8,365 research outputs found

    Fault Detection and Diagnosis for Gas Turbines Based on a Kernelized Information Entropy Model

    Get PDF
    Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms

    Spatial-Temporal Data Mining for Ocean Science: Data, Methodologies, and Opportunities

    Full text link
    With the increasing amount of spatial-temporal~(ST) ocean data, numerous spatial-temporal data mining (STDM) studies have been conducted to address various oceanic issues, e.g., climate forecasting and disaster warning. Compared with typical ST data (e.g., traffic data), ST ocean data is more complicated with some unique characteristics, e.g., diverse regionality and high sparsity. These characteristics make it difficult to design and train STDM models. Unfortunately, an overview of these studies is still missing, hindering computer scientists to identify the research issues in ocean while discouraging researchers in ocean science from applying advanced STDM techniques. To remedy this situation, we provide a comprehensive survey to summarize existing STDM studies in ocean. Concretely, we first summarize the widely-used ST ocean datasets and identify their unique characteristics. Then, typical ST ocean data quality enhancement techniques are discussed. Next, we classify existing STDM studies for ocean into four types of tasks, i.e., prediction, event detection, pattern mining, and anomaly detection, and elaborate the techniques for these tasks. Finally, promising research opportunities are highlighted. This survey will help scientists from the fields of both computer science and ocean science have a better understanding of the fundamental concepts, key techniques, and open challenges of STDM in ocean

    OFMTutor: An operator function model intelligent tutoring system

    Get PDF
    The design, implementation, and evaluation of an Operator Function Model intelligent tutoring system (OFMTutor) is presented. OFMTutor is intended to provide intelligent tutoring in the context of complex dynamic systems for which an operator function model (OFM) can be constructed. The human operator's role in such complex, dynamic, and highly automated systems is that of a supervisory controller whose primary responsibilities are routine monitoring and fine-tuning of system parameters and occasional compensation for system abnormalities. The automated systems must support the human operator. One potentially useful form of support is the use of intelligent tutoring systems to teach the operator about the system and how to function within that system. Previous research on intelligent tutoring systems (ITS) is considered. The proposed design for OFMTutor is presented, and an experimental evaluation is described

    On computational models of animal movement behaviour

    Get PDF
    Finding structures and patterns in animal movement data is essential towards understanding a variety of behavioural phenomena, as well as shedding light into the relationships between animals among conspecifics and across different taxa with respect to their environments. The recent advances in the field of computational intelligence coupled with the proliferation of low-cost telemetry devices have made the gathering and analyses of behavioural data of animals in their natural habitat and in a wide range of context possible with aid of devices such as Global Positioning System (GPS). The sensory input that animals receive from their environment, and the corresponding motor output, as well as the neural basis of this relationship most especially as it affects movement, encode a lot of information regarding the welfare and survival of these animals and other organisms in nature's ecosystem. This has huge implications in the area of biodiversity monitoring, global health and understanding disease progression. Encoding, decoding and quantifying these functional relationships however can be challenging, boring and labour intensive. Artificial intelligence holds promise in solving some of these problems and even stand to benefit as understanding natural intelligence for instance can aid in the advancement of artificial intelligence. In this thesis, I investigate and propose several computational methods leveraging information theoretic metrics and also modern machine learning methods including supervised, unsupervised and a novel combination of both towards understanding, predicting, forecasting and quantifying a variety of animal movement phenomena at different time scales across different taxa and species. Most importantly the models proposed in this thesis tackle important problems bordering on human and animal welfare as well as their intersection. Crucially, I investigate several information theoretic metrics towards mining animal movement data, after which I propose machine learning and statistical techniques for automatically quantifying abnormal movement behaviour in sheep with Batten disease using unsupervised methods. In addition, I propose a predictive model capable of forecasting migration patterns in Turkey vulture as well as their stop-over decisions using bidirectional recurrent neural networks. And finally, I propose a model of sheep movement behaviour in a flock leveraging insights in cognitive neuroscience with modern deep learning models. Overall, the models of animal movement behaviour developed in this thesis are useful to a wide range of scientists in the field of neuroscience, ethology, veterinary science, conservation and public health. Although these models have been designed for understanding and predicting animal movement behaviour, in a lot of cases they scale easily into other domains such as human behaviour modelling with little modifications. I highlight the importance of continuous research in developing computational models of animal movement behaviour towards improving our understanding of nature in relation to the interaction between animals and their environments

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    Artificial Intelligence based Anomaly Detection of Energy Consumption in Buildings: A Review, Current Trends and New Perspectives

    Get PDF
    Enormous amounts of data are being produced everyday by sub-meters and smart sensors installed in residential buildings. If leveraged properly, that data could assist end-users, energy producers and utility companies in detecting anomalous power consumption and understanding the causes of each anomaly. Therefore, anomaly detection could stop a minor problem becoming overwhelming. Moreover, it will aid in better decision-making to reduce wasted energy and promote sustainable and energy efficient behavior. In this regard, this paper is an in-depth review of existing anomaly detection frameworks for building energy consumption based on artificial intelligence. Specifically, an extensive survey is presented, in which a comprehensive taxonomy is introduced to classify existing algorithms based on different modules and parameters adopted, such as machine learning algorithms, feature extraction approaches, anomaly detection levels, computing platforms and application scenarios. To the best of the authors' knowledge, this is the first review article that discusses anomaly detection in building energy consumption. Moving forward, important findings along with domain-specific problems, difficulties and challenges that remain unresolved are thoroughly discussed, including the absence of: (i) precise definitions of anomalous power consumption, (ii) annotated datasets, (iii) unified metrics to assess the performance of existing solutions, (iv) platforms for reproducibility and (v) privacy-preservation. Following, insights about current research trends are discussed to widen the applications and effectiveness of the anomaly detection technology before deriving future directions attracting significant attention. This article serves as a comprehensive reference to understand the current technological progress in anomaly detection of energy consumption based on artificial intelligence.Comment: 11 Figures, 3 Table

    Vol. 46, no. 2: Full Issue

    Get PDF

    Value Relevance of the Multi-step Income Statement in Japan

    Get PDF
    This paper investigates the relationship between value relevance of the multi-step income statement and managerial opportunistic behavior. In Japan, net income is disclosed by three steps, i.e., 1) operating profits from core operating activity, 2) ordinary income, measured by adding gains and losses from non-core operating and financing activities to operating profits, and 3) net income that is bottom line performance in the income statement. While Japanese firms achieve income smoothing, loss avoidance and big bath, the managerial opportunistic behavior is simply identified by the observation of multi performance measures. We find that the firms doing income smoothing, loss avoidance and big bath, which are identified by the multi-step income statement, have the different value relevance of earnings from other firms. In many cases, earnings management decreases the value relevance of earnings. The results suggest that the multi-step income statement enables investors to detect earnings management without apparent difficulty and that earnings become more useful when investors use the information contained in it.

    Advances in Computational Intelligence Applications in the Mining Industry

    Get PDF
    This book captures advancements in the applications of computational intelligence (artificial intelligence, machine learning, etc.) to problems in the mineral and mining industries. The papers present the state of the art in four broad categories: mine operations, mine planning, mine safety, and advances in the sciences, primarily in image processing applications. Authors in the book include both researchers and industry practitioners
    corecore