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Preface 

One of the current issues in the Japanese medical field is shortage of medical 

professionals. To overcome this issue, there exist the following two policies: the first 

policy to reduce ineffective time restrictions for the professionals, and the second policy 

to augment the professionals. When outpatients first visit a hospital, they are required to 

fill out medical questionnaires. The medical doctors then read the questionnaires, and 

determine examinations for the patients. The ineffective time tends to occur as waiting 

time in time slots between filling out the questionnaires and determining the examinations.  

The waiting time is heavy burden not only for the outpatients but for the doctors. On the 

other hand, it is necessary to educate residents for performing the surgery, to augment the 

skilled medical doctors. The skilled doctors are then required to instruct the residents 

during the surgery, and hence another time restriction is imposed on the skilled doctors 

for educational training of surgical operation. In this dissertation, a machine learning-

based aid is introduced to realize the above two policies. Data-classification-based 

determination for ophthalmological examination categories is discussed as realizing the 

first policy, whereas support systems for cataract surgery to assist residents in safely 

performing the surgery are described as the implementation based on the second policy. 

Data are prepared from sentences handwritten in the medical questionnaires for 

determining the examination categories, and from surgical video recordings for cataract- 

surgery support systems. 

Chapter 2 is the section for preliminaries. The following are briefly explained: 

medical questionnaires, examination categories, cataract surgery videos, crucial surgical 

phases referred to as continuous curvilinear capsulorhexis (CCC for short) and nuclear 

extraction, surgical instruments, morphological analysis tools known as MeCab and 

Sudachi, support vector machine (SVM for short), CatBoost, and neural network (NN for 

short) as machine-learning schemes for Japanese language processing, and InceptionV3 
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and scSE-FC-DenseNet as convolution neural network (CNN for short) applicable to 

image processing. 

In Chapter 3, a method for determining examination categories is proposed for 

ophthalmology patients. In this method, either MeCab or Sudachi is available to 

decompose character strings, the means of preparing numerical vectors is chosen from 

the following three schemes: One-Hot Encoding, Bag of Words, and Word2Vec, and one 

of machine-learning schemes, SVM, CatBoost, and NN, is conducted. It is revealed that 

a combination of Sudachi, One-Hot Encoding and CatBoost achieves the highest accuracy 

in determining the category. 

In Chapter 4, a method for real-time automatic extraction of crucial surgical 

phases in cataract surgery is proposed, using InceptionV3 model. The model processes 

the images prepared from a given surgical video in chronological order and determines 

the start and end times of each phase (i.e., CCC or nuclear extraction). It is revealed that 

the mean error is equal to 5.25 seconds, by comparing the times determined by the model 

with those recorded by the ophthalmologist. 

In Chapter 5, a cataract surgery problem detection method is presented. The 

proposed method consists of two steps. First, an InceptionV3 model extracts crucial 

surgical phases. Another InceptionV3 model is then used to calculate values associated 

with the risk level. The proposed method judges whether surgery problems occur, by 

checking such calculated values. It can detect surgical problems with an AUC of 0.97. 

In Chapter 6, a method for displaying the information necessary to quantify the 

surgical techniques of cataract surgery in real-time is proposed. It uses an scSE-FC-

DenseNet model to detect areas of the cornea, the tip of the forceps, and the incisional 

site during CCC. The following favorable detection rates can be achieved: 99.7% for the 

cornea, 86.9% for forceps tips, and 94.9% for incisional site. The detection rate deeply 

depends on parameter, IoU, associated with ground truth and the detection area. 
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Chapter 1 Introduction 

Recently, the shortage of medical professionals in Japanese medical scene has 

been considered to be a very serious problem to be solved as soon as possible. One of the 

reasons that cause the shortage is ineffective time restrictions imposed on the 

professionals. For example, in Japan, it is well known that outpatients must stay at a 

waiting room in medical institution. The long waiting time is heavy burden not only for 

the outpatients but for the professionals. As a countermeasure for overcoming the waiting-

time problem, an approach introducing electronic medical records and an approach based 

on the queuing theory are proposed in [1]-[3]. 

The ineffective time occurs in various aspects of medicine practice. One of the 

examples is associated with determination of examinations applied to outpatients.  

When outpatients first visit a hospital, they are required to fill out medical questionnaires.  

The medical doctors then read the questionnaires, and determine examinations for the 

patients. The ineffective time tends to occur as waiting time in time slots between filling 

out the questionnaires and determining the examinations. 

The objective of this study is to cope well with the occurrence of the ineffective 

time in Japanese medical scene, introducing a machine learning-based aid. In this 

dissertation, automatically determining examination categories is proposed for 

ophthalmology patients. The data presented to discrimination models constructed by 

machine learning are prepared from sentences handwritten by outpatients in medical 

questionnaires. The following are conditions to develop the method classifying the 

questionnaires into four examination categories: either MeCab [4] or Sudachi [5] is 

available to decompose character strings, the means of preparing numerical vectors is 

chosen from One-Hot Encoding, Bag of Words, and Word2Vec [6], and one of machine-

learning schemes, support vector machine (SVM for short) [7], CatBoost [8], and neural 

network (NN for short) [9], is conducted. It is revealed that a combination of Sudachi, 
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One-Hot Encoding and CatBoost achieves the highest accuracy in determining the 

category. 

The above is an approach to tackle the shortage of medical professionals, by 

reducing the inefficient time. Another approach is to directly augment the professionals.  

Let us discuss the case where ophthalmologists with high surgical techniques are 

augmented. It is then necessary to carefully educate residents for performing the surgery.   

The skilled ophthalmologists are then required to instruct the residents during the surgery.  

Though the education guidance in this manner will enhance technical levels of the 

residents well, it would restrict the instructors (i.e., skilled ophthalmologists) for a long 

time. In other words, the education for augmenting the skilled ophthalmologists tends to 

place stresses on other hospital staffs. The instructors therefore desire the surgical 

education system giving guidance without their observations. 

In this dissertation, as part of developing such education system, methods of 

assisting residents in safely performing the cataract surgery are discussed. Data used for 

network learning are prepared from cataract surgery video recordings. A method of 

extracting crucial surgical phases is first proposed. Surgical videos are down sampled to 

a resolution of 299 × 168 resolution at 1 FPS. A convolutional neural network (CNN for 

short) model known as InceptionV3 [10] is employed to identify the surgical phase for 

each frame (i.e., sampled image). The crucial surgical phases are as follows: continuous 

curvilinear capsulorhexis (CCC for short) and nuclear extraction. The proposed model 

processes the frames in chronological order and determines the start and end times of each 

phase. Its performance is evaluated by comparing the times determined by the proposed 

model with those recorded by an ophthalmologist. 

A method of detecting a cataract surgery problem is next proposed, using 

InceptionV3 models. Surgical videos are also down sampled in the manner similar to the 

above. The proposed method consists of the step extracting crucial phases (i.e., CCC and 
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nuclear extraction) and the detection step. In the latter step, two models are utilized, the 

frames are arranged in chronological order, and the 10-second average of their outputs is 

calculated. The calculated values are multiplied to determine the risk level on which the 

proposed problem detection depends. The proposed method is evaluated in terms of the 

Area Under Curve (AUC for short) of the figure of the true positive rate versus (1 - false 

positive rate). 

A method of displaying the information necessary to quantify the surgical 

techniques in real-time is finally presented. Surgical video recordings are down sampled to 

a frame rate of 1 FPS and a resolution of 256 × 128. The proposed method uses scSE-FC-

DenseNet [11] as CNN model to detect the cornea, the tip of the surgical instrument, and 

the incisional site during CCC. It is necessary to detect them with high accuracy for 

appropriately displaying the information. Experimental results reveal that high detection 

rates are achieved for the cornea, the surgical instrument tips, and the incisional site. 

This dissertation consists of the following chapters. Chapter 2 is for the 

preliminaries, briefly explains ophthalmic materials and machine learning methods. In 

Chapter 3, data-classification-based determination is discussed for ophthalmological 

examination categories. In Chapter 4, real-time extraction of crucial surgical phases is 

described. Real-time surgical problem detection is next proposed in Chapter 5, and real-

time instrument tracking is discussed in Chapter 6. Chapter 7 finally concludes this 

dissertation. 
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Ophthalmological Materials and Machine Learning Methods 

 

 

 

 

 

 

 

 

 

 

 

In this Chapter, ophthalmological medical data used in this dissertation are first 

introduced. The data are prepared from medical questionnaires and cataract surgery 

videos provided from Tsukazaki Hospital. Machine learning techniques used in Japanese 

language processing are next discussed. MeCab and Sudachi are employed in this 

dissertation for morphological analysis of Japanese sentences. Besides, support vector 

machine (SVM for short), CatBoost, and neural network (NN for short) are explained as 

machine learning techniques to which data prepared from medical questionnaires are 

applied. Machine learning techniques adopted in image processing are finally discussed. 

They are as follows: InceptionV3 and scSE-FC-DenseNet. The former is one of the 

convolutional neural networks (CNNs for short) used in the surgical phase recognition 

and surgical problem detection of cataract surgery videos, whereas the latter is a 

segmentation CNN used to detect the cornea and surgical instruments. 
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2.1 Ophthalmic Questionnaires and Cataract Videos 

 In this Chapter, ophthalmological materials provided by Department of 

Ophthalmology, Tskazaki Hospital are described. They are medical questionnaires and 

cataract surgery videos. The study discussed in this dissertation was approved by the 

Ethics Committee of Tsukazaki Hospital (Himeji, Japan) and was conducted in 

accordance with the tenets of the Declaration of Helsinki. Since it only reviewed the 

medical questionnaires and the surgical videos retrospectively and there were no 

anonymous issues involved, the Institutional Review Board of Tsukazaki Hospital waived 

the need for consent. 

 Let us first describe handwritten medical questionnaires used to determine the 

types of examinations. The questionnaire at Tsukazaki Hospital includes a section where 

patients can freely enter subjective symptoms in Japanese. In Chapter 3, the type of 

examination will be determined based on the handwritten Japanese sentences provided at 

the section. 

The proposed method employs keyboard input to generate computerized information on 

sentences handwritten in the medical questionnaires. Revisions are then conducted 

according to the following policies.  

(1) Clear typographical errors appearing in handwritten sentences are revised. 

(2) Words associated with unreasonable dates are revised. 

(3) There are cases where two or more different Chinese characters (i.e., kanji) have 

the same meaning. For example, two kanji characters are available to express 

“eye.” In such cases, the usage of characters is unified with the identical character 

chosen from them. 

Let us next explain annotating the digitized questionnaires. In Tsukazaki Hospital, 

eye diseases diagnosed by ophthalmologists are divided into thirteen categories. There 
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however exists cases where some type of examinations is required to two or more eye 

diseases belonging to separate categories. In this dissertation, all of the eye diseases are 

categorized into four groups as shown in Table 2.1, and it is assumed that an outpatient 

filling out his/her questionnaire takes examinations belonging to one of the groups in 

Table 2.1. In other words, it can be considered that the number of classes of the 

questionnaires is four as shown in Table 2.1. Note that Table 2.1 shows the 

correspondence between the class and representative eye diseases belonging to it. 

The cataract surgery videos used to extract the crucial phases of cataract surgery 

are described. In Chapter 4, the following two crucial surgical phases in cataract surgery 

are discussed: continuous curvilinear capsulorhexis (CCC for short) and nuclear 

extraction.  CCC and nuclear extraction are recorded in the videos.  

Video recordings of cataract surgery (phacoemulsification) performed at 

Tsukazaki Hospital, a social medical care corporation, are used for the recognition of 

surgical phases. The videos are specified with a resolution of 1920 × 1080 at a frame rate 

of 30 FPS, a mean duration of about 534 seconds and a standard deviation (SD) of about 

237 seconds. The mean (SD) durations of each phase are as follows: about 42 (44) 

seconds for CCC, about 133 (85) seconds for nuclear extraction, and 359 (163) seconds 

for other phases. Of the 303 surgical videos, 245 videos are utilized as training data, 10 

 

Table 2.1 Relationships between classes and diseases 

Classes Categories Diseases 

1 Mydriasis-related examinations 
Cataract, Diabetes, Retinal disease, 

Uveitis, Pediatric ophthalmology 

2 Glaucoma-related examinations Glaucoma 

3 
Examinations for 

anterior ocular segments 

Neuro-ophthalmologic disease, 

Strabismus, Trauma 

4 
Oculomotor-related 

examinations 

Corneal and/or conjunctival disease, 

Lacrimal apparatus, Ametropia, The others 
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as verification data, and 48 as test data. 

A total of 17 surgeons are included in 303 surgical videos. Three types of forceps 

are used for CCC, four types of surgical techniques are used for nuclear extraction, and 

two types of lighting methods are used for CCC and nuclear extraction. There are total of 

9 combination patterns with these 4 variables. In Table 2.2, the percentage of each pattern 

is shown detailing the following: CCC forceps, nuclear extraction method, the lighting 

methods for CCC and nuclear extraction, the number of videos, and the number of 

surgeons. Also, photographs of these forceps, lighting methods, and surgical techniques 

are shown in Figure 2.1. 

 

Table 2.2 Combination patterns of surgical instruments, surgical techniques, and lighting 

methods. 

Pattern 

Name of 

CCC 

forceps 

Nuclear 

extraction 

method 

Lighting 

method 

(CCC) 

Lighting 

method 

(nuclear 

extraction) 

Number of 

videos 

Number of 

surgeons 
Percentage 

No. 1 
Inamura 

forceps 

Phaco 

prechopper 

Retro 

illumination 

Retro 

illumination 
71 1 23.4% 

No. 2 
Ikeda 

forceps 

Centoral- 

Devide 

Direct 

illumination 

Direct 

illumination 
68 1 22.4% 

No. 3 
Ikeda 

forceps 

Phaco  

Chopper 

Retro 

illumination 

Direct 

illumination 
51 1 16.8% 

No. 4 
Inamura 

forceps 

Phaco  

Chopper 

Retro 

illumination 

Direct 

illumination 
49 1 16.2% 

No. 5 
Inamura 

forceps 

Phaco  

Chopper 

Direct 

illumination 

Direct 

illumination 
35 8 11.6% 

No. 6 
Inamura 

forceps 

Divide and 

Conquer 

Direct 

illumination 

Direct 

illumination 
12 2 4.0% 

No. 7 
Inamura 

forceps 

Centoral- 

Devide 

Direct 

illumination 

Direct 

illumination 
7 1 2.3% 

No. 8 
Ikeda 

forceps 

Divide and 

Conquer 

Direct 

illumination 

Direct 

illumination 
7 1 2.3% 

No. 9 cystotome 
Divide and 

Conquer 

Direct 

illumination 

Direct 

illumination 
3 1 1.0% 

9 patterns 3 patterns 4 patterns 2 patterns 2 patterns 303 cases 17 surgeons 100% 
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Videos are down sampled to a resolution of 256 × 168 at 1 FPS in order to 

perform surgical phase recognition for each image in Chapter 4. As a result, a total of 

161,140 images are obtained from 303 videos. The surgical phases are correctly labeled 

as CCC, nuclear extraction, and others. The labels are given based on the start and end 

times of each surgical phase recorded by an ophthalmologist. Table 2.3 lists the number 

of image datasets obtained for each surgical phase, and Figure 2.2 shows sample images 

of actual surgery showing three phases. 

 

Table 2.1 Breakdown of dataset for recognition of cataract surgical phases. 

Recognition 

class 

Training data 

(images) 

Validation data 

(images) 
Test data (images) 

Total 

(images) 

CCC 10719 211 1725 12655 

Nuclear 

extraction 
33020 976 5995 39991 

Others 90023 2376 16095 108494 

Total 133762 3563 23815 161140 

 

Figure 2.1 Examples of surgical instruments, lighting methods, and nuclear extraction 

         techniques. (a) Inamura forceps, (b) Ikeda forceps, (c) cystotome, (d) retro 

         illumination, (e) direct illumination, (f) phaco-prechopper method, 

         (g) phaco-chopper method, (h) divide and conquer method, (i) central-divide 

         method. 

(a) 

(b) 

(c) 

(d) (e) (f) 

(g) (h) (i) 
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Let us next describe cataract surgery videos used to detect the occurrence of 

problems in cataract surgery. In Chapter 5, these videos are used to develop a method for 

detecting surgical problem during CCC to nuclear extraction. 

In Chapter 5, 425 video recordings of cataract surgeries are used. The resolution 

of the videos is 1920 × 1080 at a frame rate of 30 FPS with a mean duration of about 1018 

s and a standard deviation (SD) of about 1046 s. The above electronic files are used to 

annotate surgical phases in the videos using labels. The number of classes is two. In other 

words, the label “crucial phase” is assigned to frames corresponding to the period between 

the two time points, from the time when CCC starts through when nuclear extraction 

finishes, while the label “other” is assigned to frames corresponding to the period 

exclusively included as time slots when neither CCC nor nuclear extraction are performed. 

The mean (SD) duration between the start of CCC and the end of the nuclear extraction 

is about 376 s (427 s), while the mean (SD) duration of the other phases is 642 s (798 s). 

In surgical problem detection, neural network’s performance is evaluated, using 

310 training data (57 with problems and 253 without problems), 15 validation data (5 

with problems and 10 without problems), and 100 test data (50 with problems and 50 

without problems) from 425 videos. The video frame rate is down sampled to 1 FPS, and 

the resolution is down sampled to 256 × 168 to perform surgical phase recognition and 

problem detection frame-by-frame. This yields 422,559 images from 425 videos. 

Figure 2.2 Sample images of three surgical phases. (a) CCC (Inamura forceps, retro 

 illumination method), (b) nuclear extraction, (c) others (intraocular lens 

 insertion). 

(a) (b) (c) 
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Recall that the above electronic files have information on the occurrence of 

surgical problems. In addition to one of the two labels, crucial phase or other phase, a 

label to indicate the presence or absence of a surgical problem is also added to each video 

frame. Ophthalmologists working at Tsukazaki Hospital watch video recordings of 

cataract surgeries performed at the hospital, and check the time points when CCC starts, 

nuclear extraction finishes, and surgical problems occur. Such time points are registered 

on electronic files. The phase breakdown of the obtained image data is shown in Table 

2.3, and a sample of the actual images of each phase are shown in Figure 2.3. Additionally, 

a problem breakdown is tabulated in Table 2.4. 

Cataract surgery videos used to detect the occurrence of problems in cataract 

surgery are finally described. In Chapter 6, they are for developing a method of detecting 

surgical problem during CCC to nuclear extraction. 

 

Table 2.3 Breakdown of datasets for the detection of cataract surgical phases. 

Detected Class 
Training Data 

(Images) 

Validation Data 

(Images) 

Test Data 

(images) 

Total 

(Images) 

CCC to nuclear 

extraction (normal) 
60,304 3492 10,085 73,881 

CCC to nuclear 

extraction (abnormal) 
37,532 2561 42,196 82,289 

Others 153,086 11,759 101,544 266,389 

Total 250,922 17,812 153,825 422,559 

 

Table 2.4 Breakdowns of surgical problems. As there are surgeries in which multiple 

problems occur at the same time, the number of surgical videos with problems 

Figure 2.3 Sample images of each surgical phase. (a) CCC (Inamura forceps, retro  

illumination method), (b) nuclear extraction, (c) others (intraocular lens  

insertion). 

(a) (b) (c) 
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does not correspond to the total number of problem breakdowns. 

Type of Problem Number of Events 

Vitreous prolapse 44 

Capsule rupture 39 

Damage to the iris 31 

Iris prolapses 30 

Rupture of the zonule of the Zinn 15 

Dropped nucleus 14 

Discontinuous CCC 13 

CCC tear 7 

Wound suture 5 

 

Only surgical videos during CCC in which no problems occur are used. Of the 

302 videos, 211 videos are utilized as training data, 30 as validation data, and 61 as test 

data. As with surgical problem detection, the video frame rate is down sampled to 1 FPS, 

and the resolution is down sampled to 256 × 128 to perform surgical instrument detection. 

This results in 9354 training data, 981 validation data, and 2299 test data from 302 videos, 

for a total of 12,634 images. Ophthalmologists working at Tsukazaki Hospital annotates 

surgical instruments in videos with labels. They then use the annotation tool known as 

LabelMe [12]. The labels are as follows: patient’s corneal area, the tips of the forceps, 

and the incisional site. Examples of an input image and the corresponding segmentation 

images are shown in Figure 2.4. 

 

 

 

Figure 2.4 Segmentation example of surgical instrument detection. (a) input image,  

(b) ground truth of corneal area, (c) ground truth of forceps’ tips, (d) ground 

truth of incisional site. 

(a) (b) (c) (d) 
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2.2 Machine Learning Techniques for Japanese Language Processing 

Sentences written in Japanese and Chinese generally have no word boundaries.  

If these sentences are analyzed, it is not easy to estimate the size of an output sequence.  

This is a quite large difference between Japanese sentences and sentences written in other 

languages in labeling sequences for the morphological analysis. Determining word 

boundaries is thus of importance in analyzing Japanese sentences. 

In Chapter 3, two tools known as MeCab [4] and Sudachi [5] are applied for the 

morphological analysis. MeCab employs conditional random fields (CRF for short) [13], 

which are the model for recognition developed to label sequences. Using CRF makes it 

possible to conduct learning so that right sequence labeling can be discriminated from 

other candidates of sequence labeling. Sudachi is the tool disclosed in 2017. Since it is a 

newcomer compared to MeCab, it has the new dictionary available for the powerful 

different notation normalization. As an example of the different notation normalization, 

“syumilation,” which is often used by Japanese people wrongly, is converted to 

“simulation.” Kanji characters are often used in the substitute for other kanji characters 

having the same pronunciation. For example, “fuzoku” meaning the word “be attached 

to” in English has two types of notations using kanji characters. The dictionary for 

Sudachi also copes well with such cases. Similar sounding/different character cases often 

appear in handwritten sentences to be treated in this dissertation. The notation 

normalization made by Sudachi seems to work well for the proposed method. 

In Chapter 3, the following three types of machine learning are discussed to 

construct discrimination models: SVM [7], CatBoost [8], and NN [9]. There are big 

differences among them in terms of algorithm structures. SVM learning constructs 

discrimination models according to the margin maximization principle. It basically 

chooses the hyperplane running through the middle points between two class data among 
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planes that can perfectly divide the data into the two groups. This gives the powerful 

generalization capability to constructed discrimination models. When SVM learning is 

conducted on condition that the Lagrange multiplier is used, the learning process results 

in solving the two-dimensional optimization problem. The frequency of producing the 

local minimum for SVM learning therefore tends to be low compared that for CatBoost 

learning and NN learning. In Chapter 3, the nonlinear SVM based on radial basis function 

(RBF for short) kernel is applied. 

CatBoost learning consecutively generates decision trees as weak learners.  

Figure 2.5 illustrates examples of such decision trees. It is considered that CatBoost 

learning is one of the Gradient Boosting algorithms, which can combine inference results 

of the weak learners. In other words, the Gradient Boosting algorithm generates a new 

decision tree, referring to a dataset and the result of decision tree that has been the most 

recently generated. Since an approximate gradient value is then acquired from the same 

dataset, it is possible that the difference between the actual probability distribution and 

the probability distribution on predicted gradient values occurs as the prediction shift.  

CatBoost learning employs Ordered boosting, which samples a new dataset each time 

decision trees are generated, to overcome the prediction-shift problem and to reduce 

overfitting. 

In Chapter 3, a simple fully connected NN as shown in Figure 2.6 is introduced.  

A numerical vector is presented from the “Input” located in the left-most part, while the 

right-most part “Output” produces a numerical vector. “FC” means a fully connected 

layer. The first FC consists of 128 neurons. The number of neurons in the second FC is 

4. This number is equal to the number of classes shown in Table 2.1. Note that u=128 

and u=4 denote numbers of neurons. Rectified linear unit (ReLU) activation function 

and Softmax activation function are denoted by “Relu” and “Softmax,” respectively.  

Besides, to reduce overfitting, the dropout scheme is employed in the proposed method.  
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The dropout scheme randomly and temporarily deletes one of the neurons in the 

intermediate layer to cut the signal propagation during learning. “r=0.9 ” in Figure 2 

means the dropout rate to be 0.9. 

 

 

 

 

 

 

Figure 2.5 Decision trees generated by CatBoost 

Figure 2.6 Structure of NN 
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2.3 Machine Learning Techniques for Computer Vision 

In Chapters 4 and 5, a convolution neural network model, known as the Inception 

V3 model [10], is used to recognize surgical phases and detect surgical problem. The 

Inception module is adopted in reducing the amount of computation and suppressing 

gradient elimination by replacing n × n convolution with 1 × n convolution and n × 1 

convolution. Figures 2.7 (a)–(e) illustrate the Inception module used in this study to 

develop the surgical phase recognition model. “Base” refers to an input tensor for an 

Inception module. Convolution (denoted by “conv”) makes it possible to learn high level 

features of an image. The convolution operation is then performed in a local region. 

Pooling compresses data and downsamples to reduce computational cost and suppress 

over-learning. Max Pooling compresses data by calculating the maximum value 

associated with the local region, whereas Average Pooling compresses data by calculating 

the average value associated with the local region. Filter concatenation (“Filter Concat”) 

connects multiple tensors. 

In Chapter 6, one of the segmentations NNs, scSE-FC-DenseNet [11], was used 

to detect the corneal area of the patient and track the surgical instruments. High 

computational complexity is imposed on a segmentation NN, and hence the NN must be 

carefully designed if its response time is shortened so that the NN can be safely said to 

be nearly real time. The scSE-FC-DenseNet is an FC-DenseNet [14], which incorporates 

the Dense block proposed in DenseNet [15] into U-Net [16], with an attention mechanism 

called the scSE (Spatial and Channel Squeeze & Excitation) module. It is discussed in 

[14] that employing DenseNet enables us to easily adjust the computational complexity 

imposed on the NN. 
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U-Net is a type of Fully Convolutional Networks (FCNs). As shown in Figure 

2.8, it is characterized by the introduction of a mechanism called “skipped connections” 

that utilizes information during the encoding process when the encoded image is decoded. 

By using the skip connection, small features that are lost due to compression of the image 

by the pooling layer can be restored. 

DenseNet is a NN that uses a structure called Dense block, which combines a 

skipped connection and a bottleneck layer. This structure allows us to construct NNs that 

do not increase the number of parameters explosively, even when the convolutional layer 

is more multi-layered. FC-DenseNet is a NN obtained by replacing the usual 

Figure 2.7 The architectures of deep neural networks. (a) Inception module using 5 × 5, 

3 × 3, and 1 × 1 convolution. It replaces the 5 × 5 convolution layer.       

(b) Inception module using 3 × 3 and 1 × 1 convolution. It replaces the 3 × 3 

convolution layer. (c) Inception module using 1 × 7, 7 × 1, and 1 × 1 

convolution. It replaces the 7 × 7 convolution layer. (d) Inception module 

using 3 × 3, 1 × 7, 7 × 1, and 1 × 1 convolution. It replaces the 7 × 7 

convolution layer. (e) Inception module using 3 × 3 1 × 3, 3 × 1, and 1 × 1 

convolution. It replaces 3 × 3 convolution layer. 
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convolutional layer used in U-Net with this Dense block. 

The scSE module is a combination of the Spatial Squeeze and Excitation (cSE) 

proposed in SE-Net [17], an image classification NN, which averages the whole image 

for each channel (Squeeze) and gives its attention (Excitation), and an sSE (Channel 

Squeeze and Spatial Excitation) that squeezes to the channel direction and excites each 

pixel. This module can effectively introduce the attention mechanism in a segmentation 

NN. 

In Chapter 6, the scSE-FC-DenseNet40, which consists of 40 layers of Dense 

blocks, with a scSE module embedded after each Dense block is used.   

 

 

 

 

Figure 2.8. Network structure of U-Net, taken from [16]. 
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Chapter 3 

 

Data-Classification-Based Determination for Ophthalmological 

Examination Categories Using Machine Learning 

 

 

 

 

 

 

 

 

In this Chapter, a method for determining examination categories is proposed 

for ophthalmology patients, using machine learning. It is assumed that the examinations 

are classified into four categories. The discrimination models constructed using machine 

learning are applied to determine which group each patient's medical questionnaire 

belongs to. The target to be classified is Japanese sentences handwritten by the patients 

in their questionnaires. The proposed method mainly consists of morphological-analysis 

step, vector-preparation step, and machine-learning step. In the first step, either MeCab 

or Sudachi is employed to decompose character strings into parts of speech. In the second 

step, one of the following means are conducted to assign values to elements in the vectors 

corresponding to the questionnaires: One-Hot Encoding, Bag of Words, and Word2Vec. 

In the final step, one of the following schemes of machine learning is conducted: Support 

Vector Machine, CatBoost, and Neural Networks. Experimental results show that a 

combination of Sudachi, One-Hot Encoding and CatBoost is favorable to achieve the 

highest accuracy in determining the examination category. 
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3.1 Introduction 

Automatically determining necessary examinations based on patient 

questionnaires can reduce doctors' reading time and alleviate stress for patients. In this 

Chapter, a method of determining examination categories is proposed for ophthalmology 

patients filling out their medical questionnaires. It focuses on sentences in the 

questionnaires handwritten by the patients to be examined, and prepares data, which are 

presented to discrimination models constructed by machine learning, from the sentences. 

It considers that examinations valid for representative eye diseases can be divided into 

four examination categories, and that the patients absolutely take examinations belonging 

to one of the four categories. The trained models classify the data corresponding to the 

questionnaires. The proposed method thus copes with the determination of examination 

categories as the classification of the questionnaires. To decompose the handwritten 

sentences into parts of speech, it applies either MeCab [4] or Sudachi [5], which is known 

as tool for the morphological analysis. It next assigns values to the words, which are 

picked up by the above analysis tool and considered to be elements useful in 

characterizing the sentences handwritten by each patient, conducting one of the following 

means: One-Hot Encoding, Bag of Words, and chiVe [18] considered to be Word2Vec [6] 

in which Sudachi is utilized. To construct discrimination models, it is assumed that one 

of machine leaning algorithms, Support Vector Machine (SVM for short) [7], CatBoost 

[8], or Neural Network (NN for short) [9], is available in the proposed method. A model 

is trained with the data prepared in the above manner. When the examination category 

for some patient is determined, his/her data, which is prepared in the manner similar to 

the preparation of training data, is presented to the trained model. In this Chapter, the 

choices of morphological analysis tools, vector preparation manners, and machine 

leaning algorithms are examined to acquire the powerful capability in determining 
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examination categories. 

The methods of determining examination categories using data prepared from 

medical questionnaires are also proposed in [19] and [20]. SVM learning and NN 

learning are applied in [19] and [20], respectively. From experimental results, it is finally 

revealed that a combination of Sudachi, One Hot Encoding, and CatBoost is useful in 

achieving the high accuracy in the case where a small-scale dataset is available. 
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3.2 Morphological Analysis and Determination Models for Ophthalmology 

There are the following three types of characters in Japanese: hiragana, katakana, 

and kanji. In addition, some conjugations are available. The character types and 

conjugations have generally made it more complicated to apply the morphological 

analysis in Japanese. For example, when some character string is easily decomposed into 

parts of speech, synonymous words (e.g., the verb “miru,” which is translated as “see,” 

written with hiragana characters solely and the verb written with hiragana characters 

together with kanji characters) are often considered to be independent words. The similar 

failures in decomposing strings often occur for differences caused by their conjugations 

(e.g., “iku” translated as “go” and “itta” translated as “went”). The proposed method 

simultaneously generates the following three-word lists: the list having results only 

acquired using the morphological analysis tools, the list having archetypes associated 

with conjugations of results acquired using the morphological analysis tools, and the list 

having the archetypes which are transformed from results of the morphological analysis 

and written using katakana characters. The first, second, and third lists are hereinafter 

referred to as the level 1, level 2, and level 3 lists, respectively. Let us briefly discuss the 

difference that occurs in the cases where these lists are employed, using “me ni bohru ga 

atatta” as an example. This sentence written in Japanese has kanji characters (i.e., “me” 

and “ata”), hiragana characters (i.e., “ni,” “ga,” and “tta”) and katakana characters (i.e., 

“bohru”), and it is translated as “the ball hit my eye.” When the level 1 list is employed, 

it is decomposed as follows: “me, ni, bohru, ga, atattu, ta” expressed with kanji, hiragana, 

and katakana characters. Employing the level 2 list results in “me, ni, bohru, ga, ataru, 

ta.” The decomposition result is also expressed with kanji, hiragana, and katakana 

characters. In the case of employing the level 3 list, we have “me, ni, bohru, ga, ataru, ta” 

expressed with katakana characters solely. Figure 3.1 illustrates the above. 
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眼にボールが当たった 

(a) Original sentence. 
 

眼, に, ボール, が, 

当たっ, た 

(b) Result when level 1 

list is employed. 

目, に, ボール, が, 

当たる, た 

(c) Result when level 2 

list is employed. 

メ, ニ, ボール, ガ, 

アタル, タ 

(d) Result when level 3 

list is employed. 

Figure 3.1 Example of differences that depend on lists 

 

To construct discrimination models for medical questionnaires using machine 

learning, it is necessary to prepare numerical vectors from sentences handwritten in them.  

The proposed method eventually employs one of the following means: One-Hot 

Encoding, Bag of Words, and Word2Vec. When employing either One-Hot Encoding or 

Bag of Words, the proposed method prepares a two-dimensional matrix with N rows and 

d columns, using the above lists, and considers element values in each of the rows to be 

one of the data presented to the discrimination models. A row then corresponds to a 

medical questionnaire. The number of patients for which examination categories have 

been known is therefore equal to N. On the other hand, the columns are for members of 

a word set specified by the above lists in addition to the age of each of the N patients.  

The proposed method thus characterizes a medical questionnaire with a d-dimensional 

vector. Note that the age of the patient is given to the element corresponding to it without 

processing. 

Let us explain the case where One Hot Encoding is employed for the matrix with 

N  rows and d  columns. When a word appears (or does not appear) in the sentences 

handwritten in some medical questionnaire, the value of 1 (or 0) is given to the element 

where the row and the column respectively corresponding to the questionnaire and the 

word cross. On the other hand, in the case of employing Bag of Words, the numbers of 

appearance are given as element values for words. For example, when some word is 

handwritten two times in some questionnaire, the value of 2 is given to the element where 
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the row and the column respectively corresponding to the questionnaire and the word 

cross. Note that the value of 0 is given to any element for words not appearing in the 

questionnaire. 

Word2vec transforms a word according to a distributed vector representation 

with its specific dimensionality. In this paper, chiVe, which is considered to be advanced 

Word2vec based on the skip-gram algorithm, is employed. The skip-gram algorithm 

solves a problem on predicting words appearing around a given word, and learns 

distributed representations for every word. If either One-Hot Encoding or Bag of Words 

is employed, the number of elements per each of the data tends to be large, because it 

severely depends on the number of words involved in the list. On the other hand, 

employing Word2vec makes it possible to reduce the number of elements, compared with 

employing the above two means. Besides, since learning is completed with a large-scale 

sentence set in advance for Word2vec, Word2vec seems to adequately transform the 

words, which only appear in the questionnaires to be classified to determine examination 

categories. 

The proposed method produces a hundred-dimensional vector for each of the 

words, employing chiVe. It then uses archetypes of the words. The archetypes are 

obtained by Sudachi that chiVe utilizes for learning. The number of sentences 

handwritten in medical questionnaires clearly differ from each other. Evenly producing a 

hundred-dimensional vector a word results in the number of all words appearing 

multiplied by a hundred as the dimension number of the vector for a questionnaire. This 

causes much of a difference in the number of characteristics between vectors 

corresponding to questionnaires. To overcome this problem, the proposed method 

introduces four schemes.  The first scheme estimates the mean values for each of 

element values in hundred-dimensional vectors corresponding to the words appearing in 

each questionnaire. This estimation prepares a hundred-dimensional vector for a 
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questionnaire, and the vector is used in machine learning as data for the corresponding 

questionnaire. This data-preparation scheme is hereinafter referred to as Word2Vec-mean. 

The second (or third) scheme obtains the maximum (or minimum) value for each of 

element values in hundred-dimensional vectors corresponding to the words appearing in 

each questionnaire, and prepares a vector with the maximum (or minimum) values of a 

hundred elements for a questionnaire. The second (or third) preparation scheme is 

hereinafter referred to as Word2Vec-max (or Word2Vec-min). It is said that the fourth 

scheme mixes Word2Vec-max with Word2Vec-min. In other words, the fourth scheme 

connects a vector with maximum element values with that with minimum element values, 

and prepares a resultant vector with two-hundred element values for a questionnaire. It is 

hereinafter referred to as Word2Vec-minmax. 

The proposed method is evaluated, while changing a combination of 

morphological-analysis tools, word lists, and machine learning algorithms. Let us 

consider the case where Word2vec is not employed. The following choices are then 

available: MeCab or Sudachi for morphological analysis, level 1, level 2, or level 3 for 

word list, One-Hot Encoding or Bug of Words for preparing a dataset (i.e., a two-

dimensional matrix with N  rows and d  columns), and SVM, CatBoost, NN for the 

learning algorithm. The total number of combinations for the above choices is 36. The 

method proposed in [20] corresponds to the determination of examination categories 

using MeCab, level 3 list, One-Hot Encoding and NN. On the other hand, in the case of 

employing Word2vec, Sudachi and chiVe are employed for morphological analysis and 

word-list generation, respectively. The following choices are then available: Word2Vec-

mean, Word2Vec-max, Word2Vec-min, Word2Vec-minmax for preparing a dataset, and 

SVM, CatBoost, NN for the learning algorithm. The total number of combinations is 

therefore 12, when Word2vec is employed. Figure 3.2 depicts the above combinations 

used in the proposed method. 
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Figure 3.2 Combinations used in proposed method 
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3.3 Experimental Results on Examination Category Determination in Ophthalmology 

3.3.1 Machine-learning-based classification of medical questionnaires 

As mentioned above, thirty-six approaches are available when Word2vec is not 

employed, whereas the number of available approaches is 12 when Word2vec is 

employed. In this subsection, forty-eight approaches are evaluated in terms of accuracies 

of determining examination categories. If SVM is chosen as a learning algorithm, the 

grid search is applied to determine parameters associated with the kernel function. For 

the NN structure shown in Figure 2.6, AMSgrad is applied as an optimizer algorithm. 

Besides, learning rate, batch size, and epoch number are set to 0.001, 128, and 250, 

respectively.  The ten trials of evaluation are conducted, while randomly changing 

initial parameters of a discrimination model every trial. 

After receiving approval of ethics committee of Tsukazaki Hospital, its 

Department of Ophthalmology provided the sentences handwritten in medical 

questionnaires. They are for outpatients that first visited Tsukazaki Hospital for the period 

from May through November 2010.  The data were prepared from the handwritten 

sentences, and were divided into a training dataset and a test dataset. The breakdown of 

members in the datasets are tabulated in Table 3.1. Note that class numbers 1 through 4 

correspond to those in Table 2.1, and that a member in the dataset corresponds to data 

prepared from sentences handwritten in a medical questionnaire. The classification 

results for members in the test dataset are used in evaluating discrimination models. 

 

Table 3.1 Breakdown of members in datasets 

Classes 1 2 3 4 

Numbers of members in a training dataset 120 120 120 120 

Numbers of members in a test dataset 25 25 25 25 
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The evaluation results are tabulated in Table 3.2. Each of the entries in Table 3.2 

is the percentage of the number of test data of which classes are correctly judged, 

compared to the total number of test data. The proposed method achieves the most 

favorable accuracy, 76%, under the combination of Sudachi for morphological analysis, 

level 2 list, Bag of Words for vector preparation, and SVM learning to construct 

discrimination models. Detailed classification results under this combination are 

tabulated in Table 3.3. The entry appearing in the cell where the row of actual class i and 

the column of judged class j cross is equal to the percentage of the number of data judged 

as class j compared with the number of data actually belonging to class i. 

 

Table 3.2 Results for test data shown in Table 3.1 

Morphological analysis MeCab Sudachi 

Machine learning 
SVM CatBoost NN SVM CatBoost NN 

Word list Vector preparation 

Level 1 

list 

One Hot Encoding 69.0 69.0 71.0 71.0 69.8 74.6 

Bug of Words 65.0 68.8 69.8 68.0 68.7 71.9 

Level 2 

list 

One Hot Encoding 70.0 68.3 70.5 72.0 73.1 72.9 

Bug of Words 62.0 68.8 68.8 76.0 72.0 71.1 

Level 3 

list 

One Hot Encoding 67.0 70.6 75.0 75.0 72.0 73.9 

Bug of Words 69.0 70.3 72.5 73.0 71.3 71.5 

List using 

chiVe 

Word2Vec-mean ― ― ― 52.0 62.4 52.8 

Word2Vec-min ― ― ― 59.0 69.8 53.1 

Word2Vec-max ― ― ― 52.0 62.0 52.8 

Word2Vec-minmiax ― ― ― 60.0 68.6 57.4 
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Table 3.3 Detailed classification results when best accuracy is achieved 

Judgement 

Actuality 

Judged classes 

1 2 3 4 

Actual 

Classes 

1 72.0 16.0 4.0 8.0 

2 16.0 76.0 4.0 4.0 

3 0.0 0.0 96.0 4.0 

4 24.0 8.0 8.0 60.0 

 

3.3.2 Comparison with other determination methods 

Let us briefly explain the determination of examination categories proposed in 

[19]. The method in [20] employs level 1 list, MeCab for morphological analysis and 

SVM learning to construct discrimination models. It defines prohibited words as the 

words not to be included in the word list. It also defines appearance rate as the number 

associated with appearances of words, and MD designated words as words that 

ophthalmologists consider to be included in the word list. In addition to MD-designated 

words, the method in [19] adds the words with 5.5% or more as appearance rates to the 

word list. It basically prepares a two-dimensional matrix with N rows and d columns, 

according to Bag of Words. It then weights all entries on some columns if words 

corresponding to the columns are either MD-designated words or words fulfill the 

conditions specified by the appearance rates. The matrix has a column corresponding to 

ages of the outpatients. If the age of some outpatient is less than 11 years-old, the value 

of 0 is given to the element where the row corresponding to the outpatient and the column 

cross. If the age belongs to the range 11 to 45, the value of 6 is given. If the age is over 

46, the value of 12 is given. For SVM learning, RBF function is employed as the kernel 

function, and parameters are determined by the grid search. The detailed classification 

results obtained by the method in [19] are tabulated in Table 3.4. Recall that the method 
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in [20] is based on the combination of MeCab, level 3 list, One Hot Encoding, and NN. 

The detailed classification results obtained by the method in [20] are tabulated in Table 

3.5. 

To estimate the judgements conducted by ophthalmologists, quizzes were 

introduced as follows in [19]. The seven ophthalmologists working at Saneikai Tsukazaki 

Hospital determined the examination categories for the outpatients’ handwriting 

sentences in medical questionnaires, which correspond to test data in Table 2.1, after 

reading the sentences. Note that the number of quizzes is 100. The results were averaged 

for the seven ophthalmologists. The averaged accuracies are tabulated in Table 3.6. The 

value averaged for four entries in Table 3.6 is equal to 55.7. In a department of 

ophthalmology, results of consultation and various examinations are employed in 

addition to medical questionnaires, finally to estimate disease names and to fix treatment 

plans. Though medical questionnaires are of importance, they are one of the 

ophthalmologist’s decision tools.  To determine examination categories on the basis of 

only reading the handwritten sentences seems to be a very hard task for the 

ophthalmologists. This is why comparatively low results appear in Table 3.6. 

Let us first compare entries in Table 3.3 with those in Table 3.4. Note that each 

of the entries on diagonal lines in Tables 3.3-3.5 equals the accuracy for each class. The 

proposed method using Sudachi, level 2 list, Bag of Words, and SVM learning achieves 

higher accuracy for every class than the method in [19]. In [20], MD-designated words, 

appearance rates, and weighting values on some columns are introduced according to the 

knowledge of ophthalmologists. While the proposed method drastically reduces the usage 

of the medical knowledge, it improves the averaged accuracy by 5% or more compared 

with the method in [19]. The entries in Table 3.3 are next compared with those in Table 

3.5. Though the class-4 accuracy achieved by the proposed method is lower than that 

achieved by the method in [20], the former achieves favorable accuracies for the other 
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classes compared to the latter. Comparing the accuracies in Table 3.3 with those in Table 

3.6 finally clarify that the former accuracies are higher than the latter accuracies for all 

classes. Note that the similar advantage also applies to other methods in [19] and [20] in 

terms of accuracies averaged for all classes. 

  

Table 3.4 Detailed classification results obtained by method in [19] 

Judgement 

Actuality 

Judged classes 

1 2 3 4 

Actual 

Classes 

1 71.6 20.0 4.4 4.0 

2 26.0 64.8 7.6 1.6 

3 10.0 1.2 86.8 2.0 

4 16.0 3.6 22.4 58.0 

 

Table 3.5 Detailed classification results obtained by method in [20] 

Judgement 

Actuality 

Judged classes 

1 2 3 4 

Actual 

Classes 

1 66.8 26.4 6.8 0.0 

2 15.6 75.6 4.0 4.8 

3 2.4 1.6 92.0 4.0 

4 12.4 6.4 9.6 71.6 

 

 

Table 3.6 Averaged classification results achieved by seven ophthalmologists in [19] 

Averaged classification results [%] 

Class 1 Class 2 Class 3 Class 4 

65.7 42.3 77.7 37.1 
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3.3.3 Evaluation based on cross-validation 

For Tables 3.2-3.5, the proposed method is evaluated on condition that both 

training data and test data are fixed as shown in Table 3.1. Besides, the amount of data 

leaves much to be desired. It is therefore possible that the discrimination models overfit 

the fixed dataset with the breakdown shown in Table 3.1. In this subsection, the proposed 

method is evaluated using the five-fold cross-validation. The total number of data is 580. 

Note that it equals the amount of data in Table 3.1. The five combinations each of which 

consists of 464 training data and 116 test data were generated, and accuracies averaged 

for the five trials using them were acquired as results using the five-fold cross-validation. 

For the evaluations in this subsection, the parameters on learning are equal to those 

determined for the evaluations discussed in Subsections 3.3.1 and 3.3.2. The averaged 

results are tabulated in Tables 3.7-3.10. Each of the element values in Table 3.7 is the 

percentage of the number of test data of which classes are correctly judged, compared to 

the total number of test data. In other words, Table 3.7 corresponds to Table 3.2. The most 

favorable accuracy, 64.3%, was estimated under the combination of Sudachi for 

morphological analysis, level 3 list, One Hot Encoding for vector preparation, and 

CatBoost-based discrimination model. Detailed classification results under this 

combination is tabulated in Table 3.8. In addition, detailed classification results obtained 

by the methods in [19] and [20] are tabulated in Tables 3.9 and 3.10, respectively. In them, 

note that the entry appearing in the cell where the row of actual class i and the column of 

judged class j cross is equal to the percentage of the number of data judged as class j 

compared with the number of data actually belonging to class i. 
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Table 3.7 Results using five-fold cross-validation 

Morphological analysis MeCab Sudachi 

Machine learning 
SVM CatBoost NN SVM CatBoost NN 

Word list Vector preparation 

Level 1 

list 

One Hot Encoding 60.7 62.9 62.2 60.2 63.1 61.6 

Bug of Words 57.6 62.9 60.6 57.2 62.9 60.1 

Level 2 

list 

One Hot Encoding 61.7 63.9 61.5 58.1 63.6 61.5 

Bug of Words 58.3 63.9 61.6 56.7 63.3 61.5 

Level 3 

list 

One Hot Encoding 59.1 63.4 61.8 58.8 64.3 61.7 

Bug of Words 58.3 62.9 61.1 55.3 64.0 61.0 

List using 

chiVe 

Word2Vec-mean ― ― ― 50.9 57.9 54.5 

Word2Vec-min ― ― ― 47.6 58.1 51.1 

Word2Vec-max ― ― ― 48.6 57.4 53.0 

Word2Vec-minmiax ― ― ― 52.8 58.5 54.8 

 

Table 3.8 Detailed classification results when best accuracy is achieved under five-fold 

cross-validation 

Judgement 

Actuality 

Judged classes 

1 2 3 4 

Actual 

Classes 

1 69.8  13.7  9.8  6.8 

2 21.6  61.6  9.7  7.2 

3 8.7  10.2  64.1  17.0 

4 13.7  8.0  16.6  61.7 

 

Table 3.9 Detailed classification results obtained by method in [19] under five-fold cross- 

validation 

Judgement 

Actuality 

Judged classes 

1 2 3 4 

Actual 

Classes 

1 71.2  9.5  12.8  6.4 

2 32.9  50.3  11.0  5.9 

3 15.5  5.8  67.2  11.4 

4 14.8  4.1  38.7  42.4 
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Table 3.10 Detailed classification results obtained by method in [20] under five-fold 

cross-validation 

Judgement 

Actuality 

Judged classes 

1 2 3 4 

Actual 

Classes 

1 79.3  5.5  11.0  4.1 

2 31.7  53.8  10.3  4.1 

3 20.7  6.2  66.2  6.9 

4 21.4  12.4  20.7  45.5 

 

Let us discuss the comparison of entries in Tables 3.8 and 3.9. The accuracies 

achieved by the proposed method are slightly lower than those achieved by the method 

in [19] for classes 1 and 3, while the proposed method is superior to the method in [19] 

on accuracies for classes 2 and 4. The proposed method therefore copes well with 

determining examination categories compared with the method in [19] in terms of the 

accuracy averaged for all classes by 5% or more. The similar advantage applies when 

entries in Table 3.8 are compared with those in Table 3.10. In other words, though class-

1 and class-3 accuracies achieved by the proposed method are lower than those achieved 

by the method in [20], employing the proposed makes it possible to achieve high class-2 

and class-4 accuracies compared with employing the method in [20] As a result, the 

proposed method improves the accuracy averaged for all classes by about 3% compared 

with the method in [20]. 

The direct comparison in terms of accuracies between the seven 

ophthalmologists and the proposed method seems to be unfair, because the proposed 

method was evaluated using cross-validation and the ophthalmologists were tested using 

the fixed dataset. Though this unfairness is taken into account, let us dare to compare 

entries in Table 3.6 with those in Table 3.8. The difference between the ophthalmologists 

and the proposed method is large in terms of the class-3 accuracy. The accuracies shown 
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in Table 3.8 are substantially higher than those in Table 3.6 for each of the other classes. 

The accuracy averaged for all classes estimated from Table 3.8 therefore exceeds that 

from Table 3.6. 
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3.4 Discussion and Summary 

The proposed method is evaluated in Subsection 3.3.2, subject to using fixed 

datasets as shown in Table 3.1, while the five-fold cross-validation is introduced for the 

evaluation in Subsection 3.3.3. Let us first compare the combination making it possible 

to achieve the highest accuracy in Subsection 3.3.2 with that in Subsection 3.3.3. Recall 

that, on condition of using the fixed datasets in Subsection 3.3.2, the proposed method 

achieves the highest accuracy, 76.0%, averaged for all classes under the following 

combination: Sudachi, level 2 list, Bag of Words, and SVM learning. The five-fold 

crossvalidation results in 56.7% as the averaged accuracy when the proposed method is 

conducted under the same combination. The difference between the case of using the 

fixed datasets and that of introducing the cross-validation is about 20%. It seems that the 

degree of overfitting becomes heavier as this difference becomes larger. The method 

based on the combination of Sudachi, level 2 list, Bug of Words, and SVM learning would 

be useless in reducing the overfitting situation. 

On the other hand, for the cross-validation-based evaluation, a combination of 

Sudachi, level 3 list, One-Hot Encoding, and CatBoost learning seems to be the most 

promising. The accuracy averaged for all classes is then equal to 64.3%, and it is high 

compared with the accuracy calculated under any other combination. The proposed 

method using this promising combination, however, constructs a discrimination model 

with 72.0% as the accuracy averaged for all classes when members in the fixed test 

dataset are presented. This accuracy is not the highest but seems to be reasonably high, 

and the difference between the case of using the fixed datasets and that of introducing the 

cross-validation is substantially low. From the above, it is revealed that employing the 

method based on a combination of Sudachi, level 3 list, One-Hot Encoding, and CatBoost 

learning is comprehensively favorable in constructing a discrimination model with high 
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capability of the examination-category determination. 

The scale of datasets treated in this paper is comparatively small, and hence the 

model constructed under the combination of Sudachi, level 3 list, One-Hot Encoding, and 

CatBoost learning would be suited for ophthalmology clinics with difficulty of preparing 

a large-scale dataset. Let us discuss determining examination categories using NNs. In 

Tables 3.2 and 3.7, accuracies achieved by models that NN learning constructs are 

somewhat disappointing. It seems that low accuracies associated with NN models were 

caused by using the above small-scale dataset. The detailed evaluation should be made 

for the proposed method using NN learning with a large-scale dataset. 

In this Chapter, a method of determining examination categories was proposed 

for ophthalmology patients. It depends on classification capabilities of models 

constructed by machine learning, and data presented to discrimination models are 

prepared from sentences handwritten in medical questionnaires. The handwritten 

sentences must be transformed into numerical vectors. The proposed method choses 

either MeCab or Sudachi to decompose character strings into parts of speech and to 

specify words characterizing symptoms and conditions of the patients. To assign values 

to elements corresponding to the specified words, the proposed method choses one of the 

following means: One Hot Encoding, Bug of Words, and Word2Vec. For machine 

learning to the model construction, SVM, CatBoost, and NN are considered to be 

available. The proposed method tries to fix the combination of the above choices to 

acquire the powerful capability of determining the categories. The proposed method was 

evaluated using the five-fold cross-validation with 580 data. As a result, the 

discrimination model achieved 64.3% as the highest accuracy on average under the 

combination of Sudachi, One-Hot Encoding, and CatBoost learning. The accuracy is then 

improved by 3% or more compared with the cases of conducting other methods. It was 

thus established that the proposed method based on the above combination copes well 
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with the examination-category determination for comparatively small-scale datasets. 

In future, the proposed method will be modified so that the accuracy can be improved.  

Introducing BERT [21] for vector preparation seems to be promising to realize powerful 

discrimination models. 
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Chapter 4 

 

Real-Time Extraction of Crucial Surgical Phases in Cataract 

Surgery Videos 

 

 

 

 

 

 

 

In this Chapter, a method for real-time automatic extraction of crucial surgical 

phases in cataract surgery is proposed. A total of 303 cases of cataract surgery from 

Tsukazaki Hospital are used as a dataset. Surgical videos are down sampled to a 

resolution of 299 × 168 resolution at 1 FPS. Next, based on the start and end times of 

each surgical phase recorded by an ophthalmologist, the obtained images are labeled 

correctly. An InceptionV3 neural network model is developed to identify the surgical 

phase for each image. The model processes the images in chronological order and 

determines the start and end times of each phase. The performance is evaluated by 

comparing the times determined by the model with those recorded by the ophthalmologist. 

The errors between the recorded start and end times of each phase by the ophthalmologist 

and those determined by the model are as follows; for CCC’s start and end times, 3.34 

seconds and 4.43 seconds, respectively; and for nuclear extraction’s start and end times, 

7.21 seconds and 6.04 seconds, respectively. The mean error is 5.25 seconds. The 

proposed method achieves real-time classification by referring the last 5 seconds of video 

images. 
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4.1 Introduction 

Deep Neural Network is a breakthrough in machine learning, and it has been 

applied to a number of research areas in all industries. In the field of ophthalmology as 

well a great number of studies on image recognition have been conducted after Google 

published a paper on diabetic retinopathy diagnosis in 2016 [22]-[24]. Regarding 

automatic diagnostic systems for diabetic retinopathy, these technologies align with the 

principle that technology mitigates inherent human judgment errors. It is natural to 

consider Deep Neural Network for the objective evaluation of surgical techniques. In 

recent years, a number of studies on recognition of surgical phases using surgical video 

recordings have been actively conducted. Recognition of a surgical phase often employs 

features such as image color or features of surgical instruments, as well as methods using 

the Hidden Markov Model [25]. Cataract surgery videos have been used in numerous 

studies, where features were extracted based on color features, SIFT features [26], and 

Viola–Jones object detection framework [27]. In one study, the hidden Markov model and 

a time expansion and contraction method [28] were used to detect surgical phases [29]. 

Another study [30] used conditional random fields, the Hidden Markov Model, and a time 

expansion and contraction method. These automatic detections of surgical phases are 

crucial technologies that allow clinicians to evaluate the surgical technique for a specific 

phase. However, in these studies, surgical phases were only identifiable from the entire 

surgical video, which made real-time identification impossible. Moreover, even if real-

time identification was possible, similar surgeries had to be searched in a database. 

Although a method [31] using recurrent neural network has been proposed, surgical phase 

recognition was performed using a 33-second-long video. Since a number of surgical 

steps are involved in a short period of time in cataract surgery, the proposed method 

cannot be considered real-time recognition. In [32], frames have been considered as 
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targets for classification, and Convolutional Neural Networks (CNNs for short) and 

Recurrent Neural Networks (RNNs for short) have been applied the classification. This 

method appears to enable real-time processing. However, it is not mentioned how many 

seconds of video were used for classification with RNNs, nor examined whether it is real-

time classification. Furthermore, to the best of our knowledge, there have been no reports 

that evaluate how accurately a neural network model divides surgical phases in addition 

to calculating the accuracy rate per image frame. 

In this Chapter, with the evaluation of cataract surgical techniques in mind, the 

proposed method aims to perform real-time extraction of two crucial surgical phases in 

cataract surgery: continuous curvilinear capsulorhexis (CCC for short) and nuclear 

extraction, from surgical video recordings. In addition, this model can divide surgical 

phases accurately by comparing the start and end times of each surgical phase determined 

by the model with the actual times. The proposed method is developed, using surgical 

videos with a total of 303 cases of cataract surgery as a dataset. After receiving approval 

of ethics committee of Tsukazaki Hospital, its Department of Ophthalmology provided 

the surgical videos. 
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4.2 Surgical Phases Extraction Based on Image Classification 

First, as shown in Table 4.1, an InceptionV3 model is developed to classify 

images into three surgical phases: CCC, nuclear extraction, and others. Type column lists 

the type of layer, and patch size/stride refers to the window size and the stride of the 

sliding window size of a local region. The input shape column lists the size of a tensor 

input into each layer. The model performs computation from the top to the bottom of the 

table. The input is a color image of 299 × 168 × 3, and the number of output layer neurons 

is 3, which is the number of surgical phases to recognize. The class to which the neuron 

with the largest output value belongs is determined as a surgical phase of the model. The 

model is trained by initializing each parameter with trained parameters in the ILSVRC 

2012 dataset [33]. The batch size is 32, the loss function is multi-class log loss, the 

optimization function is Momentum SGD (learning rate, 0.0001; momentum, 0.9), and 

the number of epochs is 300 at maximum. In addition, images are preprocessed to 

normalize the pixel values ranging from 0 to 1, and the preprocessing steps are randomly 

applied in order to prevent overfitting, as shown in Table 4.2. Furthermore, the problem 

that classification classes are biased due to imbalanced data in each class is addressed by 

letting the model learn the data of the minor class within one epoch multiple times. 
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Table 4.1 The Inception V3 model 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2 Preprocessing randomly applied to images 

Types Parameters 

Rotation Up to 90 degrees 

Horizontal movement Up to 20% 

Vertical movement Up to 20% 

Shear conversion Up to 5 degrees 

Scaling Up to 10% 

Channel shift Up to 100 

Flip horizontally  

Flip vertically  

Random erasing [34] Up to 25% 

 

 

 

 

 

 

Type Patch size/stride Input shape 

Convolution 3 × 3/2 299 × 168×3 

Convolution 3 × 3/1 149 × 83 × 32 

Convolution padded 3 × 3/1 147 × 81 × 32 

Max pooling 3 × 3/2 147×81×64 

Convolution 1 × 1/1 73 × 40 × 64 

Convolution 3 × 3/1 73 × 40 × 80 

Max pooling 3 × 3/2 71 × 38 × 192 

Inception As in Figure 2.7 (a) 35 × 18 × 192 

2 × inception As in Figure 2.7 (a) 35 × 18 × 256 

Inception As in Figure 2.7 (b) 35 × 18 × 288 

4 × inception As in Figure 2.7 (c) 35 × 18 × 288 

Inception As in Figure 2.7 (d) 17 × 8 × 768 

2 × inception As in Figure 2.7 (e) 8 × 3× 1280 

Average pooling  8 × 3 8 × 3 × 2048 

Full connection  2048 

Full connection  1024 

Softmax  3 
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Next, the start and end times of each surgical phase are determined using the 

Inception V3 model described above. Because this study puts importance on real-time 

classification, the start and end times of surgical phases are determined using the moving 

average instead of a neural network. In addition, having more frames for the moving 

average would increase the number of images to be referenced just prior to the 

classification, resulting in delayed response. For this reason, the moving average is 

obtained using 5 frames. First, surgical images are arranged in chronological order and 

processed using the Inception V3 model. There are three neurons in the output layer 

corresponding to three classes: CCC, nuclear extraction, and others. Let evalij denote the 

value of the j-th output neuron at the i-th second, where 1 ≤ j ≤ 3. A moving average of 

the values associated with each of the three output neurons is calculated from 5 

consecutive images. It is denoted by Aveij. It is as follows. 

Aveij=
1

5
∑ eval

k
j

i

k=i 4

  (i>4, 1≤j≤3)                                           (4.1) 

where i > 4. The frame at the i-th second is classified by calculating the maximum of 

three values, Avei1, Avei2, and Avei3. In other words, the calss of the frame is specified 

by the neuron with the maximum of three output values. The proposed method considers 

the time when a frame is first judged as CCC class to be the start time of CCC, whereas 

considers the time immediately before a frame is first judged as nuclear extraction class 

to be the end time of CCC. The start and end times of the nuclear extraction are also 

determined in the same manner. 
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4.3 Experimental Results on Crucial Surgical Phases Extraction in Cataract Surgery 

First, the model's classification performance is evaluated. The classification 

results in this model are as follows: 90.7% for CCC, 94.5% for nuclear extraction, and 

97.9% for others, with a mean accuracy rate of 96.5%. 

The recognition error rates are as follows: misrecognized CCC as others, 9.3%; 

misrecognized nuclear extraction as others, 5.5%; and misrecognized others as CCC and 

nuclear extraction, 0.9% and 1.2%, respectively. The rate that the model cannot 

distinguish between CCC and nuclear extraction is less than 0.01%. The results are shown 

in Table 4.3. Figure 4.1 shows an example of phase recognition for a video recording. 

 

Table 4.3 Classification results of surgical phases of cataract surgery. 

Truth 

Classification 
CCC [%] 

Nuclear 

Extraction [%] 
Others [%] 

CCC (n = 1725) 90.7 0 9.3 

Nuclear extraction 

(n = 5995) 
Less than 0.01 94.5 5.5 

Others (n = 16095) 0.9 1.2 97.9 
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Next, the proposed method for determining the start and end times of each 

surgical phase is evaluated. Performance evaluation is performed by finding the mean 

absolute error between the start and end times of each surgical phase recorded by the 

ophthalmologist and the start and end times determined by the proposed method. The 

results are as follows: CCC’s start and end times are 3.34 seconds and 4.43 seconds, 

respectively, and nuclear extraction's start and end times are 7.21 seconds and 6.04 

seconds, respectively, with a mean of 5.25 seconds, as shown in Table 4.4. In addition, 

boxplots in Figure 4.2 show that the start and end times of each surgical phase are 

determined with virtually no errors for most of the video recording. An example of 

surgical phases extracted from a video recording is shown in Figure 4.3. The video was 

the same one used in Figure 4.1. 

 

Figure 4.1 Examples of surgical phase recognition results. “Truth” represents the results 

identified by an ophthalmologist, and “Determination” represents the results  

recognized by the proposed method. The horizontal axis indicates the elapsed  

time on surgery. Colors red, blue, and green represent CCC, nuclear 

extraction, and others, respectively. Phase recognition errors occurred before  

and after the phase transition. 

Determination 



47 

 

Table 4.4 Determination of start and end times of each surgical phase. 

Surgical phase CCC start CCC end 
Nuclear extraction 

start 

Nuclear extraction 

end 
Mean 

Average 

 absolute error 

[sec.] 

3.34 4.43 7.21 6.04 5.25 

Standard 

deviation [sec.] 
7.20 9.80 27.9 19.0 16.0 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 The view of the boxplot drawn based on errors of determination of start and  

end times of each surgical phase. (a) The entire view of the boxplot drawn  

based on errors of determination of start and end times of each surgical phase.  

(b) Enlarged view of the boxplot drawn based on errors of determination of  

start and end times of each surgical phase. 

(a) (b) 
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Figure 4.6 Examples of surgical phase extraction. (The video was the same as one used  

in Fig. 4.1). “Truth” represents the results identified by an ophthalmologist,  

and “Determination” represents the results recognized by the proposed  

method. The horizontal axis indicates the elapsed time on surgery. Colors red,  

blue, and green represent CCC, nuclear extraction, and others, respectively.  

The graphs indicate that the start and end times of all phases are accurate  

within a practical range. 

Determination 
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4.4 Discussion and Summary 

In this Chapter, real-time phase segmentation of cataract surgery videos was 

obtained. The proposed method classifies the crucial phases of cataract surgery in the 

surgical video with an average accuracy of 96.5%, determining the start and end times of 

these surgical phases with an average error of approximately 5 seconds. Since the ground 

truth data for the start and end times were obtained through visual observation of videos 

by several ophthalmologists rather than mechanical detection, a deviation of several 

seconds from the true value is considered acceptable. Therefore, the accuracy of the CNN 

model in phase classification is sufficiently high. Furthermore, the proposed method uses 

5 seconds of continuous video to recognize cataract surgical phases, which means that 

this method’s real-time phase recognition capability is greatly improved compared with 

previous studies [29]-[31]. 

The successful phase extraction of cataract surgery has great significance in 

forming the basis for more detailed automatic analysis within a phase. If the artificial 

intelligence engine first understands the “intent” of the current surgical maneuver and 

goes into further analysis, such as understanding the features of surgical instruments, such 

an analytical process is a natural algorithm, consistent with human reasoning, such as 

when a person chooses a tool for a certain purpose. The ability to analyze phases within 

5 seconds also has significant implications for real-time performance. This is because the 

automatic analysis of surgical techniques during surgery would become the basis of 

abnormality detection. 

In the proposed method, three cases have been classified, and the classifications 

are simpler compared to previous studies: 8-class classification [29], 10-class 

classification [30], and 14-class classification [31]. However, the CCC phase and nuclear 

extraction phase are both crucial surgical phases that cannot be regarded as identical to 
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incision creation, cortical aspiration, or lens insertion. For example, from a surgical skills 

training perspective, the rate of surgical complications developed in these two phases is 

clearly higher than in other phases [35]. The rate that the model confuses the CCC with 

the nuclear extraction was almost zero, indicating a strong capability to distinguish phases. 

Because only surgical videos recorded at Tsukazaki Hospital were used, it is unclear how 

much influence it has on the results when shooting conditions and surgical instruments 

varies. However, 303 surgical videos include 17 surgeons, and there are 8 combination 

patterns of surgical techniques, surgical instruments, and lighting methods; therefore, the 

diversity of the dataset is secured to some extent. To our knowledge, no previous studies 

have detailed surgical patterns at the same level as the present study. For example, surgical 

methods or the number of surgeons are not described in the study of 8-class classification 

[29]. In the study of 10-class classification [30], the following details are included: the 

number of surgeons is 10; the number of patients is 153, of which 33 patients have a 

bilateral surgery; the number of operating rooms is 2; and the operating rooms using a 

different camera. The study of 14-class classification [31] is excellent in terms of 

performing recognition of 21 types of instruments; however, the surgical technique used 

is extracapsular cataract extraction (ECCE) using phacoemulsification and implantation 

of an intraocular lens (IOL), which is not a common phacoemulsification. In other words, 

the present study has competitive advantages in that it was conducted using a dataset 

containing the largest surgical patterns so far, and it succeeded in phase extraction with 

high accuracy under a situation close to the clinical environment of general cataract 

phacoemulsification. 

There are some cases including a large error. The large error of CCC start time 

occurs when viscoelastic substances are injected. The injector is misdiagnosed as 

cystotome. The large error of nuclear extraction start time occurs when the movies during 

nuclear extraction is very blurry. The large delays of determining CCC and nuclear 
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extraction end time occurs when the surgeons do nothing after CCC. Increasing the 

amount of data and improving the training method would prevent such errors. 

The proposed method is able to achieve a real-time phase extraction of cataract 

surgery, using a practical clinical dataset including a wide variety of surgical techniques. 

Although there are only three phases, two of the most crucial cataract surgery techniques, 

CCC and nuclear extraction, are clearly classified. This Chapter aimes to develop a risk 

prediction system for intraoperative complications of CCC and nuclear extraction based 

on the CNN model. At the same time, it will be indispensable to form the basic 

foundations of a system that can be used for broader cataract surgery training and safety 

management by developing a real-time phase extraction model that includes cortical 

aspiration and IOL insertion. 
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Chapter 5 

 

Real-Time Surgical Problem Detection in Cataract Surgery 

 

 

 

 

 

 

 

 

 

 

 

In this Chapter, a cataract surgery problem detection method using 

convolutional neural network (CNN) is presented. A total of 425 cases (112 with problems 

and 313 without problems) of cataract surgery from Tsukazaki Hospital are used as a 

dataset. Surgical videos are down sampled to a resolution of 299 × 168 resolution at 1 

FPS. The proposed method consists of two steps. First, InceptionV3, an image 

classification CNN, is used to extract crucial surgical phases. Additionally, the same 

method that CNN uses is employed to detect surgical problems. Next, the frames from a 

movie are arranged in chronological order, and the 10-s moving average of these two 

models is calculated.  The obtained values are multiplied to calculate the risk level Dt. 

Finally, the proposed method is evaluated in terms of the Area Under Curve (AUC for 

short) of the figure of the true positive rate versus (1−false positive rate). As a result, the 

proposed method is able to detect surgical problems with an AUC of 0.97. 



53 

 

5.1 Introduction 

It is known that there is a correlation between the number of cases performed 

and postoperative outcomes in surgery. For example, in gastric bypass surgery, the risk of 

postoperative complications is about twice as high with surgeons who have done less than 

500 operations as with those who have done more than 500 operations [36]. In cataract 

surgery, the incidence of reactive corneal edema in the central corneal thickness at 2 hours 

after surgery is reported to be approximately 1.6 times greater for inexperienced surgeons 

than for experienced surgeons [37]. Therefore, shortening the acquisition time for surgical 

skills is one of the most important issues in medicine. 

In recent years, video recording of surgical operations has become common 

practice and the use of video recordings in research pertaining to surgeries has become 

extremely popular. The detection of abnormal motions and tracking of surgical 

instruments has been actively conducted. The methods proposed in [38] and [39] detected 

abnormal motions using video footage of the entire operating room. In [38], cubic higher-

order local auto-correlation (CHLAC [40]) is used to detect features that are not normally 

visible, such as a scene where surgical instruments are picked up after being dropped on 

the floor. In [39], the study focuses on the observation that rapid movement in the video 

indicates operational issues. Abnormal motions are detected by measuring the magnitude 

of change in the video file size. However, these detection methods are difficult to apply 

to cataract surgeries which involve less movement, and it is not possible to detect surgical 

problems before they occur. 

In this Chapter, a method of determining the successful execution of crucial 

surgical phases, namely CCC and nuclear extraction, in cataract surgeries is presented, 

using neural networks. The method’s capability to detect abnormality is evaluated by 

comparing the time when the proposed method detects a surgical problem with the actual 
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time when the problem occurred. The proposed method is developed, using surgical 

videos with a total of 425 cases of cataract surgery as a dataset. After receiving approval 

of ethics committee of Tsukazaki Hospital, its Department of Ophthalmology provided 

the surgical videos. 
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5.2 Surgical Problem Detection Based on Image Classification 

The proposed method for detecting problems in the crucial phases of cataract 

surgery employs two neural networks (NNs for short). First, the CNN model known as 

InceptionV3 is used to recognize two surgical phases: CCC to nuclear extraction and 

others. The input to the NN model was 299 × 168 × 3 color images. The number of output 

layer neurons is set to 2, the number of surgical processes to be recognized. The class 

corresponding to the maximum value of the output layer neurons is set to the surgical 

phase estimated by the model. The structure of the InceptionV3 model used in this study 

is shown in Table 5.1. The “type”, “Patch size/stride”, and “Input shape” columns indicate 

the type of layer, the size of the local window and its stride width, and the size of the 

tensor to be input to each layer, respectively. 

The NN model is trained by initializing each parameter with trained parameters 

in the ILSVRC 2012 dataset [33]. The training parameters are set to a batch size of 32, 

the loss function of categorical cross-entropy, the optimization function of momentum 

SGD (learning rate, 0.0001; momentum, 0.9), and the number of epochs of a maximum 

of 300. In addition, for pre-processing, the pixel values of the images are normalized in 

the range of 0 to 1. To prevent overfitting the image augmentation process is randomly 

applied as shown in Table 5.2. To address the imbalance in the number of images for each 

phase, data belonging to the classes with a small number of images are presented multiple 

times within one epoch. The network is trained on a system with two NVIDIA GTX 1080 

Ti GPUs and the evaluation is done on a single GPU. 

Second, a similar method is used identify whether any problems occur during 

the critical phases of surgery. The network, training parameters, and image augmentation 

process parameters used are the same as for the critical phase recognition. 

Proposed two NN models are used to detect surgical problems and to estimate 
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the time of their occurrence. The moving average of the output values of InceptionV3 is 

used to stabilize the output results of the phase recognition and problem detection. The 

number of frames for moving average is set to 10 because increasing the number of image 

frames used for moving average slows down the response time. First, the images obtained 

from the surgical videos are arranged in chronological order and inputted into the 

InceptionV3 to obtain the output results. In the output layer, two neurons correspond to 

two classes: CCC to nuclear extraction and others. Let evalij denote the value of the j-th 

output neuron at the i-th second, the value of the moving average is denoted as follows. 

Aveij=
1

10
∑ eval

k
j

i

k=i-9

  (i>9, 1≤j≤2)                                      (5.1) 

Next, the risk of surgical problems, Dt, is defined and calculated by Equation 

(5.2), where PAij, TAij, i, and j are the moving average of the output values of the surgical 

phase recognition NN calculated by Equation (5.1), the moving average of the output 

values of the surgical problem detection NN calculated by Equation (5.1), the i-th second 

of the movie, and the j-th output neuron, respectively. 

Dt=PAijTAij   (i>4, 1≤j≤2)                                               (5.2) 

Finally, the time when the risk Dt exceeded the threshold is set as the time of the 

surgical problem estimated by the NN. 
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Table 5.1 The Inception V3 model used 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.2 Types of image processing used for learning surgical phase recognition and their 

parameters. 

Types Parameters 

Rotation Up to 90 degrees 

Horizontal movement Up to 20% 

Vertical movement Up to 20% 

Shear conversion Up to 5 degrees 

Scaling Up to 10% 

Channel shift Up to 100 

Flip horizontally  

Flip vertically  

Random erasing [34] Up to 25% 

 

 

 

Type Patch size/stride Input shape 

Convolution 3 × 3/2 299 × 168×3 

Convolution 3 × 3/1 149 × 83 × 32 

Convolution padded 3 × 3/1 147 × 81 × 32 

Max pooling 3 × 3/2 147×81×64 

Convolution 1 × 1/1 73 × 40 × 64 

Convolution 3 × 3/1 73 × 40 × 80 

Max pooling 3 × 3/2 71 × 38 × 192 

Inception As in Figure 2.7 (a) 35 × 18 × 192 

2 × inception As in Figure 2.7 (a) 35 × 18 × 256 

Inception As in Figure 2.7 (b) 35 × 18 × 288 

4 × inception As in Figure 2.7 (c) 35 × 18 × 288 

Inception As in Figure 2.7 (d) 17 × 8 × 768 

2 × inception As in Figure 2.7 (e) 8 × 3× 1280 

Average pooling  8 × 3 8 × 3 × 2048 

Full connection  2048 

Full connection  1024 

Softmax  2 



58 

 

5.3 Experimental Results on Surgical Problem Detection in Cataract Surgery 

First, the results of the frame-by-frame recognitions of crucial phases and 

surgical problems using InceptionV3 are shown in Table 5.3 and Table 5.4. As shown in 

Table 5.3, the accuracy rates for the crucial phases and others are 84.4% and 94.9%, 

respectively, with a mean accuracy rate of 91.3%. As shown in Table 5.4, The accuracy 

rates for “without problems” and “with problems” are 86.0% and 91.2%, respectively, 

with a mean accuracy rate of 90.2%. Note that the results are obtained by applying the 

proposed method to videos with frames that contain CCC and nuclear extraction. The 

proposed phase recognition and problem detection can be applied to a video consisting of 

consecutive frames without surgical instruments, because in addition to the instruments, 

the eye area is also targeted for training. However, their accuracy decreases in such cases. 

 

Table 5.3 The results of critical phase recognition per image using the NN. 

Truth 

Classification 

Importance 

[%] 

Others 

[%] 

Accuracy Rate 

[%] 

Importance 84.4 15.6 84.4 

Others 5.1 94.9 94.9 

 

Table 5.4 The results of problem detection per frame using the NN. 

Truth 

Classification 

Without 

Problems [%] 

With 

Problems [%] 

Accuracy Rate 

Rate [%] 

Without problems 86.0 14.0 86.0 

With problems 8.8 91.2 91.2 

 

 

 

 

 

 



59 

 

Next, the risk level Dt for each video using Equation (5.2) is calculated. Based 

on the obtained risk levels, the videos without problems are labeled as negative, and the 

videos with problems as positive, and the ROC curve is plotted as Figure 5.1. Table 5.5 

shows the results of the surgical problem detection for each video when using the obtained 

threshold value as a reference. The AUC is equal to 0.970, and the accuracy rates are 94% 

for “without problems” and 90% for “with problems”, with a mean accuracy rate of 92%. 

The histogram in Figure 5.2 represents the differences between the time when the risk 

level Dt exceeds the threshold and the time when the ophthalmologist determines that a 

problem occurred in a video, for the videos correctly recognized as “with problems”. The 

“0” time point on the horizontal axis means that there is no difference between the 

problem-occurring time determined by the ophthalmologist and that detected by the NN. 

It is shown that the NN detects problems earlier than the ophthalmologist in 42 out of 44 

cases. Figure 5.3 shows examples of the risk level Dt for videos without problems  

(Figure 5.3 (a)) and videos with problems (Figure 5.3 (b)). The figure clearly shows that 

the risk level in Figure 5.3 (b) is larger than the level in Figure 5.3 (a). 
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Table 2.5 The results of problem detection per frame using the NN 

Correct Class/ 

Detected Class 

Without Problems 

[%] 

With Problems 

[%] 

Correct Response 

Rate [%] 

Without problems 94 6 94 

With problems 10 90 90 

 

 

 

 

 

 

 

Figure 5.1 ROC curve of surgical problem detection per video. This evaluation is based  

on the risk level Dt. 
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Figure 5.2 Differences between the problem-occurring time detected by the NN and  

the problem-occurring time determined by the ophthalmologist. The “0”  

time point on the horizontal axis means that there was no difference  

between the problem-occurring time determined by the ophthalmologist  

and that detected by the NN. If the time is negative, it means that the NN  

detects the problem earlier than the ophthalmologist. 

Figure 5.3 Difference in risk levels for videos with or without problems. (A) the risk  

level for videos without problems, (B) the risk level for videos with  

problems. 

(a) 
 

(b) 
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5.4 Discussion and Summary 

In this Chapter, the cataract surgery problem detection system was proposed 

using CNN. This system consists of two steps, and the step-by-step instructions are as 

follows. In the first step, the extraction of the CCC and nuclear extraction phases, which 

are crucial surgical phases in cataract surgery, is performed using the CNN model. The 

surgical videos are down sampled to a frame rate of 1 FPS and a resolution of 299×168 

to decompose into frames. Using these frames, the crucial phase recognition (the CCC to 

nuclear extraction) and the surgical problem detection in crucial phases are performed 

using the CNN model. Next, the frames from a video are arranged in chronological order, 

and the 10-s moving average of these two models is calculated, and the obtained values 

are multiplied to calculate the risk level Dt. Finally, a ROC curve is drawn based on the 

risk level value of Dt for each video and evaluated with the AUC. In the experiment, the 

accuracies of the crucial phase recognition and the problem detection in critical phases 

are 91.3% and 90.2%, respectively, and the AUC for each video is 0.970. 

The validity of estimating the problem-occurring time by identifying surgical 

problems is examined. One of the possible applications of this problem detection method 

is the construction of a system that detects a problem during surgery and alerts physicians 

to stop the surgery. In most cases, this application considers that the proposed method can 

typically detect the occurrence of a problem earlier than an ophthalmologist. This is 

shown in the histogram in Figure 5.2, and implies that the risk alert based on the proposed 

method is quite promising. However, the proposed method estimates the problem-

occurring time more than one minute before the ophthalmologist in most videos. The 

estimated time by the proposed method may not be consistent with the estimated time 

that ophthalmologists prefer. For example, residents tend to make larger incisions than 

experienced ophthalmologists during the CCC, and the proposed method may place too 
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much weight on this tendency. It seems that the above are caused by differences that 

sometimes arise in evaluation criteria for surgical techniques between experienced 

ophthalmologists and the proposed method. 

The proposed method should be based on the evaluation criteria for surgical 

techniques that the majority of experienced ophthalmologists consider to be appropriate. 

To achieve this objective, it is unfavorable that differences sometimes arise in the 

evaluation criteria. Therefore, the proposed method must be refined so that its criteria can 

be as close as possible to those of experienced ophthalmologists. The proposed method 

does not provide an explanation for problem detection. In the future, it will be necessary 

to estimate the problem by considering causal relationships, such as the movement of 

ophthalmologists, in order to develop a highly explainable problem detection system. 
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Chapter 6 

 

Real-Time Instrument Tracking in Cataract Surgery 

 

 

 

 

 

 

 

 

 

 

 

Surgical skill levels of inexperienced ophthalmologists tend to be instinctively 

judged by skilled ophthalmologists, and hence a stable evaluation made by a single 

ophthalmologist is not always provided on human resource development for 

ophthalmology. In this Chapter, a method for displaying the information necessary to 

quantify the surgical techniques of cataract surgery in real-time is presented. A total of 

302 cases of cataract surgery are provided as a dataset. Surgical videos are down 

sampled to a frame rate of 1 FPS and a resolution of 256 × 128. The proposed method 

uses a convolutional neural network (CNN) model to detect the cornea, the tip of the 

surgical instrument, and the incisional site during CCC, which is a particularly crucial 

phase in cataract surgery. High detection rate of the cornea equal to 99.7% is achieved 

on condition of IoU 0.8. Besides, the detection rates of the tips of the forceps and the 

incisional site are equal to 86.9% and 94.9% on condition of IoU0.1, respectively. 
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6.1 Introduction 

A common issue in surgical training is the difficulty in establishing objective 

criteria for the evaluation of surgical techniques. Although it has been pointed out that the 

quantitative measurement and standardization of surgical techniques is a necessary 

element for the systematic advancement of surgical training [41], there are a great variety 

of techniques in the CCC alone, which is essential in cataract surgery [42], and it is very 

difficult task to index all of them. 

Recently, in tracking of surgical instruments, detection methods using bounding 

boxes [43] and segmentation methods [44] have been proposed. It is difficult to track the 

fine movements of the tips of surgical instruments, while the methods well track the rough 

movements of surgical instruments. Though the evaluation based on the positional 

relationship between the affected area and instruments is specially required, the above 

method of tracking the instruments alone cannot be used for such an evaluation. A work 

on evaluating the technology of robotic surgery is reported in [45]. It is however not 

applicable to cataract surgery performed manually by surgeons, because it detects and 

evaluates the motion of the surgical instruments by using a gyroscope attached to a robot. 

In [46] and [47], a real-time simulation system for cataract surgery is developed, 

based on virtual reality technology. The system in [46], which is well designed for 

Phacoemulsification, uses a meshless shape-based dynamic simulation algorithm and a 

smoothed particle hydrodynamics-based scheme. On the other hand, the system in [47] 

requires a three-dimensional tactile device and binocular display. Cataract surgery 

training is comprehensively available not only for Phacoemulsification but also for CCC, 

by applying the said system [47]. The above systems are clearly useful in acquiring 

numerical data associated with track dislocation, speed change, and so forth, of surgical 

instruments because they run in simulations on computers. They will thus powerfully 
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work on computers to evaluate the surgical techniques of cataract surgery. In actual 

cataract surgery, however, acquiring the above numerical data is not as simple task as the 

data acquisition performed on simulation. 

One of the objectives of the proposed method is to acquire the numerical data of 

various regions of interest from actual cataract surgery. If online data acquisition is 

feasible during actual cataract surgery, it is expected that the evaluation established by 

the systems [46]-[47] will be applicable to actual surgical techniques. Additionally, the 

proposed method may make it possible to quantify the effectiveness of surgical training 

on simulations. Therefore, in this Chapter, a method of digitizing the information 

necessary to quantify surgical techniques in real-time at CCC by tracking the cornea and 

surgical instruments is proposed. It evaluates the detection of the corneal area, the tips of 

the forceps, and the incisional site of a patient during CCC. 
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6.2 Surgical Instrument Tracking Based on Image Segmentation and Keypoint Detection 

In this Chapter, scSE-FC-DenseNet40, which is a segmentation CNN composed 

of 40 layers of Dense blocks, is used to detect the corneal area, the incisional site, and the 

tips of surgical instruments during the CCC. The 256 × 128 color images are presented as 

the input, whereas layer with 256 × 128 × 3 is the output for NN (input image size, 256 × 

128; the number of classes, 3). The actual NN structure used in the Chapter is shown in 

Table 6.1. The “Skip Connection” column indicates the connection between the layers, 

which means that the output tensor of the layer corresponding to Output (x) is connected 

to the input tensor of the layer corresponding to Concat (x). The training parameters are 

set to a batch size of 16, the loss function of mean square error, the optimization function 

of AdaBound (learning rate: 0.001) [48], and the number of epochs of a maximum of 300. 

In addition, for pre-processing, the pixel values of the images are normalized in the range 

of 0 to 1. To prevent overfitting, the image augmentation process as shown in Table 6.2 

is randomly applied. The network is trained on a system with two NVIDIA GTX 1080 Ti 

GPUs and the evaluation is executed on a single GPU. 
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Table 6.1. Structure of the scSE-FC-DenseNet40 used. 

Type Patch size/stride Input shape Skip Connection 

Convolution 3 × 3/1 256 × 128×3  

2 × (Dense Block & scSE module)  256 × 128 × 48  

Convolution 1 × 1/2 256 × 128 × 80  

4 × (Dense Block & scSE module)  128 × 64 × 80 Output (1) 

Convolution 1 × 1/2 128 × 64 × 144  

8 × (Dense Block & scSE module)  64 × 32 × 144 Output (2) 

Convolution 1 × 1/2 64 × 32 × 272  

6 × (Dense Block & scSE module)  32 × 16 × 272 Output (3) 

Transposed Convolution 3 × 3/2 32 × 16 × 96  

8 × (Dense Block & scSE module)  64 × 32 × 368 Concat (3) 

Transposed Convolution 3 × 3/2 64 × 32 × 128  

4 × (Dense Block & scSE module)  128 × 64 × 272 Concat (2) 

Transposed Convolution 3 × 3/2 256 × 128 × 64  

2 × (Dense Block & scSE module)  256 × 128 × 144 Concat (1) 

Convolution 1 × 1/1 256 × 128 × 176  

Sigmoid  256 × 128×3  

 

 

Table 6.2 Types of image processing used for learning corneal and positions of surgical  

instruments, and their parameters. 

Types Parameters 

Rotation Up to 90 degrees 

Horizontal movement Up to 20% 

Vertical movement Up to 20% 

Shear conversion Up to 5 degrees 

Scaling Up to 20% 

Flip horizontally  

Flip vertically  
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6.3 Experimental Results on Instrument Tracking in Cataract Surgery 

The tracking of the cornea and surgical instruments is evaluated using Equation 

(6.1) and APIoU (Average Precision under Intersection over Union conditions), which is 

defined based on the IoU (Intersection over Union) shown in Figure 6.1. APIoU  is 

denoted by Equation (6.2). 

IoU=
Area of Overlap

Area of Union
×100                                            (6.1) 

APIoU=
Number of data satisfying IoU≥N 

Number of all data
                                (6.2) 

APIoUs are tabulated in Table 6.3 for detecting the cornea, the incisional site, and 

the tips of the forceps. Note that the value of N is a parameter related to IoU given by 

Equation (6.1). IoU generally takes the value of 1 as its maximum. IoU=100  for 

Equation (6.1) means the prediction result obtained by the proposed method perfectly 

matches the ground truth. IoUN means that the ratio of the area obtained by overlapping 

the prediction result with ground truth compared with the area obtained by uniting the 

former to the latter is larger than or equal to N. Remarkably high accuracies as correct 

response rates for the cornea are achieved as shown in Table 6.3. On the other hand, 

correct response rates for the incisional site and the tips of the forceps are 94.9% and 

86.9%, respectively, on condition of N=10 in Equation (6.2). In the case of N20, they 

severely degrade as shown in Table 6.3. However, as shown in Figure 2.4, the area to 

which the correct label is assigned for surgical instrument detection is exceedingly small. 

Therefore, even if the value of 10 is given to N in Equation (6.2), it seems that results for 

tracing the incisional site and the tips of forceps cause no major troubles in practical use.  

It can thus be considered that the NN is capable of tracking instruments successfully. 

Figure 6.2 shows examples of segmentation results and the visualization of the 
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segmentation. The image in Figure 6.2 (a) is an input image, and the images in Figures 

6.2 (b)–(d) represent the segmentation result of the cornea, the tips of the forceps, and the 

incisional site, respectively. The image in Figure 6.2 (e) shows a visualization of the 

cornea (red circle), the tips of the forceps (blue circle), and the incisional site (green 

circle). The trained scSE-FC-DenseNet40 outputs a value belonging to the range 0 to 1 

as certainty values of segmentation for each pixel. It is judged that the segmentation result 

is appropriate as its certainty approaches the value of 1. The certainty values of 

segmentation for all pixels are used to depict a gradation map. The maps overlap with 

images to be segmented as shown in Figure 6.2 (b)–(d). Note that the color becomes bluer 

(or redder) as certainty of segmentation for each pixel approaches the value 0 (or 1). 

Binarization is executed provided that the threshold certainty of segmentation for each 

pixel is set to the value 0.5. The circumscribed circle is next depicted for each of the 

segmented objects. Figure 6.2 (e) is then obtained as a result. Recall that its ground truth 

is depicted as shown in Figure 2.4. 
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(a) 

Figure 6.2 Sample images of a patient’s corneal area and the visualization of surgical  

instrument detection results. NN outputs the certainty of segmentation for  

each pixel in the range of 0 to 1. The certainty that is closer to 1 indicates a  

class to be detected. Images (b)-(d) are obtained by overlapping image (a)  

with gradation maps. The color becomes bluer (or redder) as certainty of  

segmentation for each pixel approaches the value 0 (or 1). Image (e) shows  

a circumscribed circle of the segmented region by binarizing with the  

certainty of 0.5 as a threshold value. The ground truth is the same as in  

Figure 2. 

Figure 6.1 Overlap and Union regions used to calculate the IoU. IoU is specified by 

the ground truth area and prediction area associated with the region of   

interest. It takes a value in the range of 0 to 100 according to Equation  

(6.1) in this Chapter. 

  

  

(b) (c) 

(d) (e) 
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Table 6.3 Results of cornea and surgical instrument detections during CCC. For example, 

AP10 means that the ratio of area obtained by overlapping the prediction result 

with ground truth compared with the area obtained by uniting the former to the 

latter is larger than or equal to 10%. 

APIoU 

Classes 
AP10 AP20 AP30 𝐴𝑃40 AP50 AP60 AP70 AP80 AP90 

Cornea 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.7 92.6 

Incisional site 94.9 44.7 7.85 7.66 7.66 7.66 7.66 7.66 7.66 

Tips of forceps 86.9 28.5 6.14 6.14 6.14 6.14 6.14 6.14 6.14 

  

 

As an additional experiment, let us introduce a system that tracks the cornea and 

surgical instruments during CCC in real-time by the proposed method and that shows 

alerts when the incisional site would become too large. Figure 6.3 illustrates the results 

of applying this system to a video. Figure 6.3 (a) shows a cornea before incision: the white 

circle represents the corneal area, and the orange dotted line represents the reference area 

for the incisional site. Figure 6.3 (b) shows the cornea immediately after the insertion of 

the forceps into the eye, and the green circle represents the incisional site. Figure 6.3 (c) 

shows the beginning of the capsulorrhexis, and the blue circle represents the tips of the 

forceps. Figure 6.3 (d) shows the capsulorrhexis. Figure 6.3 (e) shows the tips of the 

forceps exceeding the reference area, and the red arrow is suggesting that the tips of the 

forceps should be moved back to the center. 
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Figure 6.3 Example of CCC advice system. The cataract surgery proceeds in the order  

of images (a)-(e). 
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6.4 Discussion and Summary 

In this Chapter, for the detection of the cornea and surgical instruments during 

CCC, the proposed method uses CNN models. The surgical videos are down sampled to 

a frame rate of 1 FPS and a resolution of 256 × 128 to decompose into frames. The CNN 

model detects Cornea, Incisional site, and Tips of forceps during CCC using these frames. 

The proposed method is evaluated using APIoU (Average Precision under Intersection 

over Union conditions). Experiment result are as follows: AP80=99.7% for the cornea, 

AP10=86.9% for the tips of the forceps, and AP10=94.9% for the incisional site. 

Let us discuss the possible causes that led to a lower detection accuracy for the 

tips of the forceps compared with that for the incisional site in the tracking of the cornea 

and surgical instruments during CCC. The incisional site is the border between the outer 

and middle of the cornea and is easy to locate, while the tips of the forceps are inside the 

cornea, which can make it difficult to see depending on the condition of the eye, as shown 

in Figure 6.4. This may have resulted in a lower detection accuracy for the forceps than 

for the incisional site. To improve accuracy, some trials have been made to apply several 

schemes of general image processing to make it easier for the NN to recognize the eye 

and instruments as a preprocessing step. An essential scheme has yet to be discovered, 

however. It is possible that engaging in schemes specialized for cataract surgery is 

preferable to examining well-known schemes. To search for such an image processing 

scheme will be continued. 
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Cataract is one of the most frequent causes of blindness, especially in poor 

countries. To reduce the number of blindness due to cataract, the education of 

ophthalmologists performing cataract surgeries is of absolutely importance all over the 

world. Eyesi Surgical, a virtual reality simulator for intraocular surgery training, has been 

developed in Germany [49]. On the other hand, the femtosecond laser–assisted cataract 

surgery [50] has been receiving a lot of attention. These high-end machines are 

unavailable for ophthalmologists working in developing countries. Developing the 

automatic supported system based on the proposed method will make it possible to 

remarkably reduce the costs for education of ophthalmologists and to enhance its 

convenience. In addition, the proposed method seems to be useful in grading surgical skill 

levels, as shown Figure 6.3. In other words, it is seeming to achieve the skill-level 

standardization with the proposed method. Experienced ophthalmologists can also 

optimize their surgical guidance for inexperienced ophthalmologists, while referring to 

evaluation reports submitted by the proposed method. 

Figure 6.4 Example image of a hard-to-see forceps tips 
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For further steps needed to improve the proposed method, one of the most crucial 

phases is the cornea and instrument tracking during the nuclear extraction phase. 

Moreover, it is necessary to develop an automated system for evaluating surgical skills 

using the proposed method. 
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Chapter 7 Conclusion 

In this dissertation, as one of the means overcoming issue on shortage of medical 

professionals in Japanese medical scene, the development of machine learning-aided 

systems was discussed, especially for ophthalmology. The main objective of the proposed 

systems is to lessen time burden and physical burden for ophthalmologists.   

In Chapter 3, a method for determining examination categories was proposed for 

ophthalmology patients, using machine learning. The proposed method considers several 

types of part-of-speech decomposition of handwritten sentences in medical 

questionnaires, vectorization of decomposed words, and machine learning methods, and 

examines some combinations of them. Experimental results showed that the combination 

of Sudachi, One-Hot Encoding, and CatBoost achieves the highest accuracy. The 

accuracy rate is 64.3%, which is 5% and 3% higher than the methods proposed in [19] 

and [20], respectively. The effectiveness of employing the proposed method is thus 

revealed. 

In Chapter 4, a method for real-time automatic extraction of crucial surgical 

phases in cataract surgery was proposed. The proposed method uses a neural network, 

InceptionV3, to sequentially process the images prepared from surgical videos and to 

determine the start and end times of each phase. Experimental results on discrepancies 

between recorded cases and cases determined by the proposed model for start and end 

times of each phase are as follows: for CCC, discrepancy on start is 3.34 seconds, that on 

end is 4.43 seconds; for nuclear extraction, that on start is 7.21 seconds, that on end is 

6.04 seconds. The average error is equal to 5.25 seconds. The proposed method consumes 

5 seconds of continuous video to recognize cataract surgical phases. It is thus considered 

that a significant improvement in real-time phase recognition capability is achieved, 

compared to previous works [29]-[31]. 

In Chapter 5, a method for real-time automatic surgical problem detection of 
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crucial phases in cataract surgery was proposed. It uses two-type InceptionV3 models, 

to specify CCC and nuclear extraction as crucial phase and to detect surgical problems. 

The model calculates Dt as the degree of risk and determines that a problem has occurred 

if Dt exceeds a certain value to be defined as the threshold. In experiment, the proposed 

method is able to detect surgical problems, while achieving high AUC. The proposed 

method is the first work to detect cataract surgery problems in real-time. 

In Chapter 6, a method for real-time automatic detection of the cornea and 

surgical instruments during CCC was proposed. It adopts scFC-DenseNet40 to detect the 

cornea, the tip of the surgical instrument, and the incisional site during CCC. The 

detection rate of the cornea is AP80=99.7%, and the rates of tips of the forceps and the 

incisional site are AP10=86.9% and AP10=94.9%, respectively. As an additional 

experiment, it was explored whether a system based on the proposed method can make 

real-time alerts during CCC process. As a result, the system could alert users when the 

size of incisional site exceeded a certain degree determined in advance. 

In recent years, the de facto standard in natural language processing has 

significantly changed with the Large Language Models (LLM for short) [51] based on 

transformers [52]. LLM employs Byte Pair Encoding (BPE for short) to decompose 

sentences into sub word units. It seems that previous methods solely based on 

conventional natural language utilizing morphological analysis are no longer adopted for 

general use. Note that the method proposed in Chapter 3 belongs to a group of such 

conventional methods. On the other hand, there are works trying to combine existing 

methods [53] with LLM to achieve high accuracy. Given that the proposed method can 

be available as an approach for selecting an appropriate sentence vectorization technique 

for medical questionnaires, the above strategy of combining latest LLM with it has the 

substantial potential to enhance the performance of natural language processing. This will 

specially apply to ophthalmology use, and it is expected that the proposed method could 
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be potentially beneficial to acquire the powerful LLM performance in the field of 

ophthalmology. Let us next discuss the proposed method applicable to surgical video 

recordings for cataract. Previously proposed methods in [29]-[31], [43], and [44] on 

cataract surgery have used a maximum of 100 surgical videos. An extensive dataset with 

300 cases or more has been used to develop network models described in Chapters 4-6. 

It seems that practicability of the system becomes higher as the number of members in 

the dataset accessible when it is developed becomes larger. 

Researches in the field of medical computer vision have also been remarkably 

active, with the utilization of LLM to construct multimodal foundational models [54]. 

One of the challenges for the future is to establish an infrastructure model in 

ophthalmology. 
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