128 research outputs found

    Development,Validation, and Integration of AI-Driven Computer Vision System and Digital-twin System for Traffic Safety Dignostics

    Get PDF
    The use of data and deep learning algorithms in transportation research have become increasingly popular in recent years. Many studies rely on real-world data. Collecting accurate traffic data is crucial for analyzing traffic safety. Still, traditional traffic data collection methods that rely on loop detectors and radar sensors are limited to collect macro-level data, and it may fail to monitor complex driver behaviors like lane changing and interactions between road users. With the development of new technologies like in-vehicle cameras, Unmanned Aerial Vehicle (UAV), and surveillance cameras, vehicle trajectory data can be collected from the recorded videos for more comprehensive and microscopic traffic safety analysis. This research presents the development, validation, and integration of three AI-driven computer vision systems for vehicle trajectory extraction and traffic safety research: 1) A.R.C.I.S, an automated framework for safety diagnosis utilizing multi-object detection and tracking algorithm for UAV videos. 2)N.M.E.D.S., A new framework with the ability to detect and predict the key points of vehicles and provide more precise vehicle occupying locations for traffic safety analysis. 3)D.V.E.D.S applied deep learning models to extract information related to drivers\u27 visual environment from the Google Street View (GSV) images. Based on the drone video collected and processed by A.R.C.I.S at various locations, CitySim: a new drone recorded vehicle trajectory dataset that aim to facilitate safety research was introduced. CitySim has vehicle interaction trajectories extracted from 1140- minutes of video recordings, which provide a large-scale naturalistic vehicle trajectory that covers a variety of locations, including basic freeway segments, freeway weaving segments, expressway segments, signalized intersections, stop-controlled intersections, and unique intersections without sign/signal control. The advantage of CitySim over other datasets is that it contains more critical safety events in quantity and severity and provides supporting scenarios for safety-oriented research. In addition, CitySim provides digital twin features, including the 3D base maps and signal timings, which enables a more comprehensive testing environment for safety research, such as autonomous vehicle safety. Based on these digital twin features provided by CitySim, we proposed a Digital Twin framework for CV and pedestrian in-the-loop simulation, which is based on Carla-Sumo Co-simulation and Cave automatic virtual environment (CAVE). The proposed framework is expected to guide the future Digital Twin research, and the architecture we build can serve as the testbed for further research and development

    Insights into Simulated Smart Mobility on Roundabouts: Achievements, Lessons Learned, and Steps Ahead

    Get PDF
    This paper explores the domain of intelligent transportation systems, specifically focusing on roundabouts as potential solutions in the context of smart mobility. Roundabouts offer a safer and more efficient driving environment compared to other intersections, thanks to their curvilinear trajectories promoting speed control and lower vehicular speeds for traffic calming. The synthesis review supported the authors in presenting current knowledge and emerging needs in roundabout design and evaluation. A focused examination of the models and methods used to assess safety and operational performance of roundabout systems was necessary. This is particularly relevant in light of new challenges posed by the automotive market and the influence of vehicle-to-vehicle communication on the conceptualization and design of this road infrastructure. Two case studies of roundabouts were analyzed in Aimsun to simulate the increasing market penetration rates of connected and autonomous vehicles (CAVs) and their traffic impacts. Through microscopic traffic simulation, the research evaluated safety and performance efficiency advancements in roundabouts. The paper concludes by outlining areas for further research and evolving perspectives on the role of roundabouts in the transition toward connected and autonomous vehicles and infrastructures

    Intelligent Transportation Related Complex Systems and Sensors

    Get PDF
    Building around innovative services related to different modes of transport and traffic management, intelligent transport systems (ITS) are being widely adopted worldwide to improve the efficiency and safety of the transportation system. They enable users to be better informed and make safer, more coordinated, and smarter decisions on the use of transport networks. Current ITSs are complex systems, made up of several components/sub-systems characterized by time-dependent interactions among themselves. Some examples of these transportation-related complex systems include: road traffic sensors, autonomous/automated cars, smart cities, smart sensors, virtual sensors, traffic control systems, smart roads, logistics systems, smart mobility systems, and many others that are emerging from niche areas. The efficient operation of these complex systems requires: i) efficient solutions to the issues of sensors/actuators used to capture and control the physical parameters of these systems, as well as the quality of data collected from these systems; ii) tackling complexities using simulations and analytical modelling techniques; and iii) applying optimization techniques to improve the performance of these systems. It includes twenty-four papers, which cover scientific concepts, frameworks, architectures and various other ideas on analytics, trends and applications of transportation-related data

    Pedestrian Models for Autonomous Driving Part II: High-Level Models of Human Behavior

    Get PDF
    Abstract—Autonomous vehicles (AVs) must share space with pedestrians, both in carriageway cases such as cars at pedestrian crossings and off-carriageway cases such as delivery vehicles navigating through crowds on pedestrianized high-streets. Unlike static obstacles, pedestrians are active agents with complex, inter- active motions. Planning AV actions in the presence of pedestrians thus requires modelling of their probable future behaviour as well as detecting and tracking them. This narrative review article is Part II of a pair, together surveying the current technology stack involved in this process, organising recent research into a hierarchical taxonomy ranging from low-level image detection to high-level psychological models, from the perspective of an AV designer. This self-contained Part II covers the higher levels of this stack, consisting of models of pedestrian behaviour, from prediction of individual pedestrians’ likely destinations and paths, to game-theoretic models of interactions between pedestrians and autonomous vehicles. This survey clearly shows that, although there are good models for optimal walking behaviour, high-level psychological and social modelling of pedestrian behaviour still remains an open research question that requires many conceptual issues to be clarified. Early work has been done on descriptive and qualitative models of behaviour, but much work is still needed to translate them into quantitative algorithms for practical AV control

    Prediction of Pedestrians\u27 Red Light Violations Using Deep Learning

    Get PDF
    Pedestrians are regarded as Vulnerable Road Users (VRUs). Each year, thousands of pedestrians\u27 deaths are caused by traffic crashes, which take up 16% of the total road fatalities and injuries in the U.S. (FHWA, 2018). Crashes can happen if there are interactions between VRUs and motorized transportation. And pedestrians\u27 unexpected crossings, such as red-light violations at the signalized intersections, would expose them to motorized transportation and cause potential collisions. This thesis is intended to predict the pedestrians\u27 red-light violation behaviors at the signalized crosswalks based on an LSTM (Long Short-term Memory) neural network. With video data collected from real traffic scenes, it is found that pedestrians that crossed during the red-light periods are more in danger of being struck by vehicles, from the perspective of Surrogate Safety Measures (SSMs). Pedestrians\u27 features are generated using computer vision techniques. An LSTM model is used to predict pedestrians\u27 red-light violations using these features. The experiment results at one signalized intersection show that the LSTM model achieves an accuracy of 91.6%. Drivers can be more prepared for these unexpected crossing pedestrians if the model is to be implemented in the vehicle-to-infrastructure (V2I) communication system

    A Systematic Survey of Control Techniques and Applications: From Autonomous Vehicles to Connected and Automated Vehicles

    Full text link
    Vehicle control is one of the most critical challenges in autonomous vehicles (AVs) and connected and automated vehicles (CAVs), and it is paramount in vehicle safety, passenger comfort, transportation efficiency, and energy saving. This survey attempts to provide a comprehensive and thorough overview of the current state of vehicle control technology, focusing on the evolution from vehicle state estimation and trajectory tracking control in AVs at the microscopic level to collaborative control in CAVs at the macroscopic level. First, this review starts with vehicle key state estimation, specifically vehicle sideslip angle, which is the most pivotal state for vehicle trajectory control, to discuss representative approaches. Then, we present symbolic vehicle trajectory tracking control approaches for AVs. On top of that, we further review the collaborative control frameworks for CAVs and corresponding applications. Finally, this survey concludes with a discussion of future research directions and the challenges. This survey aims to provide a contextualized and in-depth look at state of the art in vehicle control for AVs and CAVs, identifying critical areas of focus and pointing out the potential areas for further exploration

    A comprehensive survey on cooperative intersection management for heterogeneous connected vehicles

    Get PDF
    Nowadays, with the advancement of technology, world is trending toward high mobility and dynamics. In this context, intersection management (IM) as one of the most crucial elements of the transportation sector demands high attention. Today, road entities including infrastructures, vulnerable road users (VRUs) such as motorcycles, moped, scooters, pedestrians, bicycles, and other types of vehicles such as trucks, buses, cars, emergency vehicles, and railway vehicles like trains or trams are able to communicate cooperatively using vehicle-to-everything (V2X) communications and provide traffic safety, efficiency, infotainment and ecological improvements. In this paper, we take into account different types of intersections in terms of signalized, semi-autonomous (hybrid) and autonomous intersections and conduct a comprehensive survey on various intersection management methods for heterogeneous connected vehicles (CVs). We consider heterogeneous classes of vehicles such as road and rail vehicles as well as VRUs including bicycles, scooters and motorcycles. All kinds of intersection goals, modeling, coordination architectures, scheduling policies are thoroughly discussed. Signalized and semi-autonomous intersections are assessed with respect to these parameters. We especially focus on autonomous intersection management (AIM) and categorize this section based on four major goals involving safety, efficiency, infotainment and environment. Each intersection goal provides an in-depth investigation on the corresponding literature from the aforementioned perspectives. Moreover, robustness and resiliency of IM are explored from diverse points of view encompassing sensors, information management and sharing, planning universal scheme, heterogeneous collaboration, vehicle classification, quality measurement, external factors, intersection types, localization faults, communication anomalies and channel optimization, synchronization, vehicle dynamics and model mismatch, model uncertainties, recovery, security and privacy

    Modeling driver's evasive behavior during safety-critical lane changes:Two-dimensional time-to-collision and deep reinforcement learning

    Full text link
    Lane changes are complex driving behaviors and frequently involve safety-critical situations. This study aims to develop a lane-change-related evasive behavior model, which can facilitate the development of safety-aware traffic simulations and predictive collision avoidance systems. Large-scale connected vehicle data from the Safety Pilot Model Deployment (SPMD) program were used for this study. A new surrogate safety measure, two-dimensional time-to-collision (2D-TTC), was proposed to identify the safety-critical situations during lane changes. The validity of 2D-TTC was confirmed by showing a high correlation between the detected conflict risks and the archived crashes. A deep deterministic policy gradient (DDPG) algorithm, which could learn the sequential decision-making process over continuous action spaces, was used to model the evasive behaviors in the identified safety-critical situations. The results showed the superiority of the proposed model in replicating both the longitudinal and lateral evasive behaviors
    • …
    corecore