1,559 research outputs found

    Comprehensive concept-phase system safety analysis for hybrid-electric vehicles utilizing automated driving functions

    Get PDF
    2019 Summer.Includes bibliographical references.Automotive system safety (SS) analysis involving automated driving functions (ADFs) and advanced driver assistance systems (ADAS) is an active subject of research but highly proprietary. A comprehensive SS analysis and a risk informed safety case (RISC) is required for all complex hybrid-vehicle builds especially when utilizing ADFs and ADAS. Industry standard SS procedures have been developed and are accessible but contain few detailed instructions or references for the process of completing a thorough automotive SS analysis. In this work, a comprehensive SS analysis is performed on an SAE-Level 2 autonomous hybrid-vehicle architecture in the concept phase which utilizes lateral and longitudinal automated corrective control actions. This paper first outlines a proposed SS process including a cross-functional SS working group procedure, followed by the development of an item definition inclusive of the ADFs and ADAS and an examination of 5 hazard analysis and risk assessment (HARA) techniques common to the automotive industry that were applied to 11 vehicle systems, and finally elicits the safety goals and functional requirements necessary for safe vehicle operation. The results detail functional failures, causes, effects, prevention, and mitigation methods as well as the utility of, and instruction for completing the various HARA techniques. The conclusion shows the resulting critical safety concerns for an SAE Level-2 autonomous system can be reduced through the use of the developed list of 116 safety goals and 950 functional safety requirements

    Practical classification of different moving targets using automotive radar and deep neural networks

    Get PDF
    In this work, the authors present results for classification of different classes of targets (car, single and multiple people, bicycle) using automotive radar data and different neural networks. A fast implementation of radar algorithms for detection, tracking, and micro-Doppler extraction is proposed in conjunction with the automotive radar transceiver TEF810X and microcontroller unit SR32R274 manufactured by NXP Semiconductors. Three different types of neural networks are considered, namely a classic convolutional network, a residual network, and a combination of convolutional and recurrent network, for different classification problems across the four classes of targets recorded. Considerable accuracy (close to 100% in some cases) and low latency of the radar pre-processing prior to classification (∼0.55 s to produce a 0.5 s long spectrogram) are demonstrated in this study, and possible shortcomings and outstanding issues are discussed

    Mitigating Emergent Safety and Security Incidents of CPS by a Protective Shell

    Get PDF
    In today's modern world, Cyber-Physical Systems (CPS) have gained widespread prevalence, offering tremendous benefits while also increasing society's dependence on them. Given the direct interaction of CPS with the physical environment, their malfunction or compromise can pose significant risks to human life, property, and the environment. However, as the complexity of CPS rises due to heightened expectations and expanded functional requirements, ensuring their trustworthy operation solely during the development process becomes increasingly challenging. This thesis introduces and delves into the novel concept of the 'Protective Shell' – a real-time safeguard actively monitoring CPS during their operational phases. The protective shell serves as a last line of defence, designed to detect abnormal behaviour, conduct thorough analyses, and initiate countermeasures promptly, thereby mitigating unforeseen risks in real-time. The primary objective of this research is to enhance the overall safety and security of CPS by refining, partly implementing, and evaluating the innovative protective shell concept. To provide context for collaborative systems working towards higher objectives — common within CPS as system-of-systems (SoS) — the thesis introduces the 'Emergence Matrix'. This matrix categorises outcomes of such collaboration into four quadrants based on their anticipated nature and desirability. Particularly concerning are outcomes that are both unexpected and undesirable, which frequently serve as the root cause of safety accidents and security incidents in CPS scenarios. The protective shell plays a critical role in mitigating these unfavourable outcomes, as conventional vulnerability elimination procedures during the CPS design phase prove insufficient due to their inability to proactively anticipate and address these unforeseen situations. Employing the design science research methodology, the thesis is structured around its iterative cycles and the research questions imposed, offering a systematic exploration of the topic. A detailed analysis of various safety accidents and security incidents involving CPS was conducted to retrieve vulnerabilities that led to dangerous outcomes. By developing specific protective shells for each affected CPS and assessing their effectiveness during these hazardous scenarios, a generic core for the protective shell concept could be retrieved, indicating general characteristics and its overall applicability. Furthermore, the research presents a generic protective shell architecture, integrating advanced anomaly detection techniques rooted in explainable artificial intelligence (XAI) and human machine teaming. While the implementation of protective shells demonstrate substantial positive impacts in ensuring CPS safety and security, the thesis also articulates potential risks associated with their deployment that require careful consideration. In conclusion, this thesis makes a significant contribution towards the safer and more secure integration of complex CPS into daily routines, critical infrastructures and other sectors by leveraging the capabilities of the generic protective shell framework.:1 Introduction 1.1 Background and Context 1.2 Research Problem 1.3 Purpose and Objectives 1.3.1 Thesis Vision 1.3.2 Thesis Mission 1.4 Thesis Outline and Structure 2 Design Science Research Methodology 2.1 Relevance-, Rigor- and Design Cycle 2.2 Research Questions 3 Cyber-Physical Systems 3.1 Explanation 3.2 Safety- and Security-Critical Aspects 3.3 Risk 3.3.1 Quantitative Risk Assessment 3.3.2 Qualitative Risk Assessment 3.3.3 Risk Reduction Mechanisms 3.3.4 Acceptable Residual Risk 3.4 Engineering Principles 3.4.1 Safety Principles 3.4.2 Security Principles 3.5 Cyber-Physical System of Systems (CPSoS) 3.5.1 Emergence 4 Protective Shell 4.1 Explanation 4.2 System Architecture 4.3 Run-Time Monitoring 4.4 Definition 4.5 Expectations / Goals 5 Specific Protective Shells 5.1 Boeing 737 Max MCAS 5.1.1 Introduction 5.1.2 Vulnerabilities within CPS 5.1.3 Specific Protective Shell Mitigation Mechanisms 5.1.4 Protective Shell Evaluation 5.2 Therac-25 5.2.1 Introduction 5.2.2 Vulnerabilities within CPS 5.2.3 Specific Protective Shell Mitigation Mechanisms 5.2.4 Protective Shell Evaluation 5.3 Stuxnet 5.3.1 Introduction 5.3.2 Exploited Vulnerabilities 5.3.3 Specific Protective Shell Mitigation Mechanisms 5.3.4 Protective Shell Evaluation 5.4 Toyota 'Unintended Acceleration' ETCS 5.4.1 Introduction 5.4.2 Vulnerabilities within CPS 5.4.3 Specific Protective Shell Mitigation Mechanisms 5.4.4 Protective Shell Evaluation 5.5 Jeep Cherokee Hack 5.5.1 Introduction 5.5.2 Vulnerabilities within CPS 5.5.3 Specific Protective Shell Mitigation Mechanisms 5.5.4 Protective Shell Evaluation 5.6 Ukrainian Power Grid Cyber-Attack 5.6.1 Introduction 5.6.2 Vulnerabilities in the critical Infrastructure 5.6.3 Specific Protective Shell Mitigation Mechanisms 5.6.4 Protective Shell Evaluation 5.7 Airbus A400M FADEC 5.7.1 Introduction 5.7.2 Vulnerabilities within CPS 5.7.3 Specific Protective Shell Mitigation Mechanisms 5.7.4 Protective Shell Evaluation 5.8 Similarities between Specific Protective Shells 5.8.1 Mitigation Mechanisms Categories 5.8.2 Explanation 5.8.3 Conclusion 6 AI 6.1 Explainable AI (XAI) for Anomaly Detection 6.1.1 Anomaly Detection 6.1.2 Explainable Artificial Intelligence 6.2 Intrinsic Explainable ML Models 6.2.1 Linear Regression 6.2.2 Decision Trees 6.2.3 K-Nearest Neighbours 6.3 Example Use Case - Predictive Maintenance 7 Generic Protective Shell 7.1 Architecture 7.1.1 MAPE-K 7.1.2 Human Machine Teaming 7.1.3 Protective Shell Plugin Catalogue 7.1.4 Architecture and Design Principles 7.1.5 Conclusion Architecture 7.2 Implementation Details 7.3 Evaluation 7.3.1 Additional Vulnerabilities introduced by the Protective Shell 7.3.2 Summary 8 Conclusion 8.1 Summary 8.2 Research Questions Evaluation 8.3 Contribution 8.4 Future Work 8.5 Recommendatio

    Novel Validation Techniques for Autonomous Vehicles

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Novel Validation Techniques for Autonomous Vehicles

    Get PDF
    The automotive industry is facing challenges in producing electrical, connected, and autonomous vehicles. Even if these challenges are, from a technical point of view, independent from each other, the market and regulatory bodies require them to be developed and integrated simultaneously. The development of autonomous vehicles implies the development of highly dependable systems. This is a multidisciplinary activity involving knowledge from robotics, computer science, electrical and mechanical engineering, psychology, social studies, and ethics. Nowadays, many Advanced Driver Assistance Systems (ADAS), like Emergency Braking System, Lane Keep Assistant, and Park Assist, are available. Newer luxury cars can drive by themselves on highways or park automatically, but the end goal is to develop completely autonomous driving vehicles, able to go by themselves, without needing human interventions in any situation. The more vehicles become autonomous, the greater the difficulty in keeping them reliable. It enhances the challenges in terms of development processes since their misbehaviors can lead to catastrophic consequences and, differently from the past, there is no more a human driver to mitigate the effects of erroneous behaviors. Primary threats to dependability come from three sources: misuse from the drivers, design systematic errors, and random hardware failures. These safety threats are addressed under various aspects, considering the particular type of item to be designed. In particular, for the sake of this work, we analyze those related to Functional Safety (FuSa), viewed as the ability of a system to react on time and in the proper way to the external environment. From the technological point of view, these behaviors are implemented by electrical and electronic items. Various standards to achieve FuSa have been released over the years. The first, released in 1998, was the IEC 61508. Its last version is the one released in 2010. This standard defines mainly: • a Functional Safety Management System (FSMS); • methods to determine a Safety Integrated Level (SIL); • methods to determine the probability of failures. To adapt the IEC61508 to the automotive industry’s peculiarity, a newer standard, the ISO26262, was released in 2011 then updated in 2018. This standard provides guidelines about FSMS, called in this case Safety Lifecycle, describing how to develop software and hardware components suitable for functional safety. It also provides a different way to compute the SIL, called in this case Automotive SIL (ASIL), allowing us to consider the average driver’s abilities to control the vehicle in case of failures. Moreover, it describes a way to determine the probability of random hardware failures through Failure Mode, Effects, and Diagnostic Analysis (FMEDA). This dissertation contains contributions to three topics: • random hardware failures mitigation; • improvementoftheISO26262HazardAnalysisandRiskAssessment(HARA); • real-time verification of the embedded software. As the main contribution of this dissertation, I address the safety threats due to random hardware failures (RHFs). For this purpose, I propose a novel simulation-based approach to aid the Failure Mode, Effects, and Diagnostic Analysis (FMEDA) required by the ISO26262 standard. Thanks to a SPICE-level model of the item, and the adoption of fault injection techniques, it is possible to simulate its behaviors obtaining useful information to classify the various failure modes. The proposed approach evolved from a mere simulation of the item, allowing only an item-level failure mode classification up to a vehicle-level analysis. The propagation of the failure modes’ effects on the whole vehicle enables us to assess the impacts on the vehicle’s drivability, improving the quality of the classifications. It can be advantageous where it is difficult to predict how the item-level misbehaviors propagate to the vehicle level, as in the case of a virtual differential gear or the mobility system of a robot. It has been chosen since it can be considered similar to the novel light vehicles, such as electric scooters, that are becoming more and more popular. Moreover, my research group has complete access to its design since it is realized by our university’s DIANA students’ team. When a SPICE-level simulation is too long to be performed, or it is not possible to develop a complete model of the item due to intellectual property protection rules, it is possible to aid this process through behavioral models of the item. A simulation of this kind has been performed on a mobile robotic system. Behavioral models of the electronic components were used, alongside mechanical simulations, to assess the software failure mitigation capabilities. Another contribution has been obtained by modifying the main one. The idea was to make it possible to aid also the Hazard Analysis and Risk Assessment (HARA). This assessment is performed during the concept phase, so before starting to design the item implementation. Its goal is to determine the hazards involved in the item functionality and their associated levels of risk. The end goal of this phase is a list of safety goals. For each one of these safety goals, an ASIL has to be determined. Since HARA relies only on designers expertise and knowledge, it lacks in objectivity and repeatability. Thanks to the simulation results, it is possible to predict the effects of the failures on the vehicle’s drivability, allowing us to improve the severity and controllability assessment, thus improving the objectivity. Moreover, since simulation conditions can be stored, it is possible, at any time, to recheck the results and to add new scenarios, improving the repeatability. The third group of contributions is about the real-time verification of embedded software. Through Hardware-In-the-Loop (HIL), a software integration verification has been performed to test a fundamental automotive component, mixed-criticality applications, and multi-agent robots. The first of these contributions is about real-time tests on Body Control Modules (BCM). These modules manage various electronic accessories in the vehicle’s body, like power windows and mirrors, air conditioning, immobilizer, central locking. The main characteristics of BCMs are the communications with other embedded computers via the car’s vehicle bus (Controller Area Network) and to have a high number (hundreds) of low-speed I/Os. As the second contribution, I propose a methodology to assess the error recovery system’s effects on mixed-criticality applications regarding deadline misses. The system runs two tasks: a critical airplane longitudinal control and a non-critical image compression algorithm. I start by presenting the approach on a benchmark application containing an instrumented bug into the lower criticality task; then, we improved it by injecting random errors inside the lower criticality task’s memory space through a debugger. In the latter case, thanks to the HIL, it is possible to pause the time domain simulation when the debugger operates and resume it once the injection is complete. In this way, it is possible to interact with the target without interfering with the simulation results, combining a full control of the target with an accurate time-domain assessment. The last contribution of this third group is about a methodology to verify, on multi-agent robots, the synchronization between two agents in charge to move the end effector of a delta robot: the correct position and speed of the end effector at any time is strongly affected by a loss of synchronization. The last two contributions may seem unrelated to the automotive industry, but interest in these applications is gaining. Mixed-criticality systems allow reducing the number of ECUs inside cars (for cost reduction), while the multi-agent approach is helpful to improve the cooperation of the connected cars with respect to other vehicles and the infrastructure. The fourth contribution, contained in the appendix, is about a machine learning application to improve the social acceptance of autonomous vehicles. The idea is to improve the comfort of the passengers by recognizing their emotions. I started with the idea to modify the vehicle’s driving style based on a real-time emotions recognition system but, due to the difficulties of performing such operations in an experimental setup, I move to analyze them offline. The emotions are determined on volunteers’ facial expressions recorded while viewing 3D representa- tions showing different calibrations. Thanks to the passengers’ emotional responses, it is possible to choose the better calibration from the comfort point of view
    • …
    corecore