155 research outputs found

    Recognition of Japanese handwritten characters with Machine learning techniques

    Get PDF
    The recognition of Japanese handwritten characters has always been a challenge for researchers. A large number of classes, their graphic complexity, and the existence of three different writing systems make this problem particularly difficult compared to Western writing. For decades, attempts have been made to address the problem using traditional OCR (Optical Character Recognition) techniques, with mixed results. With the recent popularization of machine learning techniques through neural networks, this research has been revitalized, bringing new approaches to the problem. These new results achieve performance levels comparable to human recognition. Furthermore, these new techniques have allowed collaboration with very different disciplines, such as the Humanities or East Asian studies, achieving advances in them that would not have been possible without this interdisciplinary work. In this thesis, these techniques are explored until reaching a sufficient level of understanding that allows us to carry out our own experiments, training neural network models with public datasets of Japanese characters. However, the scarcity of public datasets makes the task of researchers remarkably difficult. Our proposal to minimize this problem is the development of a web application that allows researchers to easily collect samples of Japanese characters through the collaboration of any user. Once the application is fully operational, the examples collected until that point will be used to create a new dataset in a specific format. Finally, we can use the new data to carry out comparative experiments with the previous neural network models

    Text-independent writer identification using convolutional neural network

    Get PDF
    The text-independent approach to writer identification does not require the writer to write some predetermined text. Previous research on text-independent writer identification has been based on identifying writer-specific features designed by experts. However, in the last decade, deep learning methods have been successfully applied to learn features from data automatically. We propose here an end-to-end deep-learning method for text-independent writer identification that does not require prior identification of features. A Convolutional Neural Network (CNN) is trained initially to extract local features, which represent characteristics of individual handwriting in the whole character images and their sub-regions. Randomly sampled tuples of images from the training set are used to train the CNN and aggregate the extracted local features of images from the tuples to form global features. For every training epoch, the process of randomly sampling tuples is repeated, which is equivalent to a large number of training patterns being prepared for training the CNN for text-independent writer identification. We conducted experiments on the JEITA-HP database of offline handwritten Japanese character patterns. With 200 characters, our method achieved an accuracy of 99.97% to classify 100 writers. Even when using 50 characters for 100 writers or 100 characters for 400 writers, our method achieved accuracy levels of 92.80% or 93.82%, respectively. We conducted further experiments on the Firemaker and IAM databases of offline handwritten English text. Using only one page per writer to train, our method achieved over 91.81% accuracy to classify 900 writers. Overall, we achieved a better performance than the previously published best result based on handcrafted features and clustering algorithms, which demonstrates the effectiveness of our method for handwritten English text also

    Online Handwritten Chinese/Japanese Character Recognition

    Get PDF

    Studies on machine learning-based aid for residency training and time difficulty in ophthalmology

    Get PDF
    兵庫県立大学大学院工学(博士)2023doctoral thesi

    Statistical Deformation Model for Handwritten Character Recognition

    Get PDF

    Special Radical Detection by Statistical Classification for On-line Handwritten Chinese Character Recognition

    No full text
    International audienceThe hierarchical nature of Chinese characters has inspired radical-based recognition, but radical segmentation from characters remains a challenge. We previously proposed a radical-based approach for on-line handwritten Chinese character recognition, which incorporates character structure knowledge into integrated radical segmentation and recognition, and performs well on characters of left-right and up-down structures (non-special structures). In this paper, we propose a statistical-classification-based method for detecting special radicals from special-structure characters. We design 19 binary classifiers for classifying candidate radicals (groups of strokes) hypothesized from the input character. Characters with special radicals detected are recognized using special-structure models, while those without special radicals are recognized using the models for non-special structures. We applied the recognition framework to 6,763 character classes, and achieved promising recognition performance in experiments

    Freehand Sketch Recognition for Computer-Assisted Language Learning of Written East Asian Languages

    Get PDF
    One of the challenges students face in studying an East Asian (EA) language (e.g., Chinese, Japanese, and Korean) as a second language is mastering their selected language’s written component. This is especially true for students with native fluency of English and deficient written fluency of another EA language. In order to alleviate the steep learning curve inherent in the properties of EA languages’ complicated writing scripts, language instructors conventionally introduce various written techniques such as stroke order and direction to allow students to study writing scripts in a systematic fashion. Yet, despite the advantages gained from written technique instruction, the physical presence of the language instructor in conventional instruction is still highly desirable during the learning process; not only does it allow instructors to offer valuable real-time critique and feedback interaction on students’ writings, but it also allows instructors to correct students’ bad writing habits that would impede mastery of the written language if not caught early in the learning process. The current generation of computer-assisted language learning (CALL) applications specific to written EA languages have therefore strived to incorporate writing-capable modalities in order to allow students to emulate their studies outside the classroom setting. Several factors such as constrained writing styles, and weak feedback and assessment capabilities limit these existing applications and their employed techniques from closely mimicking the benefits that language instructors continue to offer. In this thesis, I describe my geometric-based sketch recognition approach to several writing scripts in the EA languages while addressing the issues that plague existing CALL applications and the handwriting recognition techniques that they utilize. The approach takes advantage of A Language to Describe, Display, and Editing in Sketch Recognition (LADDER) framework to provide users with valuable feedback and assessment that not only recognizes the visual correctness of students’ written EA Language writings, but also critiques the technical correctness of their stroke order and direction. Furthermore, my approach provides recognition independent of writing style that allows students to learn with natural writing through size- and amount-independence, thus bridging the gap between beginner applications that only recognize single-square input and expert tools that lack written technique critique
    corecore