 3 depicts impressions of a fingerprint captured with a touch-based fingerprint

sensor (Fig. 3a) and a the corresponding finger image acquired using a touchless device
(Fig. 3b). It is observable that the touch-based fingerprint can be directly used for fea-
ture extraction whereas the corresponding touchless fingerprint image requires further
preprocessing.

Fig. 3 Two impressions of the same finger: a touch-based fingerprint acquired with a Crossmatch Guardian
200; b touchless fingerprint image captured with a Samsung Galaxy S8. Both images are manually cut to
represent only the fingerprint area
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2.1 Prototypical hardware design

Many prototypical hardware designs rely on elaborated capturing technologies adopted
from other research areas to obtain finger images of high quality. Table 1 lists most rel-
evant works categorized by approach and ordered by the year of publication. All listed
approaches focus on overcoming known challenges of touchless fingerprint capturing like
unconstrained environmental influences, the lack of deformations, or focusing issues.
Several authors combine a box-like setupwith LEDs to achieve a predicable illumination

and to exclude environmental influences [15, 16, 18]. LED arrangements around the finger
lead to a homogeneous contrast on the fingerprint area. Colored illumination can also
emphasize the fingerprint characteristics and hence lead to improved results [16].
The majority of capturing setups used finger guidance in form of circular holes [16] or

fixed finger placements [20]. Tsai et al. [17] presented a more unconstrained approach
which works without a box and finger guidance. The authors used a strong illumination
combined with a small distance between the lens and the fingertip to minimize environ-
mental lights. A variable-focus liquid lens was able to acquire high-quality finger images
of moving fingers.
To overcome the issue of fingerprint distortions, Palma et al. [20] and Mil’shtein et al.

[14] presented capturing devices using rotating line scan cameras. The acquired fin-
ger image slices were merged together to a nail-to-nail rolled fingerprint image. This
impression has significantly fewer distortions than a touch-based fingerprint. Alterna-
tively, Wang et al. [15] suggested a setup of three cameras arranged around the fingertip
to acquire finger photos of different orientation which are stitched together. A continuous
image analysis assessed if the finger was positioned properly and enabled a convenient
capturing of high-quality finger images.
Mil’shtein et al. [14] and Ramachandra et al. [18] showed the possibility of combining

the capturing of fingerprints and finger veins in multi-modal devices. Ramachandra et al.
[18] used low-cost equipment such as an industrial camera with a monochrome sensor.
Weissenfeld et al. [19] introduced a mobile hand-held device which captured face and
finger images using a single sensor.

2.2 General purpose devices

In contrast to elaborated hardware setups, many research groups use general purpose
devices to capture finger images. Most relevant approaches are summarized in Table 2
sorted by type of recording device.

Table 1 Overview of most relevant prototypical hardware setups for capturing finger images

Capturingmethod Authors Year Properties

Line-scan camera Mil’shtein et al. [14] 2009 Camera rotating around finger,
distortion-free capturing

3 industrial cameras Wang et al. [15] 2009 Finger guidance, mosaicking

Rotating camera Noh et al. [16] 2011 5 finger capturing, guidances for each finger

Variable-focus liquid lens Tsai et al. [17] 2014 External illumination, multi focal planes, fast
capturing

Low-cost equipment Ramachandra et al. [18] 2014 LED illumination, box setup to
environmental influences

Industrial camera Weissenfeld et al. [19] 2018 Multi-purpose device, bright-field
illumination, 4×2 LEDs
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Table 2 Overview of major contributions using general purpose devices for capturing

Capturing device Authors Year Properties

Mobile phone Lee et al. [21] 2006 First reported work on finger capturing with
commodity devices

Digital camera Hiew et al. [22] 2007 Semi-professional camera, semi-mobile box
setup, table lamp illumination

Genovese et al. [23] 2016 Level-3 features, off-the-shelf camera, green
LED illumination,

Webcam Piuri et al. [24] 2008 Low cost, semi-mobile, different illumination

Mueller et al. [25] 2009 Mobile emulated user authentication
scheme

Kumar and Zhou [26] 2011 Low cost, no spatial illumination

Ravi et al. [27] 2013 Semi-mobile, fixed- and auto-focus busy
background

Smartphone Derawi et al. [28] 2011 Manual capturing, camera stand

Stein et al. [29, 30] 2013 Video; anti-spoofing

Alkhathami et al. [31] 2014 Mobile mosaicking approach with
unconstrained capturing

Sankaran et al. [32] 2015 Manual capturing, unconstrained

Canrey et al. [33] 2017 Slap hand, multi-finger capturing, on-screen
guidance

Deb et al. [34] 2018 Thumb and index finger, 2 commercial apps
on 3 smartphones

Birajadar et al. [35] 2019 Client-server architecture, on-screen
guidance

First experiments on general purpose devices were conducted by Lee et al. [21] who
used the camera of a mobile phone with an external LED light to acquire finger images.
Hiew et al. [36] also used an external illumination along with a semi-professional camera
in a box setup. In both schemes, the finger images were acquired completely manual.
Several early works investigated the applicability of webcams for finger image acquisi-

tion. Major advantages are affordable price and an easy connectivity to a computer [24,
26, 27]. All contributions used a manual capturing process and no additional illumination.
Additionally, Piuri and Scotty [24] conducted an experiment with external illumination
but were not able to achieve significant performance benefits. Nevertheless, the authors
reported accurate results in a touchless to touch-based interoperability scenario. It is
worth noting that despite the rather low image quality of webcams, a biometric recog-
nition scenario could be established with such devices[26] using level-0 features. Level-0
features typically refer to local texture patterns like line structures or dominant local
orientations.
Nowadays, smartphones are most often used for capturing because they are widely

available, have high-quality cameras, and can provide immediate user feedback. Here,
the most promising settings are to keep the auto-focus activated and if available use the
macro mode. Additionally, the flash should be enabled [29, 37]. External extensions like
additional lights and macro lenses are considered as beneficial by Sagiroglu et al. [38].
Several authors suggested using on-screen finger guidance for a high user convenience

and an easier fingerprint processing workflow [29, 33, 35]. Here the camera view pre-
sented on the screen is combined with a line representing the finger contour. Modern
smartphones are able to process and qualify video streams in order to select the frame
which contains a finger image of high quality [30, 39]. A convenient automatic captur-
ing comparable to the approach of Wang et al. [15] can be established. Moreover, Carney
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et al. [33] and Weissenfeld et al. [40] proposed the capturing of a whole slap hand in one
image which makes the capturing of up to four fingerprints more convenient.
Several works considered finger image capturing under different environmental influ-

ences [32, 41–43]. The authors concluded, that the capturing itself is not limited by
different light situations or indoor and outdoor environments. Nevertheless, varying
backgrounds might have a major influence on further processing.
Due to the huge variety of smartphones, several works investigated on interoperability

between different models [28, 34, 41]. It is observable that there are no huge perfor-
mance differences between particular models of the same generation. Deb et al. [34] also
showed that fingerprint images acquired by low-cost smartphones could be compared
to touch-based fingerprints. The tested commercial apps showed a practical biometric
performance.
A nail-to-nail rolled equivalent touchless finger image is a desirable goal to achieve a

large region of interest (ROI). Alkhathami et al. [31] proposed a nail-to-nail rolled finger
image by mosaicking three images acquired sequentially with one smartphone. During
the capturing, the subject was asked to perform a virtual rolling of his finger. All three
images were stitched together to form a larger fingerprint.
Level-3 characteristics, i.e., sweat pores, on touchless image data were firstly analyzed

by Genovese et al. [23]. The authors used an off-the-shelf camera and a green LED illumi-
nation. In a constrained setup with fixed distance between finger and sensor, the authors
captured accurate finger images with a resolution of ≈3800 ppi which is sufficient for
extracting level-3 features which refer to sweat pores.

3 Preprocessing pipeline
The captured image data differs fundamentally between touchless and touch-based acqui-
sition devices. Most touch-based schemes produce a gray-scale image in which the ridge
skin area touching the scanners surface is shown in black (or dark gray values) while
valley and background area is white (or light gray values). In general, these samples are
used directly for feature extraction without extensive preprocessing. The majority of
touchless finger image acquisition schemes deliver color images which require a com-
prehensive preprocessing prior to the extraction of features. Basic challenges are a low
ridge valley contrast, a blurred ROI, and a displaced, rotated, or pitched finger. Further,
principally different appearances, e.g., the lack of skin deformation, cause incompatibili-
ties. The image processing pipeline has to be developed dependent on the selected device
and the observed environmental circumstances during the capturing. For an example
finger image, a touchless preprocessing pipeline is illustrated in Fig. 4. In recent years,
touchless finger image preprocessing evolved to a heterogeneous topic of research with
many different approaches and contributors. Unfortunately, the field lacks a harmonized
vocabulary in order to compare different approaches. To get a clear understanding of the
preprocessing steps, we define frequently used terms as follows:

1. Finger detection: in the initial step, one or more fingers are detected (or
segmented), e.g., based on color or shape analysis, see Fig. 4a–c.

2. Gray scale conversion, ROI extraction, and orientation estimation: the finger image
is converted to gray scale and detected fingers are further cropped to extract
fingerprint images which are aligned for further processing, see Fig. 4d.
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Fig. 4 Touchless preprocessing workflow. Example of a touchless preprocessing workflow based on a finger
image manually taken by a Samsung Galaxy S8

3. Fingerprint image enhancement: general image processing techniques are
employed to improve the captured finger image, i.e., increase contrast and
sharpness, see Fig. 4e.

4. Further preprocessing: the finger image is enhanced to obtain fingerprints and to
pronounce their features, e.g., by skeletonizing, see Fig. 4f, g. These approaches can
be directly taken from the touch-based domain and are not discussed in detail in
this work.

In 2012, Khalil and Wan [8] presented a survey on the special topic of preprocessing
finger images acquired with mobile phones. The authors highlighted the relevance of this
field of research and summarized the differences between the touchless and the touch-
based domain.
Elaborated preprocessing workflows have to be developed especially for commodity

devices in order to compensate the limited capabilities of built-in cameras and environ-
mental side effects. The following subsections summarize proposed approaches for each
processing stage. Table 3 additionally highlights fundamental challenges of processing
touchless finger images and lists suggested methods to overcome these challenges.

3.1 Finger detection and segmentation

Unconstrained capturing systems, which do not have a finger guidance based on dedi-
cated hardware or an on-screen guidance, require a finger detection. Such an algorithm
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Table 3Overview of challenges during the preprocessing of finger images and proposed approaches

Challenge Authors Year Approach

Finger segmentation Wang et al. [44] 2017 Hand color estimation in YCbCr

Rotated pitched principal
orientation estimation

Zaghetto et al. [45] 2015 Artificial neural network

Low contrast Wang et al. [46] 2016 CLAHE and extensions

Distance to sensor, rigde-line
frequency

Carney et al. [33] 2017 Frequency map, sensor-finger
distance approximation

Core/principle singular point
detection

Labati et al. [47] 2010 Poincaré-based ridge orientation
analysis

Deformation correction Lin et al. [48] 2018 Robust thin plate splines,
deformation correction model

detects the position and orientation of the finger and forms the basis for an automatic
capturing system. The image is then segmented and cut to the fingerprint containing area.
Four different approaches can be distinguished, whereas in practice implementations
often apply a combination of them:

• Sharpness: Sharpness-based approaches exploit the difference between the focused
sharp finger area and the blurred background. This effect is most suitable on images
acquired with a very small finger-to-sensor distance and a wide open aperture. The
early work of Lee et al. [49] presented a fixed focus real-time scheme, which selected
the best focused and oriented image out of a series. The authors investigated on the
suitability of general purpose focus measuring algorithms. Their experiment showed
that the Variance-Modified-Laplacian of Gaussian (VMLOG) algorithm is best suited
for the touchless fingerprint capturing device they used. The authors also compared a
finger moving method with a fixed lens to a lens-moving method with a fixed
distance between sensor and finger. They concluded that the former method is
preferable which is questionable from today’s perspective. A subsequent work by the
same authors [21] compared three segmentation approaches. One of them was
sharpness-based and used the Tenengrad method [50] in the frequency domain.
Here, a Sobel operator was used to calculate the horizontal and vertical gradients in
the image. A certain threshold was established to separate the sharp foreground from
the background area. Lee et al. [51] aimed at selecting the best focused image out of a
video stream. The authors proposed an algorithm based on a Gaussian filter to
segment the sharp regions of an image which corresponded to the finger region.

• Shape: The shape of a finger is highly common for all finger position codes (i.e.,
various finger instances from thumb finger to little finger), which enables a detection
via shape. Jonietz et al. [52] proposed a conjunction of a shape- and color-based
finger detection using edge pairing. The authors applied machine learning-based
algorithms to the binarized image in the LUV color model. They also used Histogram
of Oriented Gradient (HOG) features with rich feature descriptors as baseline and
compared their results with them.

• Contrast and color: Especially, if a certain illumination is used, a determination based
on the contrast or color is an efficient mechanism for finger detection. Based on
findings of Hiew et al. [53] for the segmentation in skin and background area, an
analysis of the YCbCr color space represents the most promising approach. The
result is a binary image with a separation between finger image area and background.
The above approach is widely adopted, modified to meet different prerequisites, and
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further investigated by many authors [37, 46, 54, 55]. Ravi and Sivanath [27] showed
that extending the Cr component with information of the HSV and nRGB color space
enables a precise isolation of a finger. The authors used a certain threshold for every
color channel and merged the results. Wang et al. [44] presented comprehensive
research on different finger illuminations and color models. For this reason, the
authors captured images with green, red, and blue illumination and compared the
YCbCr color model with YIQ and HSV. Alternatively, other color models such as
CMYK (magenta channel) [9] and CIELAB [39] were also investigated. This approach
was adopted in many other preprocessing workflows similar to [37, 46, 55]. Because
of prerequisites during the capturing process, most approaches considered only the
largest segmented area as fingerprint[37, 55]. The color-based segmentation is often
combined with an adaptive thresholding, e.g., based on Otsu image thresholding
[9, 44, 46, 53]. Hier et al. [53] also determined the mean and covariance on the CbCr
channels to improve the segmentation accuracy. Another approach by Lee et al. [21]
exploited skin color properties with help of guided machine learning. This approach
was shown to reveal competitive results but is more complex compared to others. As
a second scheme, the authors suggested a region growing approach. Using an initial
seed and a similarity measure with a certain threshold the tested pixels were added to
the seed. This approach is also suitable for ROI extraction. With the mean shift
segmentation Ramachandra et al. [41] proposed another contrast-based approach.
The algorithm filters the input image in the spatial domain and segments it by fusing
the convergence points in homogeneous regions. With this elaborated approach, the
authors were able to achieve accurate results in challenging environments. Priesnitz et
al. [56] presented a deep learning-based semantic segmentation scheme for the hand
area as well as fingertips. The authors used a general purpose hand gesture dataset to
test their algorithm against a color-based baseline segmentation algorithm. The
proposed method showed accurate results especially in challenging environmental
conditions. It should be critically noted that none of the discussed approaches
conducted a wider analysis on different skin color types, e.g., as defined in [57].

• Image depth information: Jonietz and Jivet [58] presented a segmentation approach
using the information of a depth sensor combined with an RGB image captured by
smartphones. The authors were able to extract the slap hand from a busy background
and proposed further processing. Exploiting the images’ depth information the
system worked especially well in the presence of objects of similar color, e.g., when
two hands were placed on top of each other.

3.2 ROI extraction, orientation estimation, and core point detection

Once a finger is detected, the ROI has to be extracted which includes the normalization to
a proper width, height, and resolution. This preprocessing stage assumes an extracted fin-
ger image as input. It should be noted that, especially in more constrained setups, finger
detection and ROI extraction is done in one step [41].
In their work, Piuri and Scotti [24] simplified the color-based segmentation approach of

Lee et al. [21] for ROI extraction. The authors combined this approach with a frequency
estimation map. Moreover, they used a Gaussian probability density function and per-
formed a region growing in order to extract the ROI. A comparable approach by Hiew
et al. [53] exploited the ridge line characteristics of the fingertip. Here, the segmented
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finger was divided in non-overlapping blocks. If a ridge-line characteristic was observable
within a block, it was added to the ROI. Ramachandra et al. [41] also show that in con-
strained setups a ROI extraction based on finger geometry properties is also possible. The
authors computed the ROI statically by detecting characteristic points like the fingertip
and discontinuities.
Since most feature extractors are not invariant to the rotation, all finger images must

have the same orientation. Dongjae Lee et al. [51] presented a rolling and pitching esti-
mation by calculating the distance between the core point and the border of the fingertip.
Lee et al. [21] estimated the orientation by iteratively computing the robust regression
method. The scheme used the Sobel operator on sub-blocks of the input image to com-
pute the orientation of the local gradients. A simple technique on segmented finger
images is to approximate a tangent along the border between finger and background and
rotate the image to a predefined orientation [29]. In contrast to the aforementioned con-
tributions, Ramachandra et al. [41] proposed a preprocessing pipeline without a rotation
stage in combination with a rotation invariant feature extractor. Sisodia et al. [55] also
introduced an approach which rotates minutiae features. Here, a minutia which is above a
predefined correlation threshold had to be determined in the probe and reference images.
Together with the core points of both images, a rotation angle was computed. Regarding
an application to large scale databases, the performance of this approach is questionable.
Many comparison algorithms require a core point or a Principal Singular Point (PSP)

as reference point. Several works used the ridge line orientation and curvature for detec-
tion of the core point [53, 55]. Labati et al. [47] suggested a rather complex approach
which estimates all singular points from the global ridge structure using computational
intelligence classification techniques. Lee et al. [51] used the Poincaré index from the
touch-based domain described in [59] to roughly determine the core point.

3.3 Fingerprint image enhancement

After the extraction of the ROI, ridge line characteristics have to be further emphasized to
extract features accurately. Simple approaches only adapt fingerprint images with kernel
based operations in the spatial domain [53], whereas more elaborated algorithms exploit
combinations of different filters in the frequency domain [24].
Finger image enhancement should result in a fingerprint image which has a homoge-

neous illumination. A normalization using mean and variance filters [53] or histogram
enhancements like Contrast Limited Adaptive Histogram Equalization (CLAHE) [46, 60]
were found to be well-suited for this task. Malhotra et al. [9] also suggested the analysis
of Local Binary Patterns (LBP) on the ridge-valey contrast for enhancement. Moreover,
Wasnik et al. [39] suggested a Frangi Filter which searches for tubular structures.
An important issue is the reduction of blur in the source image. To ensure this, Piuri

and Scotti [24] proposed a combination of the Lucy-Richardson and the Wiener filter. In
addition, they suggested a blind deconvolution method to enhance images which could
not be handled by the algorithms proposed previously.
Liu et al. [60] combined noise removal and illumination correction, and histogram

equalization in spatial domain with a ridge line frequency estimation based on Gabor
filters. Additionally, a context-based correction is suggested to emphasize the ridge-
line structure on low reliability areas. This approach compares blocks (patches) of the
fingerprint with a directory and substitutes these blocks with more accurate data.
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Birajadar et al. [37] also exploited phase congruency processing in the frequency
domain. The authors use the monogenic extension of a real 2D log-Gabor isotropic
wavelet for the enhancement. A later work of the same authors [35] confirmed that the
algorithm also works on a large scale data set captured in an unconstrained environment.
Similar work based on the aforementioned scheme was presented by Sagiroglu et al. [38].

3.4 Further preprocessing

Special capturing schemes or feature extractors require additional preprocessing steps.
Image mosaicking or image fusion describes composition of two or more images to one
larger finger image. In the best case, the fused image exhibits a larger ROI and a better
image quality. Mosaicking techniques became essential in use-cases where a large-sized
sensor is not available but a rolled finger should be captured. In the works of Choi et al.
[61] and Liu et al. [62], the authors showed common use cases of mosaicking touchless
images. Three (virtual) images were stitched together by using adoptions of the well-
known iterative closest point algorithm. Using a very constrained capturing setup, Choi
et al. [61] performed a static stitching without any correspondence measurement. The
second approach by Liu et al. [62], which is also used by Alkhathami et al. [31] on a
mobile device, extracts Scale Invariant Feature Transformation (SIFT) features from pre-
processed images and searches for correspondences between them. Finally, the images
are stitched along a border line and post-processed.
To reach the aim of touchless-to-touch image interoperability, Salum et al. [63] pro-

posed further enhancement of touchless image data. At first, the authors added different
randomly chosen ellipses to the original image. Secondly, a contour enhancement by a
horizontal and vertical fading is added to the image.
Additionally, several works showed that ridge thinning and skeletonizing approaches

from the touch-based domain are also applicable to touchless image data to improve the
biometric performance [25, 27, 55].

4 Quality control
In comparison to touch-based fingerprint recognition systems, touchless schemes con-
tain more critical steps during acquisition and processing which could reduce the system
performance. For this reason, an elaborated quality assurance is particularly essential for
touchless samples. Several works showed that direct application of touch-based finger-
print quality assessment leads to inaccurate results [64–66]. In contrast, Priesnitz et al.
[67] demonstrated that the touch-based quality assessment tool NFIQ2.0 is also appli-
cable for touchless samples. The authors concluded that the predictive power highly
depends on an adequate pre-processing.
Figure 5a depicts a finger image example of high quality in comparison to three finger

images of low quality due to acquisition issues. In Fig. 5b, the ROI contains a highlight
caused by an overpowered flash light which leads to a low rigde-valley contrast while the
contrast on the whole finger is rather high. A wrong focus position results in a blurry
ROI from which no details are extractable as shown in Fig. 5c. From a roll pose rotated
sample depicted in Fig. 5d, features are extractable but not comparable with an unrotated
presentation.
For the purpose of quality assessment, different authors suggested dividing the finger-

print area into blocks. Subsequently, a certain quality assessment algorithm is applied to
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Fig. 5 Finger image quality. Example images of a high-quality finger image and three low-quality finger
images captured by a Samsung Galaxy S8

each of the blocks to either merge the results of each block to one score or to consider
only areas above a certain threshold for feature extraction [7, 42, 66, 68].
Parziale and Chen [7] proposed a coherence-based qualitymeasurement. This approach

measures strength of the dominant direction in a local region. For this purpose, the
authors applied a normalized coherence estimation on local gradients of the gray level
intensity. Moreover, the covariance matrix of the gradient vectors was denoted which
represents the clarity of the ridge line structure.
Li et al. [42, 65] introduced a quality assessment algorithm for finger images acquired

with smartphones. The authors used different metrics in the spatial and frequency
domain which resulted in a feature vector. A Support Vector Machine (SVM) was trained
to separate high-quality blocks from those with low quality.
Yang et al. [66] presented another quality control scheme for samples captured in

unconstrained environments. The input fingerprint was not previously segmented or pro-
cessed. The algorithm used the amplitude-frequency and ridge line orientation in the
Fourier domain as distinguishing quality feature. Each block received its own quality
value, so only high-quality blocks were considered for feature extraction. The authors
concluded that the proposed algorithmworks accurately on themajority of tested samples
but also provided finger images where it fails. The same authors extended their approach
by using an SVM[68]. Li et al. [69] further extended the amount of employed quality
features by additionally using a local clarity score and frequency domain analysis.
Lee et al. [51] proposed an effective early stage quality estimation method. The scheme

is based on gradient distribution which shows the characteristics of the repeatable line
patterns of the fingerprint and therefore its quality. For a first stage quality estimation,
this scheme showed a good performance compared in relation to its computational effort.
Another contribution by Noh et al. [16] proposed a comparable quality assessment and
ridge frequency estimation and benchmarked its performance.
Labati et al. [64] compared their implementation of a neural network classification sys-

temwith a k-Nearest-Neighbor (kNN) classifier, a linear/quadratic discriminant classifier,
and NFIQ1.0 [70]. The authors used a rather constrained data set and were able to show
that their own approach performs significantly better than the NFIQ1.0 algorithm. A lat-
ter work of the same authors showed the computational performance of the system in a
practical approach [71].
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Zaghetto et al. [45] treated rotational deviations on mosaicked fingerprints captured
in a multi-view environment as a measure of quality. A four-layered neural network was
proposed which classifies the input dataset into rotated or un-rotated.

5 Feature extraction
The feature extraction from touchless captured fingerprint samples is performed similarly
to touch-based scenarios. Several works showed that established feature extractors can be
applied to touchless image data, as shown in Fig. 6. When using touch-based algorithms,
it is important to notice that an extractor which performs considerably good on touchless
and touch-based samples does not necessarily lead to an interoperability between them.
Touchless developments range from simple texture feature extraction with out-of-the-box
algorithms to dedicated fingerprint feature extractors.
Some works in the touchless domain used the well-established Verifinger SDK to

evaluate the performance of their processing pipeline [37, 73] or benchmarked their
approaches against it. Moreover, many works used the NIST standardized MINDTCT
[74] algorithm for feature extractor on processed images [18, 24, 41, 63]. Similarly, Yang et
al. [66] used this feature extractor for quality estimation. It should be noted that Verifinger
requires a fingerprint scaled to 500 DPI in order to work properly. A DPI normalization
as described in Section 7.4 is usually not performed but could influence the amount of
features extracted. Han et al. [73] investigated the compatibility of photographed finger
images with the Verifinger feature extractor. The authors showed that it is possible to

Fig. 6 Feature extraction. Minutiae points extracted from the touch-based fingerprint (a) and a touchless
fingerprint (b). The feature extraction was performed with FingerNet [72]. Please note that due to the
different capturing process, the touchless fingerprint image is mirrored
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extract features with some manual preprocessing in form of a ROI extraction. It should
be noted that Verifinger does perform additional internal preprocessing which improves
the overall accuracy.
Sisodia et al. [55] presented a simple feature extraction technique using kernel opera-

tions which represent commonminutiae characteristics. The work proposed of Ravi et al.
[27] described an extraction and classification of minutiae comparable to [55] using the
counting number algorithm. On the preprocessed binary image, it counts the amount of
white pixel around the center point and estimates the corresponding minutia type.
Another work by Wang et al. [75] applied a sliding window on normalized images. It

used local gradient codings and LBP for feature extraction. The authors analyzed different
block sizes to extract the texture features. Similarly, general purpose texture descriptors
have been employed in [76].
Hiew et al. [77] transferred an approach based on a block-wise Gabor-filter from the

touch-based domain to touchless data. Here, the magnitude was converted to a scalar
number which represents the feature point. In addition, a PCA was performed to com-
press the feature vector and a projection in its normalized Eigenspace is applied to each
Gabor feature vector. Ramachandra et al. [18] used Spectral Minutiae Representation
(SMR) on minutiae extracted with MINDTCT to achieve a fixed length feature vector.
With ScatNet, Sankaran et al. [32] and Malhotra et al. [9] proposed a novel feature

extractor. Group-invariant scattering networks [78] refer to a filter bank of wavelets that
produce a representation which was shown to be stable to local affine transformations.
The authors extended the approach with an additional wavelet-modulus transformation
for high frequency components. A low-pass filter-based convolution concatenated the
wavelet responses of an arbitrary number of filters which lead to more discriminative
features. The authors compared their ScatNet approach to a minutia-based baseline using
VeriFinger SDK [79] and Minutiae Cylinder Code (MCC) [80] for feature extraction and
performed slightly better than them.
Yin et al. [81] proposed a distortion-free feature representation using the ridge count

itself as feature. Additionally, to single minutiae, pairs of minutiae were also considered
as feature. The authors used a genetic algorithm to solve the combinatorial optimiza-
tion problem. To improve effectiveness and accuracy, a minutia-pair expanding algorithm
was suggested. To perform comparisons on these feature vectors, a similarity metric was
defined. On two benchmark databases, the authors were able to perform better than the
established touch-based feature extractors. It should be critically noted that in their test
setup the algorithm had a high overall runtime.
Kumar and Zhou [26] suggested a feature extraction based on level-0 features, such as

local texture patterns. The evaluation included various combinations of approaches, e.g.,
Localized Radon Transformation (LRT), and revealed remarkably good performance. In
a more recent work, Vyas and Kumar [82] suggested an improved scheme using minutiae
comparison.
Genovese et al. [23] proposed a combination of image processing algorithms and

machine learning for extracting level-3 features (sweat pores). The authors extracted the
green channel from an RGB image and applied different gamma transformations on it. A
simple image processing followed by an extraction of connected components identified
candidates for sweat pores. A CNN distinguished whether a candidate point is a sweat
pore or not. Building upon this work, Labati et al. [83] presented a comparative study on
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level-3 feature extraction. Two CNNs were trained to detect sweat pores on preprocessed
touchless, touch-based, and latent fingerprints. The first CNN determined possible sweat
pores in the images whereas the second one detected falsely selected pores. Compared to
the touch-based results, the touchless recognition performance turned out to be inferior
which was caused by variable illumination situations and pore reflection.

6 Comparison
In the final comparison stage, touchless and touch-based fingerprint recognition systems
operate in a similar way. Figure 7 shows a comparison of a single fingerprint captured
from a touchless and a touch-based capturing device. Similar to the feature extraction
stage, many works applied comparison methods of the touch-based domain, e.g., the
NIST bozorth3 [74] comparator [41, 63, 84, 85]. The NIST also evaluated the impact
of fingerprint samples captured by touchless devices on different fingerprint recognition
algorithms [86].
Lindoso et al. [87] introduced the first comparator dedicated to touchless fingerprint

recognition in 2007. The authors proposed a zero mean normalized cross correlation
approach. This method was directly applied to the gray levels of the input image. In the
first step, a coarse alignment estimated the way the images were shifted and rotated to fit
to the template. In the second step, fingerprint regions were selected based on quality and
compared to each other based on the gray level in a final step.
Stein et al. [29] suggested a simple comparison of all minutiae to each other based on the

Modified Hausdorff Distance (MHD) and orientation. Kumar and Zhou [26] compared
level-0 features by using a normalized Hamming distance for an image texture compar-
ison. The authors concluded that localized fingerprint sub-regions are more robust to
rotations and partial distortions.
Labati et al. [88] presented an approach using neural networks to detect a pair of mated

minutiae between two samples. A list of local features around any minutiae of the corre-
sponding sample was established. This information was incorporated during the training
of the neural network. It then decided if the candidates were referring to the sameminutia
or not. Also, the work includes analyses on comparing more than one fingerprint view.

Fig. 7 Minutiae comparison. Manual comparison of minutiae of a touch-based fingerprint with a mirrored
touchless fingerprint
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Sankaran et al. [32] and Malhotra et al. [9] suggested combinations of conventional
and machine learning techniques. At first, the conventional algorithm computed the L1-
distance between each two ScatNet features resulting in a comparison score. Secondly,
the approach relied on a supervised binary classifier which learned whether an image pair
is a match or not. Building upon their work in [9], Malhorta et al. [89] showed that their
algorithm can be adapted to also work on highly unconstrained data.
Lin and Kumar [90] proposed a comparison framework based on a multi-Siamese

CNN for touchless to touch-based fingerprint comparison. Three sub-CNNswere trained
on fingerprint minutiae, respective ridge maps, and specific regions of ridge maps.
The authors generated deep fingerprint representations which were concatenated. This
approach appeared to be more robust for cross-domain comparisons. They were able to
outperform other CNN-based approaches. A later work by Tan and Kumar [91] especially
focused on pose invariant feature matching.
To exploit the properties of their introduced features optimally, Yin et al. [81] defined a

comparison metric using a number of corresponding minutiae and the global topological
similarity.

7 Issues and challenges
In the past years, many works on the topic of touchless fingerprint recognition have been
published. Nevertheless, there are still some unsolved issues. The following subsections
set out the most relevant challenges related to the touchless recognition process and
provide starting points for further research.

7.1 Biometric performance

The most important measurement criterion for any biometric system is the recognition
performance. Table 4 highlights outstanding touchless fingerprint recognition workflows
with their achieved recognition performance. So far, touchless 2D fingerprint schemes
yield an inferior recognition accuracy compared to touch-based ones. Practical perfor-

Table 4 Overview on selected recognition workflows with biometric performance

Authors Year Device Processing Accuracy

Noh et al. [16] 2011 Industrial camera
(rotating)

Gabor-filter, analysis of
useful area, deformation
correction, ridge-line
thinning

EER = 1.9%
(thumb)–8.6% (little
finger)

Raghavendra et al. [18] 2014 Industrial camera ROI extraction, rotation
correction, spectral
minutiae representation

EER = 6.63%

Tiwari et al. [43] 2015 Smartphone
(indoor)

Adaptive histogram
equalization, SURF features,
nearest neighbors

EER = 3.33%

Sankaran et al. [32] 2015 Smartphone
(indoor and
outdoor)

Median filtering, histogram
equalization, unsharp
masking, scattering
network

EER = 3.56%

Carney et al. [33] 2017 Smartphone Band-pass filter, local
histogram normalization,
commercial feature
extraction and comparison

FAR = 0.01% @ FRR = 1%
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mance rates are only achieved by more sophisticated touchless approaches, e.g., based
on 3D fingerprints captured by systems which utilize special acquisition devices and
comprehensive preprocessing [92]. Up to now, mobile approaches using a commodity
device are not able to achieve competitive results.
Along the touchless fingerprint recognition pipeline, different stages should be consid-

ered to achieve a good biometric performance:

• Acquisition: A homogeneously illuminated, noise-free finger image should be
acquired. High-quality camera equipment and a predictable illumination are a good
precondition for a proper finger image.

• Preprocessing: An accurately segmented and rotated fingerprint images yield
meaningful comparison scores. At this point, user instructions or a fingerprint
guidance during the capturing process can help to increase accuracy.

• Quality assessment: A dedicated quality assessment which is integrated in the
preprocessing pipeline is crucial to consider only samples of high quality.

• Feature extraction and comparison: A specific touchless feature extraction which is
adapted to the considered dataset reveals results comparable to touch-based schemes.

Also, it can be observed that some aspects of this research area have been extensively
researched, while others deserve more attention. For example, several well-functioning
segmentation algorithms have been proposed whereas only little research has been
conducted on dedicated touchless feature extraction.

7.2 Environmental influences

Touchless fingerprint capturing and processing has to deal with different environmental
influences. Environmental influences or comparison between different sensor types may
lower the performance, as discussed in the following subsections. According to Malhotra
et al. [9], challenging environmental situation are:

• Uncontrolled background
• Varying illumination
• Finger position
• Impurities on the finger surface

Further technical challenges can be summarized as:

• Varying camera setup (especially on smartphones)
• Noisy fingerprint impression due to low contrast

Especially on mobile devices, environmental influences have a high impact on the bio-
metric recognition accuracy as showcased by Malhotra et al. [9]. Fingerprint detection
and segmentation algorithms have to be robust against a huge variety of environmental
conditions ranging from very dark environments to ones with bright sunlight. Especially
color-based segmentation reveals deficits on scenes with a background which contains
color similar to skin color. Developers working on mobile setups should be aware of the
fact that an acquisition in every environmental situation is hardly feasible. Preprocess-
ing and quality assurance algorithms should be able to assess the situation as precisely
as possible and to decide whether a fingerprint capturing is feasible. An appropriate user
feedback is expected to be helpful in such cases.
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In prototypical hardware setups, environmental influences play a minor role. Most
devices have a hood and homogeneous background which ensures a predictable illumi-
nation situation, whereas others require a laboratory environment to work properly [16].
Setups designed for the usage under different environmental influence could also ben-

efit from the use of depth information on an image like suggested by Jonitz and Jivet [58].
The additional depth information helps algorithms to segment the finer and gives a hint
on the distance between finger and sensor.

7.3 Usability and acceptability

One of the main advantages of touchless fingerprint acquisition is seen in a higher usabil-
ity compared to touch-based schemes. Touch-based fingerprint capturing suffers from
hygienic issues in case various participants are touching the sensor surface. Touch-based
schemes also require a certain orientation and pressure of the finger and generally need
more time for the capturing process. As discussed in Section 2, touchless capturing
devices show different levels of usability. In general, a higher usability can be achieved by:

1 Sensor-to-finger distance: A freely chosen distance between the finger and sensor
during the presentation of the finger is desirable.

2 Pose angle: An unconstrained orientation during the presentation of the finger
leads to a more convenient system.

3 Fourprint capturing: Most touchless devices can directly capture up to four fingers
in one acquisition process. Preprocessing is then able to accurately separate the
fingerprint areas into fingerprint images.

4 Integrated quality assessment: An integrated quality measure ensures that the
capturing process is finished as soon as one high-quality template of one or more
finger is captured.

5 Fast capturing process: The time needed to present the fingers accurately should be
as short as possible. Processing steps should be applied subsequent to acquisition
wherever it is feasible.

6 Easy-to-understand user feedback: An integrated user feedback helps to present
the fingers smoothly.

The points 1–4 address an unconstrained acquisition process which is highly desir-
able for enhanced usability. Nevertheless, a more unconstrained capturing also requires
more robust finger detection algorithms and especially an elaborated quality assessment
to avoid the capturing of low-quality samples. These usability goals can only be achieved
with an large amount of processing power. Today, no mobile capturing setup satisfies all
of these requirements. The majority of commodity devices for capturing focus on a rather
unconstrained capturing (e.g., [33]) whereas prototypical hardware setups focus more on
recognition accuracy [16].
In a comprehensive study, Furman et al. [93] evaluated the usability of three station-

ary touchless recognition products. The authors came to the conclusion that touchless
capturing requires a dedicated instruction.

7.4 Touchless-to-touch-based sensor interoperability

Interoperability between touch-based and touchless sensors is a desirable objective
in many cases, e.g., to avoid re-enrolment of subjects already registered with the
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system in case of sensor exchange or to enable cross-matching between fingerprint
databases captured through touchless and touch-based sensors. A fundamental dif-
ference between touch-based and touchless fingerprints is that touchless fingerprints
are mirrored along the vertical axis. The majority of touchless sensors also capture
color finger images whereas touch-based sensors capture grayscale fingerprints. Fur-
ther, touchless fingerprints contain no deformations due to pressing the finger onto
a surface. Some differences, e.g., mirroring, color-to-grayscale conversion or inverted
back- and foreground, can be implemented in a straight-forward manner without a loss
of accuracy. Other differences require elaborated approximation approaches, e.g., the
aspect ratio or deformation estimation [94]. An accurate and robust scheme for cor-
recting deformations on touchless 2D fingerprint images has not yet been established.
One important factor which may cause biometric performance drops in interoperability
scenarios is the DPI alignment for touchless data. For touch-based sensors the mea-
sure of spatial dot density is an important metric for acquisition devices to align the
data samples to a certain size and resolution. ISO/IEC compliant fingerprints need
to exhibit 500 DPI which nowadays is a minimum requirement for commercial prod-
ucts[95]. Touchless devices such as digital cameras feature no DPI value because the
acquired image is not bound to a physical scale. Nonetheless, it is mandatory to normal-
ize touchless fingerprints to the same size and resolution in order to achieve an accurate
performance.
Fingerprint images can be normalized by cropping the image area and rescaling it to a

certain height and width. By knowing the sensors resolution and focal length and approx-
imating the distance between finger and sensor via the auto focus and the fingers’ width
the DPI of the finger area can be approximated to an almost constant value [33, 61]. Wild
et al. [96] proposed a comparative test of their resolution estimation scheme on differ-
ent smartphones. The authors were able to achieve accurate comparison scores in an
interoperability scenario.
Another important issue is the ridge frequency estimation on touchless data. The ridge

frequency of a fingerprint refers to the amount of ridges which are present within a
window of defined size. Due to the touchless acquisition, there is no deformation result-
ing from pressing the finger onto the sensor surface. Considering 2D fingerprint images
this means that the frequency of ridges is increasing towards the borders in contrast to
touch-based fingerprints where it stays almost stable. Moreover, blurred border areas
flatten the peaks which hampers correct feature detection. Thin plate splines are a suit-
able tool to correct these deformations in general which also has a positive effect on
the ridge frequency and interoperability [16, 48]. In a first approach, the algorithm of
Noh et al. [16] searched for corresponding points in touchless and touch-based sam-
ples and minimizes an energy function. This approach showed accurate results but is
hardly practically implementable because one touchless and one touch-based sample
is needed. Lin et al. [48] went one step further and formulated a deformation cor-
rection model based on robust thin plate splines. Different models were trained to
meet the individual finger shape. During the comparison different deformation cor-
rection models were automatically selected. A comparable method was also suggested
by Dabouei et al. [97]. The NIST also conducted a comprehensive study on interoper-
ability issues in application scenarios were touchless and touch-based fingerprints are
compared [98].
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7.5 Presentation attack detection

Reliable Presentation Attack Detection (PAD), i.e., anti-spoofing, modules are vital
to enhance the security of fingerprint recognition systems. PAD represents a well-
studied field of research for touch-based fingerprint recognition systems [99]. Specialized
hardware-based skin detection methods which are reported to reliably detect diverse Pre-
sentation Attack Instruments (PAI) species, e.g., gummy fingers, are already integrated in
many commercial touch-based fingerprint capturing devices. In contrast, in a touchless
fingerprint recognition system, PAD turns out to be more challenging. Up until now, only
a few approaches to PAD in touchless fingerprint acquisition have been proposed.
Moon et al. [100] proposed a PAD method based on wavelet analysis of the finger tip

surface texture. Wang et al. [15] presented a PAD algorithm which exploits the differ-
ences between bona fide presentations and attack presentations in band-selective Fourier
spectra. In addition, reflection detection was implemented to detect fake finger materi-
als. A video-based PAD method based on the detection of sweat pores was presented by
Parziale and Chen [7]. The idea of PAD for touchless fingerprint acquisition using tex-
ture descriptors in conjunction with neural network-based classifiers was proposed by
Alkhathami et al. [31]. Moreover, a detection of finger veins can be employed for PAD in
a touchless fingerprint recognition system. An approach for PAD with a setup based on
smartphones is presented by Stein et al. [30]. They used a video-based acquisition and
show that it is possible to detect presentation attacks by analyzing different video frames.
A further work by Overgaard et al. [101] tried to exploit Eulerian Video Magnification
(EVM) for liveness detection. The method emphasized the heartbeat-related color varia-
tions of genuine fingers. However, the authors raised several concerns that this approach
might not be put into practice.
Taneja et al. [102] created a large publicly available spoofed fingerphoto database.

The database contains print-out attacks, photo attacks, and non-spoofed finger images
captured with two different smartphones.

7.6 Biometric template protection

Due to the strong and permanent link between individuals and their fingerprints, expo-
sure of enrolled fingerprint templates to adversaries can seriously compromise biometric
system security and user privacy, e.g., stolen fingerprints could be used to create artifacts
in order to launch presentation attacks. Numerous techniques have been proposed for
fingerprint-based biometric template protection over the last 20 years [103, 104]. In addi-
tion, the ISO/IEC standard for the protection of biometric information [105] provides
guidance for protection under requirements of confidentiality, integrity, and renewa-
bility/revocability during storage and transfer and for secure and privacy-compliant
management and processing of biometric information.
While originally designed and evaluated on touch-based fingerprint databases, con-

cepts for biometric cryptosystems, e.g., the fuzzy vault scheme [106, 107] or the fuzzy
commitment scheme [108, 109], and cancelable biometrics, e.g., Cartesian, radial or
functional transformations [110, 111], could be adapted to touchless fingerprints, too.
Depending on the employed scheme, feature type transformations of fingerprint tem-
plates might be required [112]. Due to this reason, almost no research has been conducted
to design particular template protection schemes for touchless fingerprints. Most notably,
Hiew et al. [77] proposed the use of multiple random projections to achieve a cancelable
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touchless fingerprint recognition system. Similarly, Zannou et al. [113] suggested a
scheme for revocable touchless fingerprint template extraction. Lai et al. [114] presented
an algorithm which directly encrypts fingerprint images using a novel memristive chaotic
system. Malhotra et al. [115] addressed the issue of fingerprint template protection in
selfie images on social media platforms.

7.7 Multi-biometrics

Multi-biometric systems have been found to significantly improve the accuracy and relia-
bility of biometric systems [116].With the possibility of a slap hand acquisition, the fusion
of biometric information obtained from four fingers can be employed to improve biomet-
ric performance, especially in unconstrained environments. Deb et al. [34] demonstrated
the potential of fusing information of four fingers acquired through two slap hand acqui-
sition devices. Noh et al. [117] proposed a score-level fusion of three fingers acquired by
a touchless sensor to achieve higher recognition accuracy. Carney et al. [33] performed
a score-level fusion of two, four, and eight fingers. They were able to achieve significant
performance gains due to the fusion.
Moreover, biometric information obtained from touchless fingerprints could be fused

with different biometric characteristics. Improvement in biometric performance as a
result of biometric fusion should be weighed against the associated overhead involved,
such as additional sensing cost, i.e., it is preferred to combine biometric characteristics
that can be acquired in a single presentation [118]. Mil’shtein et al. [14] and Ramachandra
et al. [18] suggested a fusion of finger vein patterns with touchless fingerprints.

8 Research resources
Databases comprising touchless fingerprint image data are vital for the development of
improved processing modules. An overview of databases available for research purposes
and their properties is given in Table 5.
The Hong Kong Polytechnic University established several databases for different pro-

posals. So far, the most comprehensive touchless-to-touch fingerprint database has been
established by Kumar [120]. It consists of 1800 touchless 2D finger images and the corre-
sponding touch-based fingerprints acquired from 300 subjects. A multi modal database
[121] features 6264 2D finger images including corresponding vein images of 156 subjects
are provided with 6 samples of index and middle fingers as texture and vein image for
each subject. Another database containing low-resolution finger surface images acquired
by a low-cost webcam was established in [122]. The database contains 1466 images from
156 subjects captured in two sessions.
The IIITD SmartPhone Fingerphoto Database v1 (ISPFDv1) [32] is a smartphone fin-

ger photo database which consists of 4096 finger photo images from 128 subjects. The
database is acquired using a smartphone camera with varying background and illumi-
nation. Per subject 8, images of both, the right index and middle finger, are taken. The
illumination is categorized in indoor and outdoor whereas the background is separated
into a white one and a busy one. Every category contains two fingers in two lightning and
background situations. In summary, 4096 images were taken and additionally acquired
with a touch-based device to estimate the cross-sensor comparison performance. A
follow-up database ISPFDv2 [89] was captured using two smartphones and one touch-
based device. It includesmore than 17,000 touchless and 2432 touch-based samples of 304



Priesnitz et al. EURASIP Journal on Image and Video Processing          (2021) 2021:8 Page 23 of 28

Table 5 Overview of publicly available touchless fingerprint databases

Name Purpose Device Subjects Samples Available

Zhou et al.
[119]

Touch-based 2D to
touchless 3D
comparison1

Commodity
devices

150 3000 (10 fingers
with two sensors)

Yes

Hong Kong
PolyTech DBs
[120], [121],
[122]

Touch-based 2D to
touchless 2D
comparison

Not known 300 1800 (3 fingers
with two sensors)

Yes

Finger and vein
images

Not known 156 6264 Yes

Low-quality
fingerprint analysis

Low-cost
webcam

156 1466 (2 sessions) Yes

ISPFDv1 [32] Finger photo analysis
with varying
background and
illumination

Smartphone 128 4096 (8 samples
per subject each
with 4
background
scenarios)

Yes

ISPFDv2 [89] Finger photo analysis
in unconstrained
environment and
sensor interoperability

Two different
smartphones

304 >17,000
touchless and
2342
touch-based

Yes

UNFIT [123] Finger detection and
quality assessment

Different
smartphones

115 3450 (2300 finger
images (2 fingers
×10 sessions) +
1150 hand
images (10
session)

Yes

SMPF [115] Fingerprint
anonymization in
social media

Different
smartphones

unknown 1000 images
collected from
social media
platforms

Yes

SPF [102] Spoofing detection Different PAIs 128 4096 bona fide,
2048 print
attacks, 6144
photo attacks

Yes

IIT Bombay
[35]

Touch-based to
touchless comparison

Smartphone and
touch-based
optical scanner

200 1600 (800
touch-based and
touchless images
each)

Yes

GUC100 [124] 5 touch-based to 1
touchless sensor
comparison

Out-of-the-box
devices

100 72,000 (6 devices
×10 fingers ×12
sessions)

Semi

The database also contains plain 2D finger images and for this reason is also suitable for 2D fingerprint research

fingers. A further extension by presentation attacks is proposed by the same institution
[102]. The authors captured 128 presentation attacks using optical devices and printers.
The Social-Media Posted Finger-selfie (SMPF) database [102] provides 1000 images

downloaded from social media platforms which contain fingers. This database could be
used for research on template protection schemes.
Chopra et al. [123] collected another smartphone-based database. The UNconstrained

FIngerphoTo (UNFIT) database contains 3450 samples of 115 subjects, captured using
multiple smartphones with different resolutions. The samples are captured considering
different challenges, such as background, illumination, miss-focusing and multi-finger
presentations. This database is well-suited for research on finger detection and quality
aspects but inappropriate for biometric performance testing.
IIT Bombay, Touchless and Touch-Based Fingerprint Database [35] consists of 800

touchless and 800 touch-based fingerprint images of 200 subjects. The touchless samples
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are captured using a smartphone with the developed android app and are cropped to
an image size of 170 × 260. The database also consists of 800 touch-based fingerprints
of the same 200 subjects with an image size 260 × 330. It aims to help researchers in
their endeavors in comparing the performance of touchless and touch-based fingerprint
biometric systems.
The first smartphone spoofing attack database by Taneja et al. [102] contains 4096

bonafide finger images and 8182 spoofing attacks. The bonafide images are taken from
the ISPFDv1 database. From the dataset, the authors created 2048 print attacks (print-
outs which were again photographed) and 6144 photo attacks. The photo attacks are
taken from the screens of an iPad, a smartphone, and a laptop. The authors used the same
devices as in the ISPFDv1 database.
The semi-public1 cross-sensor GUC100 database [124] contains five touch-based and

one touchless sensor (TST Bird3). During the database establishment 100 subjects pre-
sented their 10 fingers to all 6 devices. This was repeated 12 , to obtain natural variance.
All in all approximately 72,000 images were collected.

9 Conclusions
In this work, the state-of-the-art in the constantly evolving field of touchless fingerprint
recognition is summarized and discussed. This research field features a broad spectrum
of different acquisition systems from high-end setups to low-cost devices. Subsequently,
different preprocessing approaches have to be applied to the acquired image data. It can
be observed that a general endeavor of summarized research is to achieve interoper-
ability between touchless and touch-based fingerprint recognition systems. In general,
touchless schemes reveal improved usability and high user acceptance whereas biometric
performance remains as challenge, especially on mobile of-the-shelf devices. Concepts
for further research topics related to touchless fingerprint recognition, e.g., PAD or bio-
metric template protection, have already been presented in the literature. Building upon
these concepts, first stationary and mobile commercial touchless fingerprint recognition
systems have been introduced. However, more work is yet to be done in order to achieve
robust, interoperable, secure, privacy preserving, and user-friendly systems.
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