42 research outputs found

    Single phase second order sliding mode controller for complex interconnected systems with extended disturbances and unknown time-varying delays

    Get PDF
    Novel results on complex interconnected time-delay systems with single phase second order sliding mode control is investigated. First, a reaching phase in traditional sliding mode control (TSMC) is removed by using a novel single phase switching manifold function. Next, a novel reduced order sliding mode observer (ROSMO) with lower dimension is suggested to estimate the unmeasurable variables of the plant. Then, a new single phase second order sliding mode controller (SPSOSMC) is established based on ROSMO tool to drive the state variables into the specified switching manifold from beginning of the motion and reduce the chattering in control input. Then, a stability condition is suggested based on the well-known linear matrix inequality (LMI) method to ensure the asymptotical stability of the whole plant. Finally, an illustrated example is simulated to validate the feasible application of the suggested technique

    Alternative Sources of Energy Modeling, Automation, Optimal Planning and Operation

    Get PDF
    An economic development model analyzes the adoption of alternative strategy capable of leveraging the economy, based essentially on RES. The combination of wind turbine, PV installation with new technology battery energy storage, DSM network and RES forecasting algorithms maximizes RES integration in isolated islands. An innovative model of power system (PS) imbalances is presented, which aims to capture various features of the stochastic behavior of imbalances and to reduce in average reserve requirements and PS risk. Deep learning techniques for medium-term wind speed and solar irradiance forecasting are presented, using for first time a specific cloud index. Scalability-replicability of the FLEXITRANSTORE technology innovations integrates hardware-software solutions in all areas of the transmission system and the wholesale markets, promoting increased RES. A deep learning and GIS approach are combined for the optimal positioning of wave energy converters. An innovative methodology to hybridize battery-based energy storage using supercapacitors for smoother power profile, a new control scheme and battery degradation mechanism and their economic viability are presented. An innovative module-level photovoltaic (PV) architecture in parallel configuration is introduced maximizing power extraction under partial shading. A new method for detecting demagnetization faults in axial flux permanent magnet synchronous wind generators is presented. The stochastic operating temperature (OT) optimization integrated with Markov Chain simulation ascertains a more accurate OT for guiding the coal gasification practice

    Machine learning for outlier detection in medical imaging

    Get PDF
    Outlier detection is an important problem with diverse practical applications. In medical imaging, there are many diagnostic tasks that can be framed as outlier detection. Since pathologies can manifest in so many different ways, the goal is typically to learn from normal, healthy data and identify any deviations. Unfortunately, many outliers in the medical domain can be subtle and specific, making them difficult to detect without labelled examples. This thesis analyzes some of the nuances of medical data and the value of labels in this context. It goes on to propose several strategies for unsupervised learning. More specifically, these methods are designed to learn discriminative features from data of a single class. One approach uses divergent search to continually find different ways to partition the data and thereby accumulates a repertoire of features. The other proposed methods are based on a self-supervised task that distorts normal data to form a contrasting class. A network can then be trained to localize the irregularities and estimate the degree of foreign interference. This basic technique is further enhanced using advanced image editing to create more natural irregularities. Lastly, the same self-supervised task is repurposed for few-shot learning to create a framework for adaptive outlier detection. These proposed methods are able to outperform conventional strategies across a range of datasets including brain MRI, abdominal CT, chest X-ray, and fetal ultrasound data. In particular, these methods excel at detecting more subtle irregularities. This complements existing methods and aims to maximize benefit to clinicians by detecting fine-grained anomalies that can otherwise require intense scrutiny. Note that all approaches to outlier detection must accept some assumptions; these will affect which types of outliers can be detected. As such, these methods aim for broad generalization within the most medically relevant categories. Ultimately, the hope is to support clinicians and to focus their attention and efforts on the data that warrants further analysis.Open Acces

    Interaction design strategies for open-ended play

    Get PDF
    Open-ended play is initiated by the child where he/she is in full control of the entire play experience, without imposed rules or external structure. This play experience is rewarding, engaging and desirable for children. It is also valued by parents, educators, and psychologists as it aids healthy development of the child, both cognitively and physically. Despite its proven value, children have been initiating open-ended play less often while their use of digital media devices has become more common. There is an opportunity to encourage open-ended play through interaction design. However, designing for open-ended play is difficult due to its complexity and ever-changing nature. This thesis explores how children between the ages of 5-12 engage in open-ended play (undefined, unstructured, free play) and how they use digital devices such as tablets or smartphones in their play experiences. It outlines a process children go through when engaging in open-ended play, identifies patterns in open-ended play, and proposes four strategies for designing physical and digital interactions to encourage open-ended play experiences. These strategies are a means for designers to facilitate open-ended play in the development of products, services and systems for children. They can also be used by educators in creating curricula to help the development of self-regulation in young children. Parents can also use these strategies as a means to encourage and participate in their children\u27s open-ended play experiences

    Addressing Variability in Speech when Recognizing Emotion and Mood In-the-Wild

    Full text link
    Bipolar disorder is a chronic mental illness, affecting 4% of Americans, that is characterized by periodic mood changes ranging from severe depression to extreme compulsive highs. Both mania and depression profoundly impact the behavior of affected individuals, resulting in potentially devastating personal and social consequences. Bipolar disorder is managed clinically with regular interactions with care providers, who assess mood, energy levels, and the form and content of speech. Recent work has proposed smartphones for automatically monitoring mood using speech. Much of the early work in speech-centered mood detection has been done in the laboratory or clinic and is not reflective of the variability found in real-world conversations and conditions. Outside of these settings, automatic mood detection is hard, as the recordings include environmental noise, differences in recording devices, and variations in subject speaking patterns. Without addressing these issues, it is difficult to move towards a passive mobile health system. My research works to address this variability present in speech so that such a system can be created, allowing for interventions to mitigate the life-changing effects of mood transitions. However detecting mood directly from speech is difficult, as mood varies over the course of days or weeks, while speech fluctuates rapidly. To address this, my thesis explores how an intermediate step can be used to aid in this prediction. For example, one of the major symptoms of bipolar disorder is emotion dysregulation - changes in the way emotions are perceived and a lack of inhibition in their expression. My work has supported the relationship between automatically extracted emotion estimates and mood. Because of this, my thesis explores how to mitigate the variability found when detecting emotion from speech. The remainder of my thesis is focused on employing these emotion-based features, as well as features based on language content, to real-world applications. This dissertation is divided into the following parts: Part I: I address the direct classification of mood from speech. This is accomplished by addressing variability due to recording device using preprocessing and multi-task learning. I then show how both subject-specific and population-general information can be combined to significantly improve mood detection. Part II: I explore the automatic detection of emotion from speech and how to control for the other factors of variability present in the speech signal. I use progressive networks as a method to augment emotion with other paralinguistic data including gender and speaker, as well as other datasets. Additionally, I introduce a novel domain generalization method for cross-corpus detection. Part III: I demonstrate real-world applications of speech mood monitoring using everyday conversations. I show how the previously introduced generalized model can predict emotion from the speech of individuals with suicidal ideation, demonstrating its effectiveness across domains. Furthermore, I use these predictions to distinguish individuals with suicidal thoughts from healthy controls. Lastly, I introduce a novel framework for intervention detection in individuals with bipolar disorder. I then create a natural speech mood monitoring system based on features derived from measures of emotion and automatic speech recognition (ASR) transcripts and show effective intervention detection. I conclude this dissertation with the following future directions: (1) Extending my emotion generalization system to include multiple modalities and factors of variability; (2) Expanding natural speech mood monitoring by including more devices, exploring other data besides speech, and investigating mood rating causality.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/153461/1/gideonjn_1.pd

    Advanced Process Monitoring for Industry 4.0

    Get PDF
    This book reports recent advances on Process Monitoring (PM) to cope with the many challenges raised by the new production systems, sensors and “extreme data” conditions that emerged with Industry 4.0. Concepts such as digital-twins and deep learning are brought to the PM arena, pushing forward the capabilities of existing methodologies to handle more complex scenarios. The evolution of classical paradigms such as Latent Variable modeling, Six Sigma and FMEA are also covered. Applications span a wide range of domains such as microelectronics, semiconductors, chemicals, materials, agriculture, as well as the monitoring of rotating equipment, combustion systems and membrane separation processes
    corecore