2,956 research outputs found

    Gibbs and Quantum Discrete Spaces

    Get PDF
    Gibbs measure is one of the central objects of the modern probability, mathematical statistical physics and euclidean quantum field theory. Here we define and study its natural generalization for the case when the space, where the random field is defined is itself random. Moreover, this randomness is not given apriori and independently of the configuration, but rather they depend on each other, and both are given by Gibbs procedure; We call the resulting object a Gibbs family because it parametrizes Gibbs fields on different graphs in the support of the distribution. We study also quantum (KMS) analog of Gibbs families. Various applications to discrete quantum gravity are given.Comment: 37 pages, 2 figure

    A study on supereulerian digraphs and spanning trails in digraphs

    Get PDF
    A strong digraph D is eulerian if for any v ∈ V (D), d+D (v) = d−D (v). A digraph D is supereulerian if D contains a spanning eulerian subdigraph, or equivalently, a spanning closed directed trail. A digraph D is trailable if D has a spanning directed trail. This dissertation focuses on a study of trailable digraphs and supereulerian digraphs from the following aspects. 1. Strong Trail-Connected, Supereulerian and Trailable Digraphs. For a digraph D, D is trailable digraph if D has a spanning trail. A digraph D is strongly trail- connected if for any two vertices u and v of D, D posses both a spanning (u, v)-trail and a spanning (v,u)-trail. As the case when u = v is possible, every strongly trail-connected digraph is also su- pereulerian. Let D be a digraph. Let S(D) = {e ∈ A(D) : e is symmetric in D}. A digraph D is symmetric if A(D) = S(D). The symmetric core of D, denoted by J(D), has vertex set V (D) and arc set S(D). We have found a well-characterized digraph family D each of whose members does not have a spanning trail with its underlying graph spanned by a K2,n−2 such that for any strong digraph D with its matching number α′(D) and arc-strong-connectivity λ(D), if n = |V (D)| ≥ 3 and λ(D) ≥ α′(D) − 1, then each of the following holds. (i) There exists a family D of well-characterized digraphs such that for any digraph D with α′(D) ≤ 2, D has a spanning trial if and only if D is not a member in D. (ii) If α′(D) ≥ 3, then D has a spanning trail. (iii) If α′(D) ≥ 3 and n ≥ 2α′(D) + 3, then D is supereulerian. (iv) If λ(D) ≥ α′(D) ≥ 4 and n ≥ 2α′(D) + 3, then for any pair of vertices u and v of D, D contains a spanning (u, v)-trail. 2. Supereulerian Digraph Strong Products. A cycle vertex cover of a digraph D is a collection of directed cycles in D such that every vertex in D lies in at least one dicycle in this collection, and such that the union of the arc sets of these directed cycles induce a connected subdigraph of D. A subdigraph F of a digraph D is a circulation if for every vertex v in F, the indegree of v equals its outdegree, and a spanning circulation if F is a cycle factor. Define f(D) to be the smallest cardinality of a cycle vertex cover of the digraph D/F obtained from D by contracting all arcs in F , among all circulations F of D. In [International Journal of Engineering Science Invention, 8 (2019) 12-19], it is proved that if D1 and D2 are nontrivial strong digraphs such that D1 is supereulerian and D2 has a cycle vertex cover C′ with |C′| ≤ |V (D1)|, then the Cartesian product D1 and D2 is also supereulerian. We prove that for strong digraphs D1 and D2, if for some cycle factor F1 of D1, the digraph formed from D1 by contracting arcs in F1 is hamiltonian with f(D2) not bigger than |V (D1)|, then the strong product D1 and D2 is supereulerian

    Connected factors in graphs - a survey

    Get PDF

    A network dynamics approach to chemical reaction networks

    Get PDF
    A crisp survey is given of chemical reaction networks from the perspective of general nonlinear network dynamics, in particular of consensus dynamics. It is shown how by starting from the complex-balanced assumption the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a very simple derivation of a number of key results in chemical reaction network theory, and which directly relates to the thermodynamics of the system. Central in this formulation is the definition of a balanced Laplacian matrix on the graph of chemical complexes together with a resulting fundamental inequality. This directly leads to the characterization of the set of equilibria and their stability. Both the form of the dynamics and the deduced dynamical behavior are very similar to consensus dynamics. The assumption of complex-balancedness is revisited from the point of view of Kirchhoff's Matrix Tree theorem, providing a new perspective. Finally, using the classical idea of extending the graph of chemical complexes by an extra 'zero' complex, a complete steady-state stability analysis of mass action kinetics reaction networks with constant inflows and mass action outflows is given.Comment: 18 page

    On Generalizations of Supereulerian Graphs

    Get PDF
    A graph is supereulerian if it has a spanning closed trail. Pulleyblank in 1979 showed that determining whether a graph is supereulerian, even when restricted to planar graphs, is NP-complete. Let κ2˘7(G)\kappa\u27(G) and δ(G)\delta(G) be the edge-connectivity and the minimum degree of a graph GG, respectively. For integers s≥0s \ge 0 and t≥0t \ge 0, a graph GG is (s,t)(s,t)-supereulerian if for any disjoint edge sets X,Y⊆E(G)X, Y \subseteq E(G) with ∣X∣≤s|X|\le s and ∣Y∣≤t|Y|\le t, GG has a spanning closed trail that contains XX and avoids YY. This dissertation is devoted to providing some results on (s,t)(s,t)-supereulerian graphs and supereulerian hypergraphs. In Chapter 2, we determine the value of the smallest integer j(s,t)j(s,t) such that every j(s,t)j(s,t)-edge-connected graph is (s,t)(s,t)-supereulerian as follows: j(s,t) = \left\{ \begin{array}{ll} \max\{4, t + 2\} & \mbox{ if $0 \le s \le 1$, or $(s,t) \in \{(2,0), (2,1), (3,0),(4,0)\}$,} \\ 5 & \mbox{ if $(s,t) \in \{(2,2), (3,1)\}$,} \\ s + t + \frac{1 - (-1)^s}{2} & \mbox{ if $s \ge 2$ and $s+t \ge 5$. } \end{array} \right. As applications, we characterize (s,t)(s,t)-supereulerian graphs when t≥3t \ge 3 in terms of edge-connectivities, and show that when t≥3t \ge 3, (s,t)(s,t)-supereulerianicity is polynomially determinable. In Chapter 3, for a subset Y⊆E(G)Y \subseteq E(G) with ∣Y∣≤κ2˘7(G)−1|Y|\le \kappa\u27(G)-1, a necessary and sufficient condition for G−YG-Y to be a contractible configuration for supereulerianicity is obtained. We also characterize the (s,t)(s,t)-supereulerianicity of GG when s+t≤κ2˘7(G)s+t\le \kappa\u27(G). These results are applied to show that if GG is (s,t)(s,t)-supereulerian with κ2˘7(G)=δ(G)≥3\kappa\u27(G)=\delta(G)\ge 3, then for any permutation α\alpha on the vertex set V(G)V(G), the permutation graph α(G)\alpha(G) is (s,t)(s,t)-supereulerian if and only if s+t≤κ2˘7(G)s+t\le \kappa\u27(G). For a non-negative integer s≤∣V(G)∣−3s\le |V(G)|-3, a graph GG is ss-Hamiltonian if the removal of any k≤sk\le s vertices results in a Hamiltonian graph. Let is,t(G)i_{s,t}(G) and hs(G)h_s(G) denote the smallest integer ii such that the iterated line graph Li(G)L^{i}(G) is (s,t)(s,t)-supereulerian and ss-Hamiltonian, respectively. In Chapter 4, for a simple graph GG, we establish upper bounds for is,t(G)i_{s,t}(G) and hs(G)h_s(G). Specifically, the upper bound for the ss-Hamiltonian index hs(G)h_s(G) sharpens the result obtained by Zhang et al. in [Discrete Math., 308 (2008) 4779-4785]. Harary and Nash-Williams in 1968 proved that the line graph of a graph GG is Hamiltonian if and only if GG has a dominating closed trail, Jaeger in 1979 showed that every 4-edge-connected graph is supereulerian, and Catlin in 1988 proved that every graph with two edge-disjoint spanning trees is a contractible configuration for supereulerianicity. In Chapter 5, utilizing the notion of partition-connectedness of hypergraphs introduced by Frank, Kir\\u27aly and Kriesell in 2003, we generalize the above-mentioned results of Harary and Nash-Williams, of Jaeger and of Catlin to hypergraphs by characterizing hypergraphs whose line graphs are Hamiltonian, and showing that every 2-partition-connected hypergraph is a contractible configuration for supereulerianicity. Applying the adjacency matrix of a hypergraph HH defined by Rodr\\u27iguez in 2002, let λ2(H)\lambda_2(H) be the second largest adjacency eigenvalue of HH. In Chapter 6, we prove that for an integer kk and a rr-uniform hypergraph HH of order nn with r≥4r\ge 4 even, the minimum degree δ≥k≥2\delta\ge k\ge 2 and k≠r+2k\neq r+2, if λ2(H)≤(r−1)δ−r2(k−1)n4(r+1)(n−r−1)\lambda_2(H)\le (r-1)\delta-\frac{r^2(k-1)n}{4(r+1)(n-r-1)}, then HH is kk-edge-connected. %κ2˘7(H)≥k\kappa\u27(H)\ge k. Some discussions are displayed in the last chapter. We extend the well-known Thomassen Conjecture that every 4-connected line graph is Hamiltonian to hypergraphs. The (s,t)(s,t)-supereulerianicity of hypergraphs is another interesting topic to be investigated in the future
    • …
    corecore