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ABSTRACT
A treatment of a chemical reactionnetwork theory is given from theperspective of nonlinear network
dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption,
the reaction dynamics governed bymass action kinetics can be rewritten into a formwhich allows for
a very simplederivationof anumberof key results in the chemical reactionnetwork theory, andwhich
directly relates to the thermodynamics and port-Hamiltonian formulation of the system. Central in
this formulation is the definition of a balanced Laplacian matrix on the graph of chemical complexes
together with a resulting fundamental inequality. This immediately leads to the characterisation of
the set of equilibria and their stability. Furthermore, the assumptionof complex balancedness is revis-
ited from the point of view of Kirchhoff’s matrix tree theorem. Both the form of the dynamics and the
deduced behaviour are very similar to consensus dynamics, and provide additional perspectives to
the latter. Finally, using the classical idea of extending the graph of chemical complexes by a ‘zero’
complex, a complete steady-state stability analysis of mass action kinetics reaction networks with
constant inflows and mass action kinetics outflows is given, and a unified framework is provided for
structure-preserving model reduction of this important class of open reaction networks.

1. Introduction

Network dynamics has been the subject of intensive
research in recent years due to the ubiquity of large-
scale networks in various application areas. While many
advances have beenmade in the analysis of linear network
dynamics, the study of nonlinear network dynamics still
poses fundamental challenges.

In this paper, we revisit the analysis of chemical reac-
tion networks (CRNs) as a prime example of nonlinear
network dynamics, playing an important role in systems
biology, (bio-)chemical engineering, and the emerging
field of synthetic biology. Apart from being large-scale
(typical reaction networks in living cells involve several
hundreds of chemical species and reactions), a character-
istic feature of CRN dynamics is their intrinsic nonlin-
earity. In fact, mass action kinetics, the most basic way
to model reaction rates, leads to polynomial differential
equations. On top of this, CRNs, in particular, in a bio-
chemical context, usually have inflows and outflows.

The foundations of the structural theory of (isother-
mal) CRNs were laid in a series of seminal papers by
Horn, Jackson, and Feinberg in the 1970s. The basic start-
ing point of e.g. Horn and Jackson (1972), Horn (1972),
Feinberg (1972) is the identification of a graph structure
for CRNs by defining the chemical complexes, i.e., the
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combination of chemical species appearing on the left-
hand (substrate) and right-hand (product) sides of every
reaction, as the vertices of a graph and the reactions as
its edges. This enables the formulation of the dynamics of
the reaction network as a dynamical system on the graph
of complexes. Furthermore, in these papers, the philoso-
phywas put forward of delineating, bymeans of structural
conditions on the graph, a large class of reaction networks
exhibiting the same type of dynamics, irrespective of the
precise values of the (often unknown or uncertain) reac-
tion constants. This ‘normal’ dynamics is characterised by
the property that for every initial condition of the con-
centrations there exists a unique positive equilibrium to
which the system will converge. Other dynamics, such
as multi-stability or presence of oscillations, can, there-
fore, only occur within reaction networks violating these
conditions. For an overview of results on CRNs, and cur-
rent research in this direction including the global per-
sistence conjecture, we refer to Angeli (2009) and the ref-
erences quoted therein. An important step in extending
the framework of CRNs towards feedback stabilisation has
beenmade in Sontag (2001); also setting the stage for reg-
ulation questions.

The contribution of this paper is twofold. First, the
formulation and analysis of mass action kinetics CRNs
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is revisited from the point of view of consensus dynam-
ics and its nonlinear versions (Cherukuri & Cortés, 2015;
Cortés, 2008; van der Schaft & Maschke, 2013). The con-
sideration of concepts from the algebraic graph theory,
such as the systematic use of weighted Laplacian matri-
ces, provides a framework for (re-)proving many of the
previously obtained results on CRNs in a simple and
insightful manner. In particular, in our previous work
(Rao, van der Schaft, & Jayawardhana, 2013a; van der
Schaft, Rao, & Jayawardhana, 2013a), we have shown how
under the classical assumption of existence of a detailed-
balanced equilibrium, or the weaker assumption of the
existence of a complex-balanced equilibrium (a concept
dating back to Horn & Jackson, 1972), the weights of the
graph of complexes can be redefined in such away that the
resulting Laplacianmatrix becomes symmetric (detailed-
balanced case) or balanced (complex-balanced case). As
a result, the characterisation of the set of positive equilib-
ria and their stability as originating in Horn and Jackson
(1972), Horn (1972), Feinberg (1972) follows in a sim-
ple way. Moreover, this formulation allows for a direct
port-Hamiltonian interpretation (van der Schaft, Rao, &
Jayawardhana, 2013b),mergingCRNswith the geometric
thermodynamical theory of Oster, Perelson, and Katchal-
sky (1973), Oster and Perelson (1974). It also leads to new
developments, such as structure-preservingmodel reduc-
tion of large-scale CRNs, based on Kron reduction of the
Laplacian matrix (Rao et al., 2013a; Rao, van der Schaft,
van Eunen, Bakker, & Jayawardhana, 2014; van der Schaft
et al., 2013a).

As said, our approach is based on the assumption of
existence of a complex-balanced equilibrium. Following
van der Schaft, Rao, and Jayawardhana (2015), a neces-
sary and sufficient condition is discussed for the exis-
tence of a complex-balanced equilibrium based on the
matrix tree theorem (a theorem going back to the work of
Kirchhoff on electrical circuits), which extends the clas-
sical Wegscheider conditions for existence of a detailed-
balanced equilibrium. We also make a connection with
the property ofmass conservation. Finally, we discuss how
these results can be ‘dualized’ to consensus dynamics,
providing new insights.

The second main contribution of this paper is the
dynamical analysis of CRNs with inflows and outflows.
The extension of the stability theory of equilibria for reac-
tion networks without inflows and outflows (called closed
reaction networks in the sequel) to that of steady states
for reaction networks with inflows and outflows (called
open networks) is far from trivial, due to the intrinsic
nonlinearity of the reaction dynamics. Recently, there
has been a surge of interest in open CRNs; we mention
Angeli, De Leenheer, and Sontag (2009), Angeli (2011),
Chaves (2005), Craciun and Feinberg (2010), Flach and

Schnell (2010), Rao, van der Schaft, and Jayawardhana
(2013b). In this paper, we analyse open reaction networks
by revisiting1 the classical idea of extending the graph of
complexes by a ‘zero’ complex (Feinberg & Horn, 1974;
Horn & Jackson, 1972). This covers the subclass of open
CRNswith constant inflows andmass action kinetics out-
flows; a subclass which is motivated by several exam-
ples of biochemical reaction network models (see e.g. the
biochemical model in van Eunen, Kiewiet, Westerhoff,
and Bakker (2012) and the examples mentioned in Fein-
berg and Horn (1974)). This subclass also derives from
the assumption that some of the complexes or species
involved in the reactions are kept at a constant concentra-
tion (see e.g. van Eunen et al. (2012, 2013)). We will show
how the results for closed CRNs can be fully extended to
this subclass of open CRNs. Compared to Horn and Jack-
son (1972), Feinberg and Horn (1974), where the specific
properties of the zero complex do not play any role in the
analysis, this paper spells out the equivalence of steady
states with equilibria of the extended network, and shows
how due to the presence of inflows and outflows the set of
steady statesmay shrink to a unique steady state. Further-
more, the presence of steady states on the boundary of
the positive orthant can be precluded. Finally, it allows to
extend the model reduction techniques of van der Schaft
et al. (2013a), Rao et al. (2013a), Rao et al. (2014) to
this important subclass of open CRNs. The obtained sta-
bility analysis of steady states of open CRNs with con-
stant inflows and mass action kinetics outflows is one of
the, up to now rare, cases of a rather complete steady-
state analysis of nonlinear network dynamics with exter-
nal inputs. From a control perspective, the steady-state
analysis of this subclass of open CRNs opens the possibil-
ity of applying the internal model principle (see e.g. De
Persis and Jayawardhana (2012)) to achieve output reg-
ulation for such systems with constant reference signals
using proportional-integral controllers, for example, in
the control of CSTR or gene-regulatory networks as in
Uhlendorf (2012).

The structure of the paper is as follows. In Section 2,
based on algebraic graph-theoretical tools explored in van
der Schaft et al. (2013a), Rao et al. (2013a), we discuss
the theory of closed reaction network dynamics satisfy-
ing the complex-balanced assumption, based on rewrit-
ing the dynamics in terms of a balanced Laplacian matrix
directly linked to its port-Hamiltonian formulation. We
provide a new perspective on the characterisation of
complex-balancedness by the use of Kirchhoff ’s matrix
tree theorem, and establish a connection to mass conser-
vation. Furthermore, we indicate how these ideas may be
applied to consensus dynamics. Section 3 deals with the
detailed modelling of reaction networks having constant
inflows and mass action kinetics outflows by extending
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the graph with an extra zero complex. Section 4 shows
how the assumption of complex balancedness can be
extended to this case, and how this allows to derive pre-
cise results on the structure and stability of steady states.
Section 5 provides a brief introduction to the structure-
preserving model reduction of open CRNs, based on the
Kron reduction of the graph of complexes. Conclusions
follow in Section 6, while the Appendix describes how the
situation of detailed-balanced CRNs can be understood
as a special case of the complex-balanced case.

Notation: The space of n-dimensional real vectors con-
sisting of all strictly positive entries is denoted by R

n
+ and

the space of n-dimensional real vectors consisting of all
non-negative entries by R̄

n
+. The mapping Ln : R

n
+ →

R
n, x �→ Ln (x), is defined as the mapping whose ith

component is given as (Ln (x))i � ln (xi). Similarly, Exp :
R

n → R
n
+ is the mapping whose ith component is given

as (Exp (x))i � exp (xi). Furthermore, for two vectors
x, y ∈ R

n
+ we let x

y denote the vector in R
n
+ with ith com-

ponent xi
yi
. Finally 1n denotes the n-dimensional vector

with all entries equal to 1, and 0n the n-dimensional vec-
tor with all entries equal to zero, while In is the n × n
identity matrix.

Some graph-theoretic notions (see e.g. Bollobas,
1998): a directed graph2 G with c vertices and r edges is
characterised by a c × r incidence matrix, denoted by D.
Each column of D corresponds to an edge of the graph,
and contains exactly one element 1 at the position of the
head vertex of this edge and exactly one −1 at the posi-
tion of its tail vertex; all other elements are zero. Clearly,
1TD = 0. The graph is connected if any vertex can be
reached from any other vertex by following a sequence
of edges; direction not taken into account. It holds that
rankD = c − �, where � is the number of connected com-
ponents of the graph. In particular, G is connected if and
only if kerDT = span1. The graph is strongly connected
if any vertex can be reached from any other vertex, fol-
lowing a sequence of directed edges. A subgraph of G is a
directed graph whose vertex and edge set are subsets of
the vertex and edge set of G. A graph is acyclic (does not
contain cycles) if kerD = 0. A spanning tree of a directed
graph G is a connected, acyclic subgraph of G that spans
all vertices of G.

2. Closed chemical reaction networks as
dynamics on graphs

In this section, we give a concise treatment of closed (i.e.,
no inflows or outflows) CRNs, highlight the similarities
as well the differences with consensus dynamics, and pro-
vide a number of additional insights.

2.1 The complex graph formulation

Consider a CRN with m chemical species (metabolites)
with concentrations x ∈ R

m
+, among which r chemical

reactions take place. The graph-theoretic formulation,
starting with the work of Horn, Jackson and Feinberg
in the 1970s, is to associate to each complex (substrate
as well as product) of the reaction network a vertex of
a graph, while each reaction from substrate to product
complex corresponds to a directed edge (with tail vertex
the substrate and head vertex the product complex).

Let c be the total number of complexes involved in
the reaction network, then the resulting directed graph
G with c vertices and r edges is called the graph of com-
plexes3, and is defined by its c × r incidence matrix D.
Since each of the c complexes is a combination of the
m chemical species, we define the m × c matrix Z with
non-negative integer elements expressing the composi-
tion of the complexes in terms of the chemical species.
The kth column of Z denotes the composition of the kth
complex, and the matrix Z is called the complex com-
position matrix4. It can be immediately verified that ZD
equals the standard m × r stoichiometric matrix S. The
special case of Z being the identity matrix corresponds
to single-species substrate and product reaction networks
(SS reaction networks). In general, the mapping Z : R

c →
R

m defines a representation (Godsil & Royle, 2001) of
the graph of complexes G into the space R

m of chemical
species (the αth vertex is mapped to the αth column of Z
in R

m). Compared with other forms of network dynam-
ics, the presence of the matrix Z constitutes a major, and
non-trivial, difference; especially in caseZ is not injective.

The dynamics of the reaction network takes the form

ẋ = Sv(x) = ZDv(x), (1)

where v(x) is the r-dimensional vector of reaction rates
depending on the m-dimensional vector of concentra-
tions x. The most basic way to define v(x) is mass action
kinetics. For example, for the reactionX1 + 2X2 →X3, the
mass action kinetics reaction rate is given as v(x) = kx1x22
with k > 0 a reaction constant. In general, for a single
reaction with substrate complex S specified by its corre-
sponding column ZS = [

ZS1 · · ·ZSm
]T of the complex

composition matrix Z, the mass action kinetics reaction
rate is given by

kxZS1
1 xZS2

2 . . . xZSm
m ,

which can be rewritten as k exp(ZT
SLn x). Hence, the reac-

tion rates of the total reaction network are given by

v j(x) = k j exp(ZT
S j
Ln x), j = 1, . . . , r,
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where S j is the substrate complex of the jth reaction with
reaction constant kj > 0. This yields the following com-
pact description of the total mass action kinetics rate vec-
tor v(x). Define the r × c matrix K as the matrix whose
(j, σ )th element equals kj, if the σ th complex is the sub-
strate complex for the jth reaction, and zero otherwise.
We will call K the outgoing co-incidence matrix (since the
σ th column of K specifies the weighted outgoing edges
from vertex σ ). Then,

v(x) = KExp (ZTLn x), (2)

and the dynamics of the mass action kinetics reaction
takes the form

ẋ = ZDKExp (ZTLn x). (3)

The same expression (in less explicit form) was already
obtained in Sontag (2001).

It can be verified that the c × c matrix L � −DK
has non-negative diagonal elements and non-positive off-
diagonal elements. Moreover, since 1T

mD = 0 also 1T
mL =

0, i.e., the column sums of L are all zero. Hence, L defines
(a transposed version of) a weighted Laplacian matrix5.
From now on, we will simply call L= −DK the Laplacian
matrix of the graph of complexes G.

2.2 Analysis of complex-balanced reaction network
dynamics

A CRN (3) is called complex-balanced (Horn, 1972) if
there exists an x∗ ∈ R

m
+, called a complex-balanced equi-

librium, satisfying6

Dv(x∗) = −LExp (ZTLn (x∗)) = 0. (4)

Chemically (4) means that at the complex-balanced equi-
librium x∗, not only the chemical species but also the
complexes remain constant, i.e., for each complex, the
total inflow (from the other complexes) equals the total
outflow (to the other complexes). Defining now the diag-
onal matrix

�(x∗) := diag
(
exp(ZT

i Ln (x∗))
)
i=1,...,c, (5)

the dynamics (3) can be rewritten into the form

ẋ = −ZL(x∗)Exp
(
ZTLn

(
x
x∗

))
, L(x∗) := L�(x∗),

(6)

where, since Exp (ZTLn ( x
∗
x∗ )) = 1c, the transformed

Laplacian matrix L(x∗) satisfies

L(x∗)1c = 0, 1T
c L(x∗) = 0. (7)

Hence,L(x∗) is a balanced Laplacianmatrix (column and
row sums are zero).
Remark 2.1: As shown in Rao et al. (2013a), the matrix
L(x∗) is independent of the choice of the complex-
balanced equilibrium x∗ up to a multiplicative factor for
every connected component of G.
Remark 2.2: Under the stronger detailed-balanced
assumption (Oster & Perelson, 1974; Oster et al., 1973;
van der Schaft et al., 2013a), the Laplacian matrix L(x∗)
is not only balanced, but is in fact symmetric. In the
Appendix, it is discussed how the detailed-balanced
situation can be understood as a special case of the
complex-balanced one.

Remark 2.3: Note that the vector Exp (ZTLn (x∗)) cor-
responding to a complex-balanced equilibrium x∗ ∈ R

m
+

defines a vector in R
c
+ that is in the kernel of the Lapla-

cian matrix L. It thus follows (Gatermann, 2002, Lemma
3.2.9) that the connected components of the graph G of a
complex-balanced reaction network are all strongly con-
nected7. This follows as well from the fact that a graph
with balanced Laplacian matrix is strongly connected if
and only if it is connected (Godsil & Royle, 2001). The
property also follows from Kirchhoff ’s matrix tree theo-
rem to be discussed later on.

As shown in Rao et al. (2013a) (generalising the
detailed-balanced scenario of van der Schaft et al.
(2013a)) a number of key properties of the reaction net-
work dynamics can be derived in an insightful and easy
way from the following fundamental fact. It is well known
(Cortés, 2008) that balancedness of L(x∗) is equiva-
lent to L(x∗) + LT (x∗) being positive semi-definite, i.e.,
αTLα ≥ 0 for all α ∈ R

c. Based on convexity of the expo-
nential function, we can establish the following property
(Rao et al., 2013a).

Proposition 2.4: γ TL(x∗)Exp (γ ) ≥ 0 for any γ ∈ R
r,

with equality if and only if DTγ = 0.

This result leads to a direct proof of a number of key
properties of (6), which are known within the CRN the-
ory but proven by tedious derivations. The first property
which directly follows fromProposition 2.4 is that all pos-
itive equilibria are in fact complex-balanced equilibria,
and that given one complex-balanced equilibrium x∗ the
set of all positive equilibria is given by

E := {x∗∗ ∈ R
m
+ | STLn (

x∗∗) = STLn
(
x∗)}. (8)
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In particular, the set of positive equilibria E is a smooth
manifold of dimension m − rank S. Another property of
E can be seen to be implied by the extra assumption of
mass conservation, which is defined as follows.
Definition 2.5: A reaction network with complex com-
positionmatrixZ and incidencematrixD is said to satisfy
mass conservation if there exists μ ∈ R

m
+, such that

ZTμ ∈ kerDT , (9)

or, equivalently, STμ = DTZTμ = 0.

Remark 2.6: In caseG is connected kerDT = span1, and
the definition of mass conservation reduces to the exis-
tence of μ ∈ R

m
+, such that ZTμ = 1. The vector μ spec-

ifies a vector of mass assignments (μi being the mass
associated to the ith chemical species), and the condition
ZTμ = 1 means that all complexes have identical mass.
For the general case, this holds on any connected compo-
nent of G.
Proposition 2.7: The origin 0 is on the boundary of E if
and only if the CRN satisfies mass conservation.

Proof: There exists a x∗∗ ∈ R
m
+ with all entries arbitrarily

close to 0 with STLn (x∗∗) = STLn (x∗) if and only if there
exists a vector z with all entries arbitrarily close to −�,
such that STz= STLn (x∗). This, in turn, holds if and only
if there exists a positive vector μ ∈ ker ST = kerDTZT ,
or, equivalently, ZTμ ∈ kerDT . �

It directly follows (Rao et al., 2013a; Sontag, 2001)
from the structure of the Laplacian matrix L that the
dynamics (3) leaves the positive orthant R

m
+ invariant.

Hence, concentrations of chemical species remain posi-
tive for all future times. On the other hand, this does not
rule out the possibility that the solution trajectories of (3)
will approach the boundary of the positive orthant for
t → �. The reaction network is called persistent8 if for
every x0 ∈ R

m
+ the ω-limit set ω(x0) of the dynamics (3)

does not intersect the boundary of R̄
m
+.

Using a result from Feinberg (1995), there exists for
any initial condition x0 ∈ R

m
+ a unique x∗∗ ∈ E , such that

x∗∗ − x0 � im S. Furthermore, Proposition 2.4 yields (Rao
et al., 2013a; van der Schaft et al., 2013a) that the time
derivative of the function

G(x) := xTLn
( x
x∗∗

)
+ (

x∗∗ − x
)T

1m (10)

is negative outside E and thus qualifies as a Lyapunov
function, implying that the vector of concentrations x(t)
starting from x0 will converge to x∗∗ if the reaction net-
work is persistent.

The chemical interpretation is that G is (up to a con-
stant) theGibbs’ free energy (Oster&Perelson, 1974;Oster

et al., 1973; van der Schaft et al., 2013a), with gradient vec-
tor ∂G

∂x (x) = Ln
( x
x∗∗

)
being the vector of chemical poten-

tials. Hence, (6) can be rewritten as

ẋ = −ZL(x∗)Exp
(
ZT ∂G

∂x
(x)

)
(11)

and the ‘driving forces’ of the reactions are seen to be
determined by the complex thermodynamical affinities9

γ (x) := ZT ∂G
∂x (x) = ZTLn ( x

x∗∗ ), and equilibrium arises
whenever the components of γ (x) reach ‘consensus’ on
every connected component of the graph of complexes G.

2.3 Port-Hamiltonian formulation

The formulation (11) admits a direct port-Hamiltonian
interpretation (see e.g. van der Schaft, 2000; van der
Schaft & Jeltsema, 2014; van der Schaft & Maschke,
1995 for an introduction to port-Hamiltonian systems).
Indeed, consider the auxiliary port-Hamiltonian system

ẋ = Z f

e = ZT ∂G
∂x

(x) (12)

with inputs f ∈ R
c and outputs e ∈ R

c, and Hamiltonian
given by the Gibbs’ free energy G defined in (10). It fol-
lows from Proposition 2.4 that

f = −L(x∗)Exp (e) (13)

defines a true energy-dissipating relation, that is, eTf � 0
for all e ∈ R

c and f ∈ R
c satisfying (13). By substituting

(13) into (12), one recovers the chemical reaction dynam-
ics (11).
Remark 2.8: It should be noted that the energy-
dissipating relation (13) is intrinsically nonlinear, and
generally (unless Z is e.g. the identity matrix; see the
SS reaction networks discussed later on) cannot be
integrated to a relation of the form f = − ∂R

∂e (e) for
some (Rayleigh) dissipation function R : R

c → R. On
the other hand, in the detailed-balanced case (see the
Appendix), one can define (generalised) conductances
associated to the edges.

2.4 Characterisation of complex balancedness

Complex balancedness can be fully characterised as
follows, cf. van der Schaft et al. (2015) for further
details. By the definition of Ln : R

m
+ → R

m, the exis-
tence of a complex-balanced equilibrium x∗ ∈ R

m
+, that

is, LExp (ZTLn (x∗)) = 0, is equivalent to the existence of
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a vector μ∗ ∈ R
m, such that

LExp (ZTμ∗) = 0, (14)

or equivalently, Exp (ZTμ∗) ∈ ker L. Furthermore, note
that Exp (ZTμ∗) ∈ R

c
+.

First assume that the graph G is connected. Then the
kernel of L is one-dimensional, and a vector ρ ∈ R

c
+

with ρ ∈ ker L can be computed by Kirchhoff ’s matrix
tree theorem10, which can be summarised as follows.
Denote the (i, j)th cofactor of L by Cij = ( − 1)i + jMi, j,
where Mi, j is the determinant of the (i, j)th minor of L.
Define the adjoint matrix adj(L) as the matrix with (i, j)th
element given by Cji. Then L · adj(L) = (det L)Ic, and
since det L = 0, this implies L · adj(L)= 0. Since1TL = 0
the sum of the rows of L is zero, and hence by the proper-
ties of the determinant function it follows thatCij does not
depend on i; implying that Cij � ρ j, j = 1, … , c. Hence,
by defining ρ � (ρ1, … , ρc), it follows that Lρ = 0 (cf.
Bollobas (1998), Theorem 14 on p.58).
Theorem 2.9: Let G be a connected graph with weighted
Laplacian matrix L satisfying 1TL = 0, implying that
Lρ = 0, where ρ j = Cij is the (i, j)th cofactor of L. Then,
ρ j is equal to the sum of the products of weights of all the
spanning trees of G directed towards vertex j.

In particular, it follows that ρ j � 0, j = 1, … , c. More-
over, since for every vertex j, there exists at least one
spanning tree directed towards j if and only if the graph
is strongly connected, ρ ∈ R

c
+ if and only if the graph is

strongly connected.
Example 2.10: Consider the cyclic reaction network

in the three (unspecified) complexes C1, C2, C3. The
Laplacian matrix is given as

L =
⎡
⎣ k1 + k6 −k2 −k5

−k1 k2 + k3 −k4
−k6 −k3 k4 + k5

⎤
⎦.

By Kirchhoff ’s matrix tree theorem, the corresponding
vector ρ satisfying Lρ = 0 is given as

ρ =
⎡
⎣ k3k5 + k2k5 + k2k4
k1k5 + k1k4 + k4k6
k1k3 + k3k6 + k2k6

⎤
⎦,

where each term corresponds to one of the threeweighted
spanning trees pointed towards the three vertices.

In case the graph G is not connected, the same analysis
can be performed on any of its connected components.
Remark 2.11: The existence (not the explicit construc-
tion) of ρ ∈ R̄

c
+ already follows from the Perron–

Frobenius theorem (Horn, 1972), (Sontag, 2001, Lemma
V.2); exploiting the fact that the off-diagonal elements of
−L � DK are all non-negative.

Returning to the existence of μ∗ ∈ R
m satisfying

LExp (ZTμ∗) = 0 all this implies the following. Let
G j, j = 1, . . . , �, be the connected components of the
graph of complexes G. For each connected component,
define the vectors ρ1, … , ρ� as above by Kirchhoff ’s
matrix tree theorem (i.e., as cofactors of L or equivalently
as sums of products of weights along spanning trees).
Then, define the total vector ρ as the stacked column vec-
tor ρ � col(ρ1, … , ρ�). Partition correspondingly the
complex composition matrix Z as Z = [Z1 …Z�]. Then,
there exists μ∗ ∈ R

m satisfying LExp (ZTμ∗) = 0 if and
only if each connected component is strongly connected
and on each connected component

Exp (ZT
j μ

∗) = β jρ
j, j = 1, . . . �, (15)

for some positive constants β j, j = 1, … �. This in turn
is equivalent to strong connectedness of each connected
component of G and the existence of constants β ′

jE, such
that

ZT
j μ

∗ = Ln ρ j + β ′
j1, j = 1, . . . , �. (16)

Furthermore, this is equivalent to strong connectedness
of each connected component, and

Ln ρ ∈ imZT + kerDT . (17)

Finally, (17) is equivalent to

DTLn ρ ∈ imDTZT = im ST . (18)

Summarising, we have obtained the following.
Theorem 2.12: The reaction network dynamics
ẋ = −ZLExp (ZTLn (x)) on the graph of complexes
G is complex balanced if and only if each connected
component of G is strongly connected (or, equivalently,
ρ ∈ R

c
+) and (18) is satisfied, where the coefficients of the

sub-vectors ρ j of ρ are obtained by Kirchhoff ’s matrix tree
theorem for each jth connected component of G.

Clearly, if imZT = R
c, or equivalently kerZ = 0, then

(17) is satisfied for any ρ.
Corollary 2.13: The reaction network dynamics ẋ =
−ZLExp (ZTLn (x)) is complex balanced if and only if



INTERNATIONAL JOURNAL OF CONTROL 737

ρ ∈ R
c
+ and

ρ
σ1
1 · ρ

σ2
2 · · · · ρσc

c = 1, (19)

for all vectors σ = col(σ1, σ2, . . . , σc) ∈ kerZ ∩ imD.

Proof: Ln ρ ∈ imZT + kerDT if and only if σ TLn ρ = 0
for all σ ∈ (imZT + kerDT )⊥ = kerZ ∩ imD, or equiv-
alently

0 = σ1 ln ρ1 + · · · + σc ln ρc = ln ρ
σ1
1 + · · · + ln ρσc

c

= ln(ρ
σ1
1 · · · ρσc

c )

for all σ ∈ kerZ ∩ imD. �
Remark 2.14: Note that the assumption of mass con-
servation (Definition 2.5) may interfere with condition
(17). Indeed, mass conservation implies kerDT ⊂ imZT

(unless Z = 0), in which case (17) reduces to Ln ρ �
imZT.

In the Appendix, we will indicate how the constructive
conditions for the existence of a complex-balanced equi-
librium as obtained in Theorem 2.12 relate to the classi-
calWegscheider conditions for the existence of a detailed-
balanced equilibrium.

2.5 SS reaction networks

Reaction networks with single-species substrate and
product complexes (SS reaction networks) correspond to
c=m and Z= Im, in which case the dynamics (3) reduces
to the linear dynamics

ẋ = DKx. (20)

An SS reaction network is complex-balanced, if there
exists a positive equilibrium x∗ ∈ R

m
+, such that DKx∗ =

0, and hence can be rewritten as

ẋ = −L(x∗)
x
x∗ , L(x∗) := −DK�(x∗),

�(x∗) := diag (x∗
1, . . . , x

∗
m), (21)

where L(x∗) is a balanced Laplacian matrix. The set
of positive equilibria of a complex-balanced SS reac-
tion network is given as E = {x∗∗ ∈ R

m
+ | DTLn (x∗∗) =

DTLn (x∗)}, and thus, in case the graph G is connected,
as E = {x∗∗ | x∗∗ = px∗, p > 0}.

In Remark 2.3, we already mentioned that the exis-
tence of a complex-balanced equilibrium implies that
the connected components of the graph are strongly
connected. For SS reaction networks, also the converse
holds, as follows from the above discussion, either based
on Kirchhoff ’s matrix tree theorem or on the Perron–
Frobenius theorem. Still another way is to make use of

a result of Horn (1972) stating that a mass action CRN is
complex balanced if it is strongly connected and has zero
deficiency, meaning that rankD = rankZD, which obvi-
ously is the case for any SS network.

2.6 Relationwith consensus dynamics

The dynamics ẋ = −Lx = DKx with 1TL = 0 as occur-
ring in SS reaction networks can be regarded as ‘dual’ to
the standard consensus dynamics ẋ = −Lcx, where the
matrix Lc has non-negative diagonal elements and non-
positive off-diagonal elements and satisfies Lc1 = 0. In
a different context, this has been explored in Chapman
and Mesbahi (2011), where ẋ = −Lx with 1TL = 0 was
called advection dynamics. As also noted in Chapman and
Mesbahi (2011), this duality originates from a duality in
the interpretation of the edges of the underlying directed
graph G. For ẋ = −Lx with 1TL = 0, an edge from ver-
tex i to j denotes ‘material flow’ from vertex i to vertex j,
while for ẋ = −Lcxwith Lc1 = 0, an edge from vertex i to
j denotes ‘information’ about vertex i available at vertex j.
Thus, in the first case, the graphG denotes a flownetwork,
while in the latter case, G is a communication graph.

It follows that the results described so far for flow net-
works can be ‘transposed’ to communication graphs and
consensus dynamics. First of all, the Laplacian Lc with
Lc1 = 0 can be expressed asLc =−JTDT, whereD is again
the incidence matrix of G while J (dually to the matrix
K as before) can be called the incoming co-incidence
matrix: the ith column of J specifies the weighted edges
incoming to vertex i. Furthermore, the idea of trans-
forming the ‘out-degree’ Laplacian matrix L = −DK to a
balanced Laplacian matrix L(x∗) under the assumption
of complex balancedness of the graph (or equivalently,
under the assumption of strong connectedness of its con-
nected components) can be also applied to the consensus
dynamics ẋ = −Lcx with Lc1 = 0. Indeed, assume that
the connected components of the graph G are strongly
connected. Then, Kirchhoff ’s matrix tree theorem pro-
vides a positive vector σ ∈ R

m
+, such that σ TLc = 0. In

fact, σ j is given as the sum of the products of the weights
along directed spanning trees directed from vertex j. It
follows that d

dt
∑m

j=1 σ jx j = 0, implying that
∑m

j=1 σ jx j
is a conserved quantity . Defining the diagonal matrix
� � diag (σ 1, … , σm) the transformed Laplacian matrix
Lc := �Lc is balanced, andhenceLT

c + Lc ≥ 0.Note that
this immediately yields an easy stability proof of the set
of equilibria E = {x ∈ R

m
+ | x = d1, d > 0} for the con-

sensus dynamics ẋ = −Lcx. Indeed, the positive function
V(x) � xT�x satisfies

d
dt
V (x) = −xT (LTc � + �Lc)x = −xT (LT

c + Lc)x ≤ 0,

(22)
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and thus serves as a Lyapunov function proving asymp-
totic stability of the set of consensus states E . Further-
more, for any initial condition x0, the dynamics will con-
verge to the consensus state d∗1, where d∗ is given as d∗ =
1
m

∑m
j=1 σ jx0 j, with σ 1, … , σm determined as above by

Kirchhoff ’s matrix tree theorem.

3. Reaction networks with constant inflows and
mass action kinetics outflows

In many cases of interest, including bio-chemical net-
works, reaction networks have inflows and outflows of
chemical species. A mass action kinetics CRN with con-
stant inflows andmass action kinetics outflows is described
by the following extension of (3)

ẋ = ZDv(x) + ZDinvin + ZDoutvout(x), x ∈ R
m
+.

(23)

Here the matrices Din and Dout specify the structure of
the inflows and outflows. Din is a matrix whose columns
consist of exactly one element equal to +1 (at the row
corresponding to the complex which has inflow) while
the other elements are zero. Similarly, Dout is a matrix
whose columns consist of exactly one element equal
to−1 (at the row corresponding to the complexwhich has
outflow) while the rest are zero. As in the closed network
case, v(x) is the vector of (internal) mass action kinetics
reaction rates given by v(x) = KExp (ZTLn (x)). Further-
more, vin ∈ R

k
+ is a vector of constant positive inflows,

while vout(x) ∈ R
l
+ is a vector ofmass action kinetics out-

flows described by mass action kinetics as

Doutvout(x) = −�outExp (ZTLn (x)), (24)

where �out is a diagonal matrix with non-negative ele-
ments given by the mass action kinetics rate constants.
Remark 3.1: Note that (23) formalises a situation of direct
in- and outflow of chemical species contained within the
given chemical complexes of the reaction network. For
other scenarios of openCRNs, such as continuous-stirred
tank reactors with convective in- and outflows, we refer to
e.g. Hangos and Cameron (2001).

A classical idea due to Horn and Jackson (1972) is that
by the addition of an extra complex, the reaction network
(23) can be represented as a closed reaction network on
the extended graph. In fact, this extra complex is added
in such a way that the edges from the extra complex to
the ordinary complexes model the inflows into the net-
work, while the edges towards the extra complex model
the outflows of the network. The complex composition
matrix zzero corresponding to the extra complex is defined

to be them-dimensional zero column vector, and the extra
complex is therefore called the zero complex. Hence, the
zero complex serves as a combined ‘source and sink’ com-
plex, which does not contribute to the overall mass. As a
consequence, the extended network cannot satisfy mass
conservation, cf. Definition 9.

The resulting graph, consisting of the original graph
of complexes together with the zero complex, is called the
extended graph of complexes of the open reaction network
(23), and has complex composition matrix

Ze :=
[
Z zzero

] = [
Z 0

]
.

The incidence matrix of the extended complex graph,
denoted by De, is given as

De =
[

B
bzero

]
,

with bzero a row vector corresponding to the zero com-
plex, while in the notation of (23)

B = [
D Din Dout

]
. (25)

Now define the c-dimensional column vector lin as

lin = −Dinvin. (26)

Furthermore, let lout be the c-dimensional row vector
whose ith element is equal to minus the ith diagonal ele-
ment of�out. Then, extend the c× c Laplacianmatrix L of
the graph of (ordinary) complexes to an (c+ 1)× (c+ 1)
Laplacian matrix Le of the extended graph of complexes
as

Le :=
[
L + �out lin

lout δin

]
, (27)

where δin � 0 equals minus the sum of the elements of lin.
By construction, Le has non-negative diagonal elements,
non-positive off-diagonal elements, while its columns
sums are all zero.

It follows that the dynamics (23) of the mass action
reaction network with constant inflows and mass action
kinetics outflows is equal to the mass action kinet-
ics dynamics of the extended graph of complexes with
extended stoichiometric matrix Se = ZeDe. Indeed, since
zzero = 0

ẋ = Z[Dv(x) + Dinvin + Doutvout(x)] = ZBve(x)
= ZeDeve(x) = Seve(x), (28)
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where

ve(x) =
⎡
⎣ v(x)

vin
vout(x)

⎤
⎦ (29)

with v(x)=KExp (ZTLn (x)). Furthermore, by using (24),
(26), and (27),

ẋ = Z[Dv(x) + Dinvin + Doutvout(x)]

= −[
Z 0

]
Le

[
Exp (ZTLn (x))

1

]

= −ZeLeExp (ZT
e Ln (x)). (30)

Example 3.2: As an example, to be continued in the rest
of the paper, let us consider a subnetwork of a biochemi-
cal reaction network describing liver iron metabolism as
studied in Mitchell and Mendes (2013). The full CRN in
Mitchell and Mendes (2013) contains 44 reactions which
are mostly based on mass-action kinetics. In the present
example, we focus on the subnetwork

where its interconnection with the rest of the network is
represented by a constant inflow and amass-action kinet-
ics outflow. HFE, TfR2 and HFE2-TfR2 denote, respec-
tively, the plasma haeme, transferrin receptor, and a
binding-complex (not to be confused with our previ-
ous definition of complexes), which are three of the
species involved in the complete liver iron metabolism
(Mitchell & Mendes, 2013). The constants k+ and k− are
the forward and reverse reaction constants of the inter-
nal reversible reaction of the subnetwork, kin is the con-
stant inflow rate, and kout is the outflow reaction constant.
In line with the standard notation, denote x1 �[HFE],
x2:=[TfR2], x3 �[HFE2−TfR2] and x = [ x1 x2 x3 ]T ,
where [X] denotes the concentration of species X. The
complex composition matrix Z for this example is given
by

Z =
⎡
⎣2 0
1 0
0 1

⎤
⎦.

The Laplacian matrix of the internal reversible reaction
(split into a forward and reverse reaction) is

L =
[

k+ −k−
−k+ k−

]
.

Together with the zero complex, this corresponds to the
Laplacian of the extended graph of complexes

Le =
⎡
⎣ k+ −k− −kin

−k+ k− + kout 0
0 −kout kin

⎤
⎦

and the following dynamics of the reaction network as in
(23)

ẋ = Z
([−k+ k−

k+ −k−

][
x21x2
x3

]
+

[
kin
0

]
−

[
0

koutx3

])
.

4. Analysis of reaction networks with constant
inflows andmass action kinetics outflows

Based on the formulation of the previous section,
we can extend the results concerning the stability of
closed complex-balanced reaction networks (especially
the characterisation of the set E of positive equilibria
in (8) and the use of the Lyapunov function G defined
in (10) for proving the asymptotic stability of E) to
open reaction networks with constant inflows and mass
action kinetics outflows, satisfying an adapted complex-
balanced assumption. As before, we note that the rep-
resentation (30) implies that the positive orthant R

m
+ is

invariant for (23).

Definition 4.1: An x∗ ∈ R̄
m
+ is called a steady state of the

reaction network with constant inflows and mass action
kinetics outflows given by (23) if

Z[Dv(x∗) + Dinvin + Doutvout(x∗)] = 0. (31)

An x∗ ∈ R
m
+ is called a complex-balanced steady state if

Dv(x∗) + Dinvin + Doutvout(x∗) = 0. (32)

If there exists a complex-balanced steady state x∗ ∈ R
m
+,

then the open reaction network (23) is called complex bal-
anced .

Note that, similar to the case of closed networks, in
a complex-balanced steady state, the total inflow from
every complex is equal to the total outflow from it.

The definition of a complex-balanced steady state x∗

can be succinctly written as Bve(x∗) = 0, with B given by
(25) and ve given by (29). We have the following simple
but crucial observation showing that complex-balanced
steady states for (23) are actually complex-balanced equi-
libria of the extended network, and conversely.

Proposition 4.2: x∗ is a complex-balanced steady state,
i.e., Bve(x∗) = 0, if and only if Deve(x∗) = 0.
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Proof: Since1TDe = 0 the last row ofDe is dependent on
its first c rows, i.e., the rows of B. Hence, ve(x∗) ∈ kerDe
if and only if ve(x∗) ∈ kerB. �

If the network with constant inflows and mass action
kinetics outflows has complex-balanced steady state x∗,
then similarly to (5) for closed complex-balanced reac-
tion networks, we define the diagonal matrix

�e(x∗) := diag
(
exp(ZT

i Ln (x∗))
)
i=1,...,c+1

=
[
diag

(
exp(ZT

i Ln (x∗))
)
i=1,...,c 0

0 1

]
=:

[
�(x∗) 0
0 1

]

and rewrite

Deve(x) = −Le(x∗)Exp
[
ZTLn ( x

x∗ )

0

]
,

where

Le(x∗) := Le�e(x∗) =
[

(L + �out)�(x∗) lin
lout�(x∗) δin

]
. (33)

Note that Exp
[
ZTLn ( x∗

x∗ ))

0

]
= 1c+1. Hence, the existence

of a complex-balanced steady state x∗ implies, by Propo-
sition 4.2, that Le(x∗)1c+1 = 0. Thus, Le(x∗) satisfies
1T
c+1Le(x∗) = 0, as well as Le(x∗)1c+1 = 0, and hence

defines a balanced -weighted Laplacian matrix for the
extended graph of complexes. The fact that the sum of
the elements of the last row of Le(x∗) is zero amounts to
the equality lout�(x∗)1c + δin = 0, or equivalently,

loutExp (ZTLn (x∗)) = 1T
c lin, (34)

which can be interpreted as a total mass-balance condi-
tion: at steady state, the total inflow in the reaction net-
work is equal to the total outflow.

We obtain the following refined version of Proposition
2.4.
Theorem 4.3: Define Le(x∗) as above. Then,

γ T
e Le(x∗)Exp (γe) ≥ 0 (35)

for all γ e, while equality holds if and only if DT
e γe = 0. Fur-

thermore, if γ e has last component zero, i.e., is of the form

γe =
[

γ

0

]
, (36)

then equality holds if and only if BTγ = 0, or equivalently

DTγ = 0,DT
inγ = 0,DT

outγ = 0. (37)

Proof: Only the last statement remains to be proved. This
follows by noting that if γ e is given as in (36), then
DT

e γe = 0 if and only if BTγ = 0. �

We obtain the following basic theorem extending and
refining the results for closed networks to the considered
subclass of open reaction networks.

Theorem 4.4: Consider a mass action kinetics reaction
network with constant inflows and mass action kinetics
outflows (23), for which there exists an x∗ ∈ R

m
+ satisfying

(32). Then
(1) The set of positive steady states is given as

{x∗∗ ∈ R
m
+ | BTZTLn (x∗∗) = BTZTLn (x∗)}, (38)

and all positive steady states are complex balanced.
(2)If every component of the graph of complexes is con-

nected to the zero complex (or equivalently, if the extended
graph of complexes is connected), then the set of steady
states is given as

{x∗∗ ∈ R
m
+ | ZTLn (x∗∗) = ZTLn (x∗)}.

In particular, if additionally Z is surjective then the steady
state x∗ is unique.

(3) For every x0 ∈ R
m
+, there exists a unique x1 ∈ E with

x1 − x0 � im S. The steady state x1 is locally asymptotically
stable with respect to initial conditions x0 with x1 − x0 �
im S. Furthermore, if the network is persistent, then x1 is
globally asymptotically stable with respect to all these initial
conditions.
Proof: (1) (38) follows from the characterisation of the
set of equilibria of a closed network, cf. (8), since the
transpose of the stoichiometric matrix for the extended
network is given as STe = DT

e ZT
e = BTZT . That every pos-

itive steady state is complex balanced can be proved sim-
ilar to the case of the closed networks case.

(2) Let x∗∗ be a positive steady state, and define
γ (x∗∗) = ZTLn ( x

∗∗
x∗ ). By the first part of the theorem,

this means that BTZTLn (x∗∗) = BTZTLn (x∗), which is
the same as BTγ (x∗∗) = 0, or equivalently (37). In par-
ticular, Dinγ (x∗∗) = 0 and Doutγ (x∗∗) = 0, and thus the
components of γ (x∗∗) corresponding to the complexes
directly linked to the zero complex are zero. Further-
more, since BTγ (x∗∗) = 0, it follows that the compo-
nents of γ (x∗∗) corresponding to each of the connected
components of the extended graph are equal. Hence,
if the extended graph of complexes is connected, then
γ (x∗∗) = 0, which is the same as ZTLn (x∗∗) = ZTLn (x∗).
In particular, if Z is surjective, then this implies that the
steady state x∗ is unique.

(3) This follows directly from the closed network
case. �



INTERNATIONAL JOURNAL OF CONTROL 741

It can be concluded from Theorem 4.4 that the pres-
ence of inflows and outflows has the tendency to ‘shrink’
the set of positive equilibria for the closed network to a
smaller set of positive steady states; in fact, to a singleton if
the extended graph is connected and Z is surjective. Fur-
thermore, as shown in the following proposition, if the
extended graph is connected, no steady states can occur
at the boundary of the positive orthant R

m
+, implying that

the reaction network is automatically persistent.

Proposition 4.5: Consider a reaction network with con-
stant inflows vin ∈ R

k
+ and mass action outflows (23),

which is complex balanced. If the extended graph of com-
plexes is connected, then there are no steady states at the
boundary of R

m
+.

Proof: Assume by contradiction that there exists a steady
state xb ∈ R̄

m
+ with at least one component (say the ith

one) equal to zero. Then, consider a complex C contain-
ing this ith species. Because xbi = 0, the outflows from
complex C are zero, and by complex balancedness, this
means that also all inflows to it are zero. From Remark
2.3, it follows that the extended graph of complexes is
strongly connected. Hence, there exists a directed path of
reactions� starting from the zero complex and ending at
C. Now consider the complexwhich is preceding the com-
plex C in this path. Then, its outflows are zero, and there-
fore by complex balancedness also its inflows. Repeating
this argument, this shows that along �, the inflow from
the zero complex is zero, which yields a contradiction. �
Example 4.6: Consider the reaction network in Example
3.2 with the Laplacian matrix of the extended graph of
complexes given as

Le =
⎡
⎣ k+ −k− −kin

−k+ k− + kout 0
0 −kout kin

⎤
⎦

A complex-balanced steady state x∗ = (x∗
1, x∗

2, x∗
3 ) satis-

fies the equations

[
k+ −k−

−k+ k− + kout

][
(x∗

1 )
2x∗

2
x∗
3

]
=

[
kin
0

]

or more explicitly

x∗
3 = kin

kout
, (x∗

1 )
2x∗

2 = (k− + kout)kin
k+kout

.

Hence, the network is complex balanced if kin � 0 and
kout � 0 (as well as in the degenerate case kin = kout = 0).
Themass-balance condition (34) in this case amounts to

koutx∗
3 = kin. (39)

If kin � 0 and kout � 0, then the set of steady states of
the network is one-dimensional. Note, on the other hand,
that the set of equilibria for the case without inflows and
outflows (kin = kout = 0) is two-dimensional; in line with
the observation that the addition of inflows and outflows
has the tendency to shrink the set of steady states as com-
pared to the set of equilibria. Finally, the resulting matrix
Le(x∗) is given by

Le(x∗) =
⎡
⎣ k+(x∗

1 )
2x∗

2 −k−x∗
3 −kin

−k+(x∗
1 )

2x∗
2 (k− + kout)x∗

3 0
0 −koutx∗

3 kin

⎤
⎦.

5. Structure-preservingmodel reduction of
open reaction networks

As detailed in the previous section, the dynamics of a
complex-balanced CRN with constant inflows and out-
flows governed by mass action kinetics can be written in
terms of the balanced Laplacian matrix given by (33) as
follows:

ẋ = −ZeLe(x∗)Exp
(
ZT
e Ln

(
x
x∗

))
. (40)

This specific form allows for the application of the model
reduction method discussed in Rao et al. (2014, 2013a);
see also van der Schaft et al. (2013a) for the detailed-
balanced case. Thismethod is inspired by theKron reduc-
tion method of resistive electrical networks described in
Kron (1939); see also van der Schaft (2010). The special-
ity of this method is that it is structure-preserving in the
sense that the reduced model corresponds to a complex-
balanced CRN governed by mass action kinetics just like
the original model. To make the paper self-contained, we
briefly describe themethod below. For a detailed descrip-
tion of the method, the reader is referred to Rao et al.
(2014, 2013a).

LetV denote the set of vertices of the extended graph of
complexes (i.e., including the zero complex).We perform
model reduction by deleting certain complexes, resulting
in a reduced graph of complexes. We ensure that the set
of complexes that are deleted does not include the zero
complex. Deletion of a complex is equivalent to impos-
ing the complex-balancing condition on it, i.e., the con-
dition that the net inflow into the complex is equal to the
net outflow from it. Consider a subset Vo ⊂ V of dimen-
sion c + 1 − ĉ that we wish to delete in order to reduce
the model. Without the loss of generality, assume that the
first ĉ rows and columns ofLe(x∗) and the first ĉ columns
of Ze correspond to Vr := V\Vo. Consider the resulting
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partition of Le(x∗) given by

Le(x∗) =
[L11(x∗) L12(x∗)
L21(x∗) L22(x∗)

]
, (41)

where L11(x∗) ∈ R
ĉ×ĉ, L12(x∗) ∈ R

ĉ×(c+1−ĉ), L21(x∗) ∈
R

(c+1−ĉ)×ĉ, and L22(x∗) ∈ R
(c+1−ĉ)×(c+1−ĉ), and the

resulting partition of Ze given by Ze = [
Z1 Z2

]
. Then,

write out the dynamics (40) as

ẋ = −[
Z1 Z2

][L11(x∗) L12(x∗)
L21(x∗) L22(x∗)

][
Exp

(
ZT
1 Ln

( x
x∗

))
Exp

(
ZT
2 Ln

( x
x∗

))
]
.

Consider now the auxiliary dynamical system
[
ẏ1
ẏ2

]
= −

[L11(x∗) L12(x∗)
L21(x∗) L22(x∗)

][
w1
w2

]
.

Note that the complex-balancing condition on the com-
plexes in Vo can be imposed by setting the constraint
ẏ2 = 0. This results in the equation

w2 = −L22(x∗)−1L21(x∗)w1,

leading to the reduced auxiliary dynamics defined by the
Schur complement

ẏ1 = −(L11(x∗) − L12(x∗)L22(x∗)−1L21(x∗)
)
w1

=: −L̂e(x∗)w1. (42)

Substituting w1 = Exp
(
ZT
1 Ln (x)

)
in the above equa-

tion andmaking use of ẋ = Z1ẏ1 + Z2ẏ2 = Z1ẏ1, we then
obtain the reduced model given by

ẋ = −ẐeL̂e(x∗)Exp
(
ẐT
e Ln

( x
x∗

))
, (43)

where Ẑe := Z1. The following proposition ensures that
L̂e(x∗) obeys all the properties of the weighted Lapla-
cian matrix of a complex-balanced reaction network cor-
responding to a graph of complexes with vertex set Vr.
Proposition 5.1: Consider an open complex-balanced net-
work with dynamics given by equation (40). With V , Vo,
and L̂e as defined above, the following properties hold:

(1) All diagonal elements of L̂e(x∗) are positive and off-
diagonal elements are non-negative.

(2) 1T
ĉ L̂e(x∗) = 0 and L̂e(x∗)1ĉ = 0, where ĉ := c +

1 − dim(Vo).
If E and Ê denote the set of steady states of the origi-

nal and the reduced networks described by (40) and (43),
respectively, then E ⊆ Ê .
Proof: See proofs of Rao et al. (2013a, Propositions 5.1,
5.2) �

From Proposition 5.1, it follows that the reduced net-
work (43) corresponding to a complex balanced network
(40) is also complex balanced. Complexes belonging to a
certain connected component remain in the same con-
nected component if not deleted. Thus, mass conserva-
tion is preserved under our model reduction procedure.

Finally, we remark that for the application of ourmodel
reduction method, one can also start directly from the
form of equations (30) given by ẋ = ZeLeExp (ZT

e Ln (x)),
instead of the form (40) that uses the balanced Laplacian.
Let L̂e denote the Schur complement of Le with respect
to the indices corresponding to Vo. Consider the reduced
model given by

ẋ = ẐeL̂eExp
(
ẐT
e Ln (x)

)

and note that it is the same as the reduced model (43).

6. Conclusions and outlook

We have discussed mass action kinetics CRNs as a chal-
lenging example of large-scale and nonlinear network
dynamics, and have pointed out similarities with (non-
linear versions of) consensus dynamics. A fundamen-
tal difference resides in the complex composition matrix
Z, which defines a representation of the graph of com-
plexes (into the space of chemical species). Kirchhoff ’s
matrix tree theorem has been discussed as an insightful
way to compute the kernel of the Laplacianmatrix, which,
among others, yields an explicit characterisation of the
existence of a complex-balanced equilibrium. Also, the
relation to mass conservation has been pointed out.

For a particular class of open reaction networks,
namely those with constant inflows and mass action
kinetics outflows, a detailed stability analysis has been
obtained by exploiting the notion of zero complex. By
using the graph-theoretical techniques that we have used
earlier to analyse closed complex-balanced reaction net-
works, this leads to a complete steady-state stability anal-
ysis. Our results imply the intuitively obvious fact that
the presence of inflows and outflows has the tendency to
shrink the set of positive equilibria to a smaller set of pos-
itive steady states, and leads to the preclusion of possible
steady states at the boundary of the positive orthant. This
can be related to the feedback stabilisation problem stud-
ied in Sontag (2001), as well as to internal model control.

An important extension of our results concerns the
consideration of other types of kinetics, in particular,
Michaelis-Menten kinetics; see already (Jayawardhana,
Rao, & van der Schaft, 2012) for the closed network case.
Furthermore, the framework described in this paper can
serve as a starting point for the inclusion of regulatory
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networks, thus leading to control and ‘reverse engineer-
ing’ questions.

Notes

1. Recently, also in Craciun and Feinberg (2010), the idea of
adding a zero complex was followed up; however in the
different context of preclusion of multi-stability.

2. Sometimes called amultigraph, since we allow for multi-
ple edges between vertices.

3. In the literature sometimes also referred to as reaction
graphs.

4. In van der Schaft et al. (2013a), Rao et al. (2013a), the
matrix Z was called the ‘complex stoichiometric matrix’.

5. In Chapman and Mesbahi (2011), such a matrix L was
called an out-degree Laplacian matrix.

6. In the special case imD ∩ kerZ = {0} (deficiency zero
in the terminology of Feinberg (1972)), complex-
balancedness is equivalent to the existence of a positive
equilibrium of (3).

7. Strong connectedness of the connected components is in
the CRN literature often referred to as weak reversibility
(Horn, 1972)

8. It is generally believed that most reaction networks are
persistent. However, up to now, this persistence conjec-
ture has been only proved in special cases (cf. Anderson
(2011), Angeli, De Leenheer, and Sontag (2011), Siegel
andMacLean (2000), and the references quoted in there).

9. See e.g. Oster et al. (1973), van der Schaft et al. (2013a),
van der Schaft et al. (2013b) for further information.

10. This theorem goes back to the classical work of Kirch-
hoff on resistive electrical circuits (Kirchhoff, 1847); see
Bollobas (1998) for a succinct treatment. Nice accounts
of the matrix tree theorem in the context of CRNs can be
found in Mirzaev and Gunawardena (2013), Gunawar-
dena (2014).

11. Thermodynamically the assumption of detailed-
balancedness is well-justified; it corresponds to micro-
scopic reversibility (Oster et al., 1973).

12. It can be shown (van der Schaft et al., 2013a) that the
matrix Kr(x∗) is independent of the choice of the ther-
modynamic equilibrium x∗ up tomultiplicative factor for
every connected component ofH.

13. As shown in van der Schaft et al. (2015) the weakened
Wegscheider conditions are also equivalent to the notion
of formal balancing introduced in Dickenstein and Perez
Millan (2011) as a formalization of the ‘circuit conditions’
of Feinberg (1989).
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Appendix. Detailed-balanced reaction networks

The assumption of existence of a complex-balanced equi-
librium can be strengthened to the existence of a detailed-
balanced equilibrium. In this case, we start with a directed
graph of complexes H with c complexes and r edges,
where each edge corresponds to a reversible reaction, cf.
van der Schaft et al. (2013a). Assuming again mass action
kinetics, the reaction rate v r

j(x) of each jth reversible reac-
tion is given as the difference

v r
j(x) = k+

j exp(ZT
S j
Ln x) − k−

j exp(ZT
P j
Ln x),

whereS j is the substrate andP j the product complex, and
where k+

j and k−
j are respectively the forward and reverse

reaction constants of the reversible reaction. Note that
v r
j(x) may take positive and negative values, in contrast

with the previously considered case of irreversible reac-
tion rates v j(x) � 0. A reversible reaction network can be
brought into the irreversible form as discussed before by
defining the directed graph G as having the same vertex
set as H but with twice as many edges: every edge (i, j)
ofH is split into two edges (of opposite orientation) (i, j)
and (j, i) of G.

A reversible mass action kinetics reaction network
with graph of complexes H is called detailed balanced if
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there exists an x∗ ∈ R
m
+ satisfying v r(x∗) = 0, i.e.

k+
j exp

(
ZT
S j
Ln (x∗)

)
= k−

j exp
(
ZT
P j
Ln (x∗)

)
, j = 1, . . . , r

It is immediate that detailed balancedness is a special case
of complex balancedness, with the reaction rates in the
two opposite edges of G corresponding to a single edge
of H being equal11 (instead of having the total sum of
inflows to be equal to the total sum of outflows for every
complex.)

Defining the equilibrium constants Keq
j = k+

j

k−
j

of
each reversible reaction, and the vector Keq :=
(Keq

1 , . . . ,Keq
r )T , it can be shown (Feinberg, 1989; Schus-

ter & Schuster, 1989; van der Schaft et al., 2013a) that
detailed balancedness is equivalent to the Wegscheider
conditions

LnKeq ∈ imDT
HZ

T = im STH,

with DH the incidence matrix of the graph H, and SH
the stoichiometric matrix corresponding toH (i.e., every
column of SH corresponds to a reversible reaction). The
assumption of detailed balancedness implies that all equi-
libria are actually detailed balanced, and that we may
define the conductances of the jth reversible reaction as

κ j(x∗) := k+
j exp

(
ZT
S j
Ln (x∗)

)
= k−

j exp
(
ZT
P j
Ln (x∗)

)
,

j = 1, . . . , r (44)

(See Ederer & Gilles, 2007; van der Schaft et al., 2013b
for a discussion regarding the similarities of these con-
stants with conductances in other physical networks.) It
is readily seen that the detailed-balanced assumption is
equivalent to the transformed Laplacian matrixL(x∗) :=
L�(x∗) being symmetric, with the (i, j)th = (j, i)th ele-
ment being equal to the conductance of the reversible
reaction between the ith and the jth complex. This means
that L(x∗) can be written as

L(x∗) = DHKr(x∗)DT
H,

where12 Kr(x∗) is the diagonal matrix of conductances
κ j(x∗), j = 1, … , r. Hence (van der Schaft et al., 2013a),

the dynamics takes the form

ẋ = −ZDHKr(x∗)DT
HExp

(
ZTLn (

x
x∗ )

)
.

ForZ= I, this amounts to symmetric consensus dynamics
on the graphH without its orientation.

Finally we will indicate the connections of the
Wegscheider conditions mentioned above to the char-
acterisation of complex balancedness as obtained by
Kirchhoff ’s matrix tree theorem. For further details,
we refer to van der Schaft et al. (2015). Consider
a complex-balanced reaction network, with Laplacian
matrix L = −DK. Based on Kirchhoff ’s matrix tree the-
orem, compute the vector ρ ∈ R

c
+ satisfying Lρ = 0,

leading to the transformed balanced Laplacian matrix
L given as L = Ldiag (ρ1, . . . , ρc). In case the reac-
tion network is detailed balanced, it follows that this
transformed Laplacian matrix L is actually symmet-
ric; instead of just balanced. Symmetry of L can be
seen to be equivalent to the weakened Wegscheider
conditions13 (only depending on the structure of the
graph of complexes, and not on the composition of the
complexes)

LnKeq ∈ imDT
H

Example A.1: Consider the network described in Exam-
ple 2.10. The transformed Laplacian matrix is computed
as

L =
⎡
⎣ k1 + k6 −k2 −k5

−k1 k2 + k3 −k4
−k6 −k3 k4 + k5

⎤
⎦

⎡
⎣ k3k5 + k2k5 + k2k4 0 0

0 k1k5 + k1k4 + k4k6 0
0 0 k1k3 + k3k6 + k2k6

⎤
⎦

=
⎡
⎣ (k1 + k3)(k3k5 + k2k5 + k2k4) −k2(k1k5 + k1k4 + k4k6) −k5(k1k3 + k3k6 + k2k6)

−k1(k3k5 + k2k5 + k2k4) (k2 + k3)(k1k5 + k1k4 + k4k6) −k4(k1k3 + k3k6 + k2k6)
−k6(k3k5 + k2k5 + k2k4) −k3(k1k5 + k1k4 + k4k6) (k4 + k5)(k1k3 + k3k6 + k2k6)

⎤
⎦ .

This matrix is symmetric if and only if

k1k3k5 = k2k4k6.

On the other hand, LnKeq ∈ DT
H amounts to

⎡
⎢⎢⎢⎢⎣

ln k1
k2

ln
k3
k4

ln
k5
k6

⎤
⎥⎥⎥⎥⎦ ∈ im

⎡
⎣−1 0 1

1 −1 0
0 1 −1

⎤
⎦,

which reduces to ln k1
k2

+ ln k3
k4

+ ln k5
k6

= 0, and hence to
the same condition k1k3k5 = k2k4k6.
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