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Abstract

Outlier detection is an important problem with diverse practical applications. In medical imag-

ing, there are many diagnostic tasks that can be framed as outlier detection. Since pathologies

can manifest in so many different ways, the goal is typically to learn from normal, healthy

data and identify any deviations. Unfortunately, many outliers in the medical domain can be

subtle and specific, making them difficult to detect without labelled examples. This thesis

analyzes some of the nuances of medical data and the value of labels in this context. It goes

on to propose several strategies for unsupervised learning. More specifically, these methods are

designed to learn discriminative features from data of a single class. One approach uses diver-

gent search to continually find different ways to partition the data and thereby accumulates a

repertoire of features. The other proposed methods are based on a self-supervised task that

distorts normal data to form a contrasting class. A network can then be trained to localize the

irregularities and estimate the degree of foreign interference. This basic technique is further

enhanced using advanced image editing to create more natural irregularities. Lastly, the same

self-supervised task is repurposed for few-shot learning to create a framework for adaptive out-

lier detection. These proposed methods are able to outperform conventional strategies across a

range of datasets including brain MRI, abdominal CT, chest X-ray, and fetal ultrasound data.

In particular, these methods excel at detecting more subtle irregularities. This complements

existing methods and aims to maximize benefit to clinicians by detecting fine-grained anoma-

lies that can otherwise require intense scrutiny. Note that all approaches to outlier detection

must accept some assumptions; these will affect which types of outliers can be detected. As

such, these methods aim for broad generalization within the most medically relevant categories.

Ultimately, the hope is to support clinicians and to focus their attention and efforts on the data

that warrants further analysis.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Machine Learning in Medical Image Analysis

Radiologists rely on medical imaging for rich diagnostic information. Having more diagnos-

tically valuable data at their disposal can help clinicians to make more informed decisions.

However, searching for clinically relevant details can become more strenuous as the volume

of data increases. This is especially true when radiologists need to perform a broader search

because i) the underlying condition is unknown or ii) its appearance is highly variable. Unfor-

tunately, human limitations make it hard for radiologists to match the demand for speed and

quality of diagnoses, even at the best institutions. Further challenges, such as lack of expertise,

can amplify these issues when considering healthcare at the population level or in developing

nations.

Machine learning offers a promising avenue for uniformly distributing clinical decision support.

However, conventional methods generally require large amounts of labeled data for each desired

task, which is expensive and time consuming to acquire. Another limitation is that these

frameworks are primarily designed to recognize predefined disease classes. This can certainly

be useful in reducing routine workload, but it cannot be used to detect unexpected ailments

1



2 Chapter 1. Introduction

or pathologies that have manifested in usual ways. Unfortunately, these incidents can be easy

to miss because of biases such as inattentional blindness [Drew et al., 2013]. Having a clinical

decision support tool that offers a complementary interpretation of the data could help in this

regard. One potential strategy is to develop a tool that highlights all regions that deviate from

normal, in any way. Rather than detecting predefined classes, this type of tool could act as an

assistant, prompting clinicians to consider regions that warrant closer inspection. This way of

framing the problem is sometimes called outlier detection.

Outlier Detection

Outlier detection can be used for many purposes ranging from automated quality assurance to

disease screening. It is particularly useful when the characteristics of abnormal cases are not

known a priori. This could be due to a lack of data from abnormal classes or difficulty in finding

a common denominator between all types of defects. For example, rare diseases are defined

as conditions that affect fewer than one in 2000 people; but it is estimated that rare diseases

collectively affect one in every 17 people at some point in their lifetime [National Congenital

Anomaly and Rare Disease Registration Service, 2021]. In these cases, it can be difficult to

collect sufficient data on every disease and even human expertise may be scarce. To tackle

these types of scenarios, outlier detection methods often assume that no training examples of

outliers are available [Pimentel et al., 2014]. This is problematic for standard machine learning

methods which rely on labelled examples.

The absence of abnormal examples creates several issues. Firstly, the network cannot learn

characteristic features of outliers without being given examples during training. Another issue

is the openness of the task. In a conventional supervised scenario, a network is tuned to

identify features that are present in one class but not in the other. These contrasting features

can also change depending on the opposing class. For example, features that are relevant for

classifying pathologies may not be useful in recognizing imaging artifacts. Supervised methods

have enjoyed widespread success by pinpointing these specific features and ignoring unimportant

aspects. Unfortunately, it is difficult to achieve this without having a target class to contrast
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with. In the case of outlier detection, any deviation could be important.

Image Space Embedding Space

Figure 1.1: t-SNE plots illustrating separability of different classes. Examples of each class are
provided at the top following the legend color code. The t-SNE plot on the left uses samples
in native input space. The right plot uses embeddings of a network trained to separate normal
4CH and 3VT views. Plots were produced using openTSNE [Poličar et al., 2019].

Consider the example presented in Figure 1.1. This illustrates a real world application of outlier

detection and highlights some of the key technical challenges involved.

The images at the top of Figure 1.1 are fetal ultrasound scans, specifically two important views

of the heart, the four chamber view (4CH) and the three vessel and trachea view (3VT). Normal

data is generally abundant, but conditions such as hypoplastic left heart syndrome (HLHS) can

be very rare. Across all births in the U.K., only about 0.6% are affected by some form of

congenital heart disease [National Congenital Anomaly and Rare Disease Registration Service,

2019]. With such low prevalence, it is difficult to expect sonographers across the country to

be knowledgeable about every subtype. Nevertheless, detecting these conditions is important

because congenital heart disease is associated with more perinatal and infant deaths than any

other congenital abnormality [National Congenital Anomaly and Rare Disease Registration

Service, 2019].

These factors make congenital heart disease a prime candidate for outlier detection. But there
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are several aspects that make this type of problem very challenging. Consider the t-distributed

stochastic neighbor embedding (t-SNE) plot using samples in image space (Figure 1.1). Be-

cause of the curse of dimensionality [Bellman, 2015] the distances between similar images and

dissimilar images can be approximately the same. This makes it difficult to distinguish patho-

logical samples from healthy ones in image space. To get around this, neural networks are often

employed to map images to an embedding space. Ideally, this representation should emphasize

semantic differences and disregard irrelevant information. This mapping is generally learned

with labelled examples. For instance, the embedding space t-SNE plot in Figure 1.1 uses a

network trained to separate normal 4CH and normal 3VT images. Even though this represen-

tation may involve important structures of the heart, it lacks the specificity required to cleanly

separate healthy and pathological samples. The combination of these two problems forms the

main dilemma in outlier detection: input space has too much noise for outliers to stand out, and

embeddings do not emphasize the right features unless they are trained with relevant samples,

i.e. real outliers. This conundrum is the motivation behind the works presented in the following

chapters. Exploring this problem can lead to new solutions for specific applications in medical

imaging and could also open up avenues for new approaches to generic machine learning.

Supervised 

Learning

Self-Supervised 

Learning

Normal Normal 

Normal 

Rotation 

HLHS Jigsaw 

Figure 1.2: Comparison between supervised and self-supervised learning. Supervised methods
learn from labelled data, while self-supervised methods use auxiliary tasks to learn from unla-
belled or normal data.

As mentioned earlier, supervised methods are the most direct way to learn relevant features.

These methods learn from labelled data, which can sometimes include detailed annotations.
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For example, Figure 1.2 portrays samples with bounding boxes surrounding the left ventricle,

a critical structure for the diagnosis of HLHS. Since labelled anomalies are not available in

outlier detection settings, self-supervised learning is an attractive alternative. These methods

effectively create their own labels by synthesizing auxiliary tasks. Figure 1.2 gives examples

of two self-supervised tasks. The first approach applies different transformations, e.g. image

rotation, to create new artificial classes [Golan and El-Yaniv, 2018]. Meanwhile the second

example, jigsaw [Noroozi and Favaro, 2016], divides images into patches and permutes their

positions creating artificial classes for each predetermined permutation. These methods were

developed in the context of natural images and are mostly concerned with the overall structure

of the image. This may be less helpful for diagnostic tasks, where global structure is generally

preserved in healthy and pathological classes. Nevertheless, self-supervised methods can be

designed in numerous ways and a major goal of this thesis is to devise objective functions that

cater specifically to medical outlier detection.

1.2 Contributions

The work presented in this thesis explores a range of approaches for outlier detection. Tech-

niques in semi-supervised learning, unsupervised learning, and self-supervised learning are con-

sidered. Although recent works have made significant progress in outlier detection for natural

images, the nuances of medical data can sometimes stymie these methods. This thesis high-

lights some of the key challenges that are specific to medical outlier detection and proposes

methods that are tailored to these issues.

The main contributions of this thesis are listed below. The key publications associated with

each contribution are listed under each topic.

1. An exploration of the value of labels in medical imaging data

• Tan, J., Au, A., Meng, Q., and Kainz, B. (2019). Semi-supervised learning of fetal anatomy from

ultrasound. In Domain Adaptation and Representation Transfer and Medical Image Learning with

Less Labels and Imperfect Data, pages 157–164. Springer
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• Tan, J., Au, A., Meng, Q., FinesilverSmith, S., Simpson, J., Rueckert, D., Razavi, R., Day, T.,

Lloyd, D., and Kainz, B. (2020). Automated detection of congenital heart disease in fetal ultrasound

screening. In Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis, pages

243–252. Springer

2. A divergent search algorithm for unsupervised representation learning

• Tan, J. and Kainz, B. (2020). Divergent search for image classification behaviors. In Proceedings

of the 2020 Genetic and Evolutionary Computation Conference Companion, pages 91–92. https:

//doi.org/10.1145/3377929.3389973

3. A self-supervised approach for outlier detection

• Tan, J., Hou, B., Batten, J., Qiu, H., Kainz, B., et al. (2022). Detecting outliers with foreign patch

interpolation. Machine Learning for Biomedical Imaging, 1(April 2022 issue):1–10

4. Enhanced methods for self-supervised outlier detection using image manipulation tech-

niques and meta-learning

• Tan, J., Hou, B., Day, T., Simpson, J., Rueckert, D., and Kainz, B. (2021a). Detecting outliers

with poisson image interpolation. In International Conference on Medical Image Computing and

Computer-Assisted Intervention, pages 581–591. Springer

• Tan, J., Kart, T., Hou, B., Batten, J., and Kainz, B. (2021b). Metadetector: Detecting outliers by

learning to learn from self-supervision. In Biomedical Image Registration, Domain Generalisation

and Out-of-Distribution Analysis at MICCAI, pages 119–126. Springer

The first topic studies the value of labels in medical imaging applications, specifically fetal

ultrasound. Data labelling in fetal ultrasound can be expensive because experts are in short

supply [Van Velzen et al., 2016]. The first section investigates whether semi-supervised learning

techniques, popularized in the context of natural images, can be applied successfully in fetal

ultrasound. Factors such as class imbalance and high similarity between certain classes can

pose challenges for these semi-supervised methods. Even when data is fully labelled, tasks such

as classifying congenital heart disease can be difficult. The second section uses a multi-task

learning approach to make the most of the available labels.

https://doi.org/10.1145/3377929.3389973
https://doi.org/10.1145/3377929.3389973
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The next section proposes a divergent search strategy for learning features from unlabelled

data. Unlike clustering methods that sort data into natural partitions, this approach contin-

ually searches for different ways to partition the data. This offers an alternative approach to

discriminative feature learning for scenarios where the unlabelled data may only contain one

class.

The third contribution is a self-supervised method for outlier detection. In the absence of con-

trasting classes or real outlier samples, this method synthesizes deviations to promote learning

of normal features. To be specific, the network is trained to detect where and to what degree

the normal features have been altered. During test time, this provides localization and an

estimate of the degree of abnormality

The last section enhances the self-supervised approach from the previous section. The first part

uses Poisson image editing [Pérez et al., 2003] to improve synthetic irregularities and reduce

overfitting to artifacts of the self-supervised task. Part two uses the self-supervised task for

few-shot learning in order to create an adaptive outlier detection method.

1.3 Statement of Originality

I declare that the work presented within this thesis is my own, unless appropriately referenced.

Content that has been previously published is noted in the sections below.

1.4 Copyright Declaration

The copyright of this thesis rests with the author. Unless otherwise indicated, its contents

are licensed under a Creative Commons Attribution-Non Commercial 4.0 International Licence

(CC BY-NC).

Under this licence, you may copy and redistribute the material in any medium or format. You

may also create and distribute modified versions of the work. This is on the condition that:
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you credit the author and do not use it, or any derivative works, for a commercial purpose.

When reusing or sharing this work, ensure you make the licence terms clear to others by naming

the licence and linking to the licence text. Where a work has been adapted, you should indicate

that the work has been changed and describe those changes.

Please seek permission from the copyright holder for uses of this work that are not included in

this licence or permitted under UK Copyright Law.

1.5 Publications

For completion, below is a list of the key publications associated with chapters in this thesis as

well as additional publications.

1.5.1 Key Publications

Parts of this thesis have been published in the following articles.

[1] Tan, J., Au, A., Meng, Q., and Kainz, B. (2019). Semi-supervised learning of fetal anatomy from

ultrasound. In Domain Adaptation and Representation Transfer and Medical Image Learning with Less

Labels and Imperfect Data, pages 157–164. Springer

[2] Tan, J., Au, A., Meng, Q., FinesilverSmith, S., Simpson, J., Rueckert, D., Razavi, R., Day, T., Lloyd,

D., and Kainz, B. (2020). Automated detection of congenital heart disease in fetal ultrasound screening.

In Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis, pages 243–252. Springer

[3] Tan, J. and Kainz, B. (2020). Divergent search for image classification behaviors. In Proceedings of the

2020 Genetic and Evolutionary Computation Conference Companion, pages 91–92. https://doi.org/

10.1145/3377929.3389973

[4] Tan, J., Hou, B., Batten, J., Qiu, H., Kainz, B., et al. (2022). Detecting outliers with foreign patch

interpolation. Machine Learning for Biomedical Imaging, 1(April 2022 issue):1–10

[5] Tan, J., Hou, B., Day, T., Simpson, J., Rueckert, D., and Kainz, B. (2021a). Detecting outliers with

poisson image interpolation. In International Conference on Medical Image Computing and Computer-

Assisted Intervention, pages 581–591. Springer

https://doi.org/10.1145/3377929.3389973
https://doi.org/10.1145/3377929.3389973


1.5. Publications 9

[6] Tan, J., Kart, T., Hou, B., Batten, J., and Kainz, B. (2021b). Metadetector: Detecting outliers by

learning to learn from self-supervision. In Biomedical Image Registration, Domain Generalisation and
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Chapter 2

Background

In outlier detection, there are often constraints on the availability of data, particularly for

anomalous classes. This poses several problems for data-driven methods. Nevertheless, over-

coming the challenges of incomplete data is important for practical applications as well as

theoretical advancements in machine learning. As such, one of the major goals throughout this

work is to find new and useful training objectives. Different objective functions allow a model

to learn from data in different ways. This can lead to more specialized models, tailored for

certain tasks or models with better generalization across multiple tasks. Before exploring new

objective functions, the major fundamental strategies are reviewed in the sections below. These

include supervised, semi-supervised, unsupervised, and self-supervised learning strategies.

2.1 Supervised Learning: Foundations of Machine Learn-

ing

Supervised learning is a cornerstone of machine learning. Much of the success in modern deep

learning has involved supervised learning in some capacity [LeCun et al., 2015]. While it is one of

the most effective methods, it also demands the most data. Detailed labels help provide a clear

objective and allow gradients to be computed for differentiable models. These gradients indicate

11
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how the model weights can be adjusted to incrementally improve performance in the training

task. One of the most common tasks in supervised learning is image classification. Through

this lens, several key elements of a typical supervised learning pipeline will be discussed below.

The Neuron: Before looking at a complete network, it can be helpful to briefly review the

basic neuron unit. As their namesake suggests, these “artificial” neurons take inspiration from

biological neurons which are cells that specialize in signal and information processing [Yuste,

2015]. Just as the brain and nervous system are composed of neurons, artificial neural networks

are built by connecting neuron units in different configurations. In most cases, each neuron

in the network follows the same basic operation, multiplying a set of inputs, x ∈ R
d, by a set

of weights, w ∈ R
d, and summing them together (sometimes with a bias parameter, b ∈ R).

If included, b is typically a single scalar value per neuron. This basic operation is depicted in

Eqn. 2.1 and Figure 2.1. In this equation w and x are vectors of equal dimension and w · x is

a dot product, which could alternatively be written as a weighted sum of x.

f(x;w, b) = w · x+ b (2.1)

fnet(x;W , b) = f3

(
f2
(
f1(x;W1, b1);W2, b2

)
;W3, b3

)

= W3

(
W2

(
W1x+ b1

)
+ b2

)
+ b3

(2.2)

Each connection (line) in Figure 2.1 is associated with a weight parameter, wi, and each neuron

(green) is associated with a bias parameter, bi. In a layer of fully connected neurons, all inputs

to the layer are connected to all neurons within that layer (Figure 2.1.a). To represent a layer

of h neurons, Eqn. 2.1 can be rewritten using W ∈ R
h×d and b ∈ R

h. The dot product then

becomes a matrix multiplication, where each row of W contains the weights for one neuron.

Chaining multiple fully connected layers together in a sequence forms a network, as expressed

in Eqn. 2.2. This arrangement can quickly lead to an enormous number of tunable parameters.

This makes optimization computationally expensive and prone to overfitting. To remedy these

issues, convolutional layers only connect each neuron to a small window of inputs (orange

elements in Figure 2.1.b) and reuse connection weights (lines) by sliding the window across the

entire input, i.e. convolving the input with a kernel of weights [Fukushima, 1980, Fukushima
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+

+

(a) Fully Connected Neuron

+

+

(b) Convolutional Neuron

Figure 2.1: Example neurons in a fully connected MLP vs. kernels in a CNN. Graphic produced
with PlotNeuralNet [Iqbal, 2018].

and Miyake, 1982, LeCun et al., 1998]. The most basic 1D convolution operation is shown

in Eqn. 2.3, where w ∈ R
k is a kernel of size k and b ∈ R is a bias (one scalar per kernel)

which is added to every element of the convolution output. For images, a 2D kernel is often

used, e.g. the 3 × 3 kernel shown in Figure 2.1.b. In this illustration, the connection weights

of the bottom neuron (dotted lines) are identical to the connection weights of the top neuron

(solid lines) because the same kernel is being applied at each point in the image. This helps to

exploit repetition of local patterns. Additional kernels provide capacity for more patterns and

the outputs from each kernel form independent feature channels.

fconv(x;w, b) = w ∗ x+ b (2.3)

Both fully connected and convolutional layers are widely used to construct neural networks,

sometimes referred to as multi-layer perceptrons (MLP’s) [Werbos, 1994, McClelland et al.,

1986] and convolutional neural networks (CNN’s) [Fukushima, 1980, Fukushima and Miyake,
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1982, LeCun et al., 1998], respectively. Modern configurations frequently combine different

types of layers within the same network, so the nomenclature can be inexact and typically

follows the majority.

Figure 2.2: Example neural network architecture, Sononet [Baumgartner et al., 2017]. The
input is a fetal ultrasound image and the output is a probability distribution across 14 classes
for different standard planes of fetal anatomy. The values below each block indicate the number
of feature channels in each convolutional layer. Width and height dimensions are given by
values at the corner of each block. Graphic produced with PlotNeuralNet [Iqbal, 2018].

Architecture: Figure 2.2 gives an example of a contemporary CNN being used for medical

ultrasound [Baumgartner et al., 2017]. CNN’s are ubiquitous in many areas of machine learning,

particularly those dealing with images. In addition to the fully connected and convolutional

layers, briefly described above, most networks contain additional operations such as pooling

and non-linear activations.

The pooling operation is designed to summarize information across the spatial dimensions,

usually within small, non-overlapping windows. Successive pooling operations give CNN “en-

coders” their characteristic, narrowing shape (Figure 2.2). In practice, pooling can be performed

by either i) increasing the stride in the convolution operations or ii) using dedicated pooling

layers. In a pooling layer, patches from the input are replaced by the mean or maximum of

the patch across spatial dimensions, effectively downsampling the entire input. As the spatial

dimensions shrink with each pooling layer, the number of feature channels in the convolutional

layers generally increases. This overall structure supports the construction of hierarchical fea-
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tures [Krizhevsky et al., 2012]. Small kernels (e.g. 3x3 pixels) in shallow layers can identify

low level features, such as lines or corners. Meanwhile deeper layers aggregate these fragments

to identify larger shapes and composite patterns.

Non-linearities are another essential component of neural networks. Without them, even a

deep neural network only amounts to a linear combination of the inputs. By introducing

non-linearities, each layer adds more expressivity, allowing the network to learn more complex

mappings between input and output. In fact, non-linear activations can even turn simple neural

networks into universal function approximators, meaning they can approximate any continuous

function arbitrarily well, provided certain conditions are met. This is explained more precisely

as an aside in the box below.

Universal Approximation Theorem

Consider a network with a single hidden fully connected layer (input-hidden-output).

Let σ ∈ C(R) denote a continuous activation function used for all hidden units in the

network. Observing these constraints means considering the set given in Eqn. 2.4. Note

the linear span, which includes all linear combinations, represents an output neuron

with weights for each neuron in the hidden layer.

M(σ,w, b) = span{σ(w · x+ b) : w ∈ R
n, b ∈ R} (2.4)

Provided there are enough neurons in the hidden layer, this network can approximate

any continuous function arbitrarily well, on an arbitrary compact (closed and bounded)

subset X ⊆ R
n, i.e. M(σ,w, b) is dense in the space C(Rn), if and only if σ is not a

polynomial [Leshno et al., 1993]. This version of the theorem builds on seminal work

by several others and this remains an area of active research. Further details can be

found within their papers [Hornik, 1991, Cybenko, 1989, Funahashi, 1989, Hornik et al.,

1989, Pinkus, 1999, Chong, 2020].

Practically speaking, common activation functions include sigmoid (Eqn. 2.5), hyperbolic tan-

gent (Eqn. 2.6), rectified linear units (ReLU’s) [Fukushima, 1980, Nair and Hinton, 2010]

(Eqn. 2.7), and variations of these functions. ReLU’s are among the most widely used ac-
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tivation functions for hidden layers because the derivative of the ReLU function has properties

that are beneficial for deeper networks. This will be explained in more detail in the section on

backpropagation and weight initialization.

σ(z) =
1

1 + e−z
(2.5)

tanh(z) =
e2z − 1

e2z + 1
(2.6)

φ(z) =





z if z > 0

0 otherwise

(2.7)

Backpropagation and Parameter Initialization: The overall architecture described above

will not yield a sensible mapping until its parameters are tuned for the desired task. This

section covers the basics of how these parameters are updated and initialized.

Backpropagation is a technique for efficiently optimizing differentiable neural networks [Lin-

nainmaa, 1970, Werbos, 1982, Rumelhart et al., 1985]. It works by computing gradients, which

indicate how the objective function changes with respect to each parameter, and then updating

these parameters by following the gradient in a direction that minimizes the objective function.

Recall that Eqn. 2.1 defines the basic neuron operation as a function; in the same way, an entire

network is a composite function, mapping inputs to outputs through a series of neuron opera-

tions and activations. The rate of change of the objective function with respect to a parameter

in the network can thus be found by differentiating with the chain rule.

Backpropagation

Consider a fully connected network with L layers, q output neurons, and an activation

function σ used throughout the network. Let z
(l)
j and a

(l)
j denote the output of neuron

j, in layer l, before and after the activation function, respectively.

a
(l)
j = σ(z

(l)
j ) (2.8)

z
(l)
j = w

(l)
j · a(l−1) + b

(l)
j

= w
(l)
j1 a

(l−1)
1 + w

(l)
j2 a

(l−1)
2 + ...+ b

(l)
j

(2.9)
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The objective function, J , can then be evaluated by comparing each output neuron,

a
(L)
j , with the corresponding target value, yj, (for a given sample) and averaging across

all n samples in the dataset. In this example, mean squared error is used (Eqn. 2.10).

J =
1

n

n∑

m=1

Jm =
1

n

n∑

m=1

1

q

q∑

j=1

(a
(L)
mj − ymj)

2 (2.10)

Evaluating the objective function gives a measure of the network’s performance with

the current parameters. Since this function is differentiable, the gradient provides an

estimate of how each parameter should be changed to improve performance. Below

are a few examples of partial derivatives with respect to different parameters. For

simplicity, only a single sample is shown and the m subscripts are omitted.

∂J
∂w

(L)
jk

=
∂z

(L)
j

∂w
(L)
jk

∂a
(L)
j

∂z
(L)
j

∂J
∂a

(L)
j

=

(
a
(L−1)
k

)(
σ′(z

(L)
j )

)(
2

q
(a

(L)
j − yj)

) (2.11)

∂J
∂b

(L)
j

=
∂z

(L)
j

∂b
(L)
j

∂a
(L)
j

∂z
(L)
j

∂J
∂a

(L)
j

=

(
1

)(
σ′(z

(L)
j )

)(
2

q
(a

(L)
j − yj)

) (2.12)

∂J
∂w

(L−1)
jk

=
∂z

(L−1)
j

∂w
(L−1)
jk

∂a
(L−1)
j

∂z
(L−1)
j

∂J
∂a

(L−1)
j

=
∂z

(L−1)
j

∂w
(L−1)
jk

∂a
(L−1)
j

∂z
(L−1)
j

q∑

i=1

∂z
(L)
i

∂a
(L−1)
j

∂a
(L)
i

∂z
(L)
i

∂J
∂a

(L)
i

=

(
a
(L−2)
k

)(
σ′(z

(L−1)
j )

)( q∑

i=1

w
(L)
ij · σ′(z

(L)
i ) · 2

q
(a

(L)
i − yi)

)

(2.13)

The notation for the weights follows from Eqn. 2.9, e.g. w
(l)
jk corresponds to the weight

value connecting neuron k in layer l − 1 to neuron j in layer l. Eqn. 2.13 gives an

example of backpropagation through multiple layers. Since the weight w
(L−1)
jk in layer

L − 1 affects all output neurons in layer L, the error backpropagation for this weight

must take all of these neurons into account. This is shown as a summation of the partial

derivatives for q output neurons. As more layers are involved, the number of terms in
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the equation grows rapidly. However, backpropagation exploits the reoccurring terms

to keep the computation efficient, even with deeper networks.

The equations above can be extended to compute the gradient for all parameters in the network.

Using this gradient, the network parameters can be updated via gradient descent [Cauchy et al.,

1847], as shown in Eqn. 2.14. Note that ∇ represents the gradient and η is a learning rate that

controls the step size of the optimization process. Also note that the gradient term is subtracted

because the gradient points in the direction of steepest ascent. Gradient descent normally

computes the gradient using the entire set of training samples, x, and labels, y. However many

datasets are too large for this to be practical. Instead, stochastic gradient descent [Robbins

and Monro, 1951] is widely used to approximate the gradient using mini-batches of samples.

θi+1 = θi − η∇θJ (θi; x, y) (2.14)

The parameter optimization process begins with initialization. Since gradients are dependent

on the current parameter values, the initialization of the network becomes a matter of critical

importance. The backpropagation equations also provide several insights for effective parameter

initialization. For instance, consider neurons in a fully connected layer that all receive the same

inputs and feed into the same outputs. If the weights in these neurons are initialized with

identical values, then their updates and influence on other parameters will mirror each other

throughout the optimization. To make better use of the parameters, the initialization should

break these “symmetries” and allow each neuron to learn a different feature. Also, partial

derivatives across multiple layers (e.g. Eqn. 2.13) involve the product of activation values and

the weight values themselves. Therefore, if the magnitude of the weight values is too large or

too small, then their product across several layers may lead to a gradient that is too large or

small, respectively. Lastly, the derivative of the activation function, σ, is another important

term in the partial derivative to consider. For example, the sigmoid function saturates for very

small or very large numbers, which means that the gradient in these cases will be nearly zero.

Conversely, if only the linear region of the sigmoid is used, then it limits the range of functions

the network can learn and defeats the purpose of having non-linear activation functions.

Motivated by these considerations, several initialization schemes have been developed. Below is
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a summary of the derivation for one approach, Xavier initialization [Glorot and Bengio, 2010].

Parameter Initialization

Consider a fully connected network with tanh activation functions used throughout.

Let nl denote the number of neurons in layer l. Assume that the weights are initialized

independently and that all inputs have the same variance, Var[x]. For simplicity, also

assume that the weights are initialized within the linear region of the tanh activation

function and that biases are initialized to zero. The variance of the first layer’s post-

activation output can be seen in Eqn. 2.15. Note that each weight term is simplified

following Eqn. 2.16. Also, recall that the weights are initialized around the linear region

of the tanh function, so any expected values, i.e. in Eqn. 2.16, will become zero. In the

final line of Eqn. 2.15, the individual weight terms are summarized into a shared scalar

variance term, Var
[
w(1)

]
.

Var
[
a(1)
]
≈ Var

[
z(1)
]

= Var
[
w(1) · x+ b(1)

]

= Var
[
w

(1)
0 x0

]
+ ...+Var

[
w(1)
n1
xn1

]
+Var

[
b(1)
]

= n1Var
[
w(1)

]
Var
[
x
]

(2.15)

Var
[
w

(1)
j xj

]
= E

[
w

(1)
j

]2
Var
[
xj
]
+ E

[
xj
]2
Var
[
w

(1)
j

]
+Var

[
w

(1)
j

]
Var
[
xj
]

= Var
[
w

(1)
j

]
Var
[
xj
] (2.16)

A similar expression can be derived in the opposite direction, going backwards from

the output of the network (Eqn. 2.17).

Var

[
∂J

∂z
(L−1)
j

]
= Var

[
∂a

(L−1)
j

∂z
(L−1)
j

nL∑

i=1

∂z
(L)
i

∂a
(L−1)
j

∂a
(L)
i

∂z
(L)
i

∂J
∂a

(L)
i

]

= Var

[(
σ′(z

(L−1)
j )

)( nL∑

i=1

w
(L)
ij · σ′(z

(L)
i ) · ∂J

∂a
(L)
i

)]

= nLVar
[
w(L)

]
Var

[
∂J
∂a(L)

]

(2.17)

Glorot and Bengio generalize the above expressions to compute the variance for any
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layer in the network, as seen in Eqn. 2.18 and Eqn. 2.19 [Glorot and Bengio, 2010].

Var
[
a(l)
]
= Var

[
x
] l∏

i=1

niVar
[
w(i)
]

(2.18)

Var

[
∂J
∂z(l)

]
= Var

[
∂J
∂a(L)

] L∏

i=l

ni+1Var
[
w(i)
]

(2.19)

Based on these variance equations, Glorot and Bengio propose that an effective initial-

ization scheme should satisfy the conditions in Eqn. 2.20 and Eqn. 2.21, or as compro-

mise, Eqn. 2.22. This helps to keep a similar level of variance for the activations and

gradients of each layer. This in turn aims to prevent vanishing or exploding gradients.

∀ l, nlVar
[
w(l)
]
= 1 (2.20)

∀ l, nl+1Var
[
w(l)
]
= 1 (2.21)

∀ l, Var
[
w(l)
]
=

2

nl + nl+1

(2.22)

Assume a uniform distribution is used to sample weight values, w ∼ U [−ε, ε]. Then

the variance of w can be expressed in terms of ε (Eqn. 2.23). Note that the distribution

is zero centered, so the expectation term evaluates to zero. Combining Eqn. 2.22 with

Eqn. 2.23 gives the value of ε that fulfills the desired conditions.

Var
[
w] = E

[
w2
]
− E

[
w
]2

=
1

2ε

∫ ε

−ε

w2 dw

=
1

6ε
w3
]ε
−ε

=
ε2

3

(2.23)

ε =

√
6√

nl + nl+1

(2.24)

The strategy described above is one instance of Xavier initialization [Glorot and Bengio, 2010].

Similar derivations can also be performed using a normal distribution. Furthermore, there are

schemes that consider other types of activation functions, e.g. He initialization which caters to
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ReLU non-linearities [He et al., 2015].

Objective Function: As described in the last section, the error defined by the objective

function is backpropagated through the network to update the parameters. In this way, the

objective function dictates how the network learns from the data. Designing the objective

function is particularly important in unsupervised learning and outlier detection. Below is a

brief description of a standard cross-entropy loss.

One of the most common configurations in contemporary machine learning is multi-class clas-

sification with a cross-entropy loss. These networks are typically terminated with a softmax

activation (Eqn. 2.25). This operation converts raw logits, zi, into class probabilities that

sum to 1. The cross-entropy loss is given in Eqn. 2.26, where p is the true class probability

distribution and q is the predicted class probability distribution. For a given input, p is the

corresponding label (usually provided as a one-hot vector) and q is the distribution given by

the softmax output of the neural network. If p is a one-hot vector with a value of 1 for class j

and 0 otherwise, then Eqn. 2.26 reduces to −log(q(j)). This approaches 0 as q(j) approaches 1.

In this way, minimizing the cross-entropy loss aligns the predicted distribution to the ground

truth distribution.

σ(z)i =
ezi

∑K

j=1 e
zj

(2.25)

H(p, q) = −
∑

p(i) log(q(i)) (2.26)

More generally, cross-entropy can be thought of as the amount of surprise in the outcome of

an event with probability distribution p, assuming that the outcome is governed by probability

distribution q. Eqn. 2.27 expresses cross-entropy in terms of the inherent entropy of the true

distribution, H(p), and the relative entropy, or Kullback-Leibler (KL) divergence, of the two

distributions.
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H(p, q) = H(p) +DKL(p‖q) (2.27)

H(p) = −
∑

p(i) log(p(i)) (2.28)

DKL(p‖q) =
∑

p(i)
(
log(p(i)− log(q(i))

)

=
∑

p(i) log
p(i)

q(i)

(2.29)

Note that entropy is a measure of the uncertainty in a set of possible outcomes. Put another

way, it is the average amount of information that is gained from drawing a sample from a

probability distribution. If a probability distribution is skewed such that some outcomes are

much more likely than others, then the information gained from drawing a sample is low

(entropy close to 0). Conversely, entropy is maximized when the outcome is least predictable,

e.g. a fair coin. In many cases, the entropy of the true distribution, H(p), remains unchanged

throughout the optimization. Furthermore, the network parameters being optimized typically

have no influence on this term. On the other hand, the KL divergence term directly relates to

the difference between the true and predicted distributions. Specifically, it is the expectation of

the difference between the log probabilities of both distributions (Eqn. 2.29). Note that the KL

divergence is not symmetric, i.e. DKL(p‖q) 6= DKL(q‖p), and therefore cannot be considered

a distance metric in the geometric sense. Also, the KL divergence is only defined whenever

q(i) 6= 0 or if both q(i) = 0 and p(i) = 0 in which case DKL(p‖q) = 0.

Cross-entropy, KL divergence, and mean squared error are among the most frequently used

objective functions in contemporary machine learning. The following sections present different

applications where these loss functions are used outside of supervised learning.
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2.2 Semi-Supervised Learning: Exploiting Structure in the

Data

The most straightforward variation on supervised learning is semi-supervised learning. It is

used in scenarios where there is a limited number of labelled examples and a large amount of

unlabelled data. The overall aim in this setting is to learn from the structure of the data and

use it to infer labels for the unlabelled data. There are several strategies to accomplish this,

many of which involve a standard supervised loss on labelled data and a consistency loss on

the unlabelled data.

One of the highest performing semi-supervised methods, known as unsupervised data augmen-

tation (UDA) [Xie et al., 2020], is depicted in Figure 2.3. Labelled samples, xl, come from

DL, the distribution of labelled data and are accompanied by ground truth labels, y∗. These

are used with a standard cross-entropy loss to provide gradients for the desired classification

task. Meanwhile, the consistency loss involves unlabelled samples, xu, which are drawn from

the distribution of unlabelled data, DU .

Augmented

+
Consistency Loss:

Labelled

Unlabelled

Supervised Loss:

Figure 2.3: UDA [Xie et al., 2020] consistency loss applied to Sononet [Baumgartner et al.,
2017]. A standard supervised loss is used for labelled data. The consistency loss is given by
the KL divergence between unlabelled samples and their augmentations. Graphic produced with
PlotNeuralNet [Iqbal, 2018].

In general, consistency losses are designed to minimize the KL divergence between two pre-
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dictions on unlabelled data. The first prediction is usually performed with standard inference

using the current model parameters and an unaltered sample. This is the path used for back-

propagation. The second prediction is performed under different conditions, with a change in

the network, the input, or both. This prediction is often used as a label and no gradients flow

through this pathway. Some methods aim to make the second prediction less noisy in hopes

of a more robust “label”. For example, the mean teacher approach uses an exponential mov-

ing average of the network parameters to make the second prediction [Tarvainen and Valpola,

2017]. Other methods, such as temporal ensembling, average the predictions themselves over

time [Laine and Aila, 2017]. The temporal ensembling method also proposes random augmen-

tations to the inputs for the second prediction. This helps the network to learn a representation

that is invariant to class preserving transformations. In a similar way, virtual adversarial train-

ing [Miyato et al., 2018b] computes gradients for the inputs to find noise patterns that elicit

the greatest change in the network predictions. This additive noise, which the network is most

sensitive to, is then used to improve the robustness of the predictions. UDA follows in the same

vein, using targeted input augmentations. But rather than computing gradients for the inputs,

UDA finds a specific set of augmentations, through AutoAugment [Cubuk et al., 2019] or Ran-

dAugment [Cubuk et al., 2020], that are deemed effective for the supervised task [Xie et al.,

2020]. Figure 2.3 illustrates this approach where unlabelled samples are augmented through a

set of transformations T . In this figure, θ is used to represent the network’s current parameters

and y is used to represent the network’s prediction for a given sample, i.e. y = fθ(x). As

such, the UDA consistency loss, specified in Figure 2.3, uses the same parameters, but different

inputs for the two predictions. Although the complete implementation is a bit more nuanced,

the overall method is very simple and effective.

While many semi-supervised methods achieve excellent performance, it is important to analyze

the conditions in which they succeed. Oliver et al. take note of the fact that nearly all of these

methods use fully labelled datasets and simply withhold a certain portion of the labels [Oliver

et al., 2018b]. This means that the “unlabelled” data is in fact curated data which falls into

the predetermined classes with even distribution. This is very unlikely to occur in reality and

in a sense betrays the definition of unlabelled data which is supposed to be uncurated and
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unknown in nature. In their experiments, Oliver et al. create different sets of unlabelled data

that are increasingly mismatched to the ideal (labelled) data distribution. They demonstrate

that mismatched data not only fails to help, but can actually harm performance (compared

to using no unlabelled data at all). This raises concerns that semi-supervised methods are

fundamentally unable to take advantage of genuinely unlabelled data.

Ultimately, semi-supervised methods present many useful concepts; however careful attention

must be paid to the conditions in which they are deployed. Indeed, the conditions of outlier de-

tection are distinct from typical semi-supervised settings. Outlier detection problems generally

only have one class available during training and the test data can come from any unknown dis-

tribution. Learning under these conditions is often done using unsupervised objective functions,

which are reviewed in the following section.

2.3 Self-supervised and Unsupervised Representation Learn-

ing: Crafting Useful Objectives

Unsupervised learning is a broad term for nearly any type of learning that is done without

using labels. It includes traditional methods such as clustering algorithms and autoencoders as

well as more modern techniques including generative models and self-supervised tasks.

Recently, one class of self-supervised methods has renewed interest in unsupervised learning as a

competitive alternative to supervised learning. These methods use a contrastive loss to compare

representations of different images and push similar images closer together while spreading dis-

similar images further apart. One of the most popular implementations is a simple framework

for contrastive learning of visual representations, abbreviated as SimCLR [Chen et al., 2020b].

It involves a dataset of unlabelled images, x ∼ DU , a set of random transformations transfor-

mations, t ∼ T , a convolutional (encoder) network, h = f(x), and a smaller fully connected

network, z = g(h). Recall the consistency loss from the previous section on semi-supervised

learning (Section 2.2). The consistency loss takes unlabelled samples, applies augmentations,
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and minimizes the KL divergence between the network’s predictions for these samples. Sim-

CLR works in a very similar way, but with some key differences. In the semi-supervised setting,

the network benefits from a supervised loss with known classes. This allows for the use of a

softmax activation function which converts output logits into class probabilities, the required

format for the KL divergence. In unsupervised learning, the classes are not known a priori, even

the number of classes may be unknown. As such, instead of using outputs shaped for a specific

number of classes, contrastive methods directly compare representation vectors which can have

arbitrary dimensions. The metric used in SimCLR is cosine similarity (Eqn. 2.30), i.e. the dot

product between two normalized vectors. This cosine similarity function is used to compare

positive and negative pairs. A positive pair consists of two random and different augmentations

of the same original image. Meanwhile a negative pair is any two augmented images that do

not come from the same original image. To increase the similarity between positive pairs and

decrease similarity between negative pairs, SimCLR uses each pair’s similarity as an input to

a softmax function. This is shown in Eqn. 2.31. Note that n original samples are augmented

in two different ways to create 2n images in a batch. In this equation, the similarity between

samples i and j appears in the numerator, while the denominator is the sum of the similarities

of all other pairings (except for comparing sample i with itself, hence the indicator function

1[k 6=i]). Note that τ is a temperature scaling parameter. The negative log in this equation is

from the formula for cross-entropy. Recall from Eqn. 2.26 that cross-entropy is the sum of the

product of i) the true probabilities and ii) the negative log of the predicted probabilities; in

this case the latter is represented by ℓ(i, j). The former can be implicitly set to one for positive

pairs and zero for all other pairs, resulting in Eqn. 2.32. Written this way, it is sometimes called

the multinomial logistic loss. Note that for every k, the indices 2k − 1 and 2k correspond to

two augmentations of the same sample, i.e. a positive pair.

sim(u,v) =
u⊺v

‖u‖‖v‖ (2.30)

ℓ(i, j) = − log
exp(sim(zi, zj)/τ)∑2n

k=1 1[k 6=i] exp(sim(zi, zk)/τ)
(2.31)

L =
1

2n

n∑

k=1

[
ℓ(2k − 1, 2k) + ℓ(2k, 2k − 1)

]
(2.32)
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As mentioned earlier, minimizing this contrastive loss will pull augmentations of the same image

closer together and push other images further apart. After training with this loss, the smaller

fully connected network can be discarded. A simple linear classifier can then be trained on

top of the main encoder, using the representation vector, h, as an input and giving outputs

customized to the desired task.

This method was inspired by contrastive predictive coding methods [Oord et al., 2018, Hénaff

et al., 2019], which use patches from the same image as positive pairs and patches from different

images for negative pairs. Contrastive losses have also been used much earlier in the context of

similarity and metric learning [Hadsell et al., 2006].

There are also unsupervised methods that combine modern neural networks with more tra-

ditional clustering algorithms. DeepCluster [Caron et al., 2018] uses a similar setup to the

self-supervised method described above with a convolutional encoder network, h = f(x), and

a smaller fully connected network, z = g(h). DeepCluster takes a set of unlabelled images

and uses the encoder network to obtain a representation, h, for each sample. A clustering

algorithm known as k-means clustering [MacQueen et al., 1967, Lloyd, 1982] is then performed

on the set of representations. In general, k-means clustering assumes a number of classes, k,

and starts by assigning k centroids, c, to random samples in the dataset. In this case, k-means

clustering operates on the set of representations, h ∈ R
d, therefore each centroid will have the

same dimensions as the representations, d. Let the matrix C ∈ R
d×k represent the total set

of centroids. Each sample can then be assigned to a cluster corresponding to which centroid

is closest to its representation. Once every sample is labelled, the centroids themselves can be

updated to the mean of all representations within that cluster. This process of i) assigning

clusters and ii) updating centroids can be repeated until convergence or for a set number of

iterations. This is illustrated in Eqn. 2.33, where the inner minimization selects the labels that

give the shortest distance to a centroid, and the outer minimization assigns each centroid to

the mean of its cluster.

min
C∈Rd×k

1

n

n∑

i=1

min
yi∈{0,1}k

‖fθ(xi)− Cyi‖22 (2.33)
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After k-means clustering is finished, the encoder network can be trained with a cross-entropy

loss, treating the clusters as classes. Note that this stage trains the encoder network as well

as the smaller fully connected network which has k outputs. The overall training procedure

alternates between k-means clustering and cluster-based classification. Just as with the self-

supervised method described above, the smaller fully connected network, g, can be discarded

at the end of training and replaced with a linear classifier for the desired task.

Unlike the methods described thus far, autoencoders [Lecun, 1987, Ballard, 1987] define a loss

in the input space. The network architecture typically involves an encoder, mapping inputs to

a latent space, as well as a decoder, which maps latent codes back into images. The bottle neck

of the network is normally chosen to be lower dimensional than the input space. An example

is given in Figure 2.4.

Figure 2.4: Autoencoder trained to reconstruct images. Graphic produced with PlotNeural-
Net [Iqbal, 2018].

Autoencoders are trained to reconstruct inputs, usually with a mean squared error regression

loss or similar loss function. A basic autoencoder loss is given in Eqn. 2.34, where fθ represents

the encoder and gφ represents the decoder. Some autoencoders are also given corrupted inputs,

x̃, and trained to reconstruct uncorrupted images [Vincent et al., 2010]. This denoising au-

toencoder loss, depicted in Eqn. 2.36, has parallels with the consistency loss in other methods

described above. After training, autoencoders can be used to compress images into latent codes

or reconstruct images based on the learned low dimensional representation of the data. The

weights of the network can also be reused for training on a new task, discarding the decoder

network.
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min
θ,φ

1

n

n∑

i

(
xi − gφ

(
fθ(xi)

))2
(2.34)

x̃ ∼ qD(x̃|x) (2.35)

min
θ,φ

1

n

n∑

i

(
xi − gφ

(
fθ(x̃i)

))2
(2.36)

One important difference from the previous unsupervised methods is that autoencoders are not

trained on a discriminatory objective function. As such, the learned representation may not

have the same qualities as the representations learned with SimCLR or DeepCluster. Encoders

trained via SimCLR or DeepCluster can often be used for new tasks without changing any

of the weight values. On the other hand, autoencoders are traditionally employed as a pre-

training method; during the optimization for the new task, the weights continue to be updated

as a way of fine tuning them. The representations learned from autoencoders may be less

suitable for classification tasks, but they can have other advantageous qualities. For example,

some representations can act as a low dimensional manifold of the data. Manipulating different

values in this space can correspond to changes of specific features which can be visualized by

reconstructing the image with the decoder.

In addition to the reconstruction loss, several autoencoders include a loss at the bottleneck.

Variational autoencoders (VAE’s) [Kingma and Welling, 2014, Rezende et al., 2014] are among

the most well known in this category. Instead of encoding an image into a single vector, e.g.

h ∈ R
d, VAE’s map inputs to a set of d probability distributions (one for each dimension of

the latent space). The standard VAE uses Gaussian distributions which are parameterized

by a mean and standard deviation. As such, the encoder outputs two vectors µ,σ ∈ R
d. A

single set of two vectors leads to d Gaussian distributions that can be sampled to obtain any

number of regular latent codes. Using the decoder, these latent code samples can be mapped

to images. Unfortunately this sampling process is problematic for backpropagation. As such, a

reparameterization trick is used; the mean and standard deviation from the encoder are used to

shift and scale a random sample from a unit Gaussian as shown in Eqn. 2.38 (note that ⊙ refers
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to the element-wise product). This arrangement makes it possible to compute the dependency

on µ and σ and for gradients to flow from the decoder to the encoder. As mentioned earlier,

there is also a loss applied directly to the encoder outputs. This loss regularizes the latent

space by minimizing the KL divergence between the predicted distribution (parameterized by

µ and σ) and a unit Gaussian prior. This is shown in Eqn. 2.39 and a complete derivation

can be found in [Kingma and Welling, 2014]. Note that the order of the distributions in the

KL divergence is reversed (compared to previously seen equations). This divergence is highest

when q(z) is high, but the prior, p(z), is low. The regularization and design of the VAE latent

space encourages the model to learn a representation with smooth transitions, where nearby

points correspond to similar images.

ε(l) ∼ N (0, I) (2.37)

z(i,l) = µ(i) + σ(i) ⊙ ε(l) (2.38)

DKL(q(z)‖p(z)) =
∫
q(z)

(
log q(z)− log p(z)

)
dz

= −1

2

d∑

j=1

(1 + log((σj)
2)− (µj)

2 − (σj)
2)

(2.39)

There are also alternative formulations of the bottleneck. For example, InfoVAE [Zhao et al.,

2019] uses regular latent codes (the same as conventional autoencoders) and measures the di-

vergence between these latent codes and a prior distribution using maximum mean discrepancy

(MMD) [Gretton et al., 2007]. Using a kernel, k(z, z′), MMD projects samples into a higher

dimensional space and computes the similarity between two samples. By computing the average

similarity between all samples in a set, MMD can compare distributions. If two distributions

are equal, then the average similarity between samples in each individual set will be equal to the

average similarity between samples from the combined set. Another strategy is used in vector

quantized methods (VQ-VAE’s) [Van Den Oord et al., 2017, Razavi et al., 2019b]. These meth-

ods quantize latent codes into discrete entries in a codebook. Using discrete values simplifies

the estimation of the probability that a given element in a latent code takes on a particular

value. Several methods such as autoregressive models [Van Oord et al., 2016, Van den Oord
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(a) Generator
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(b) Discriminator

Figure 2.5: GAN model trained to generate images and discriminate real images from generated
ones. Graphic produced with PlotNeuralNet [Iqbal, 2018].

et al., 2016] can then be used to learn the distribution of the data based on the latent codes.

Another popular strategy in unsupervised learning is the use of generative adversarial networks

(GAN’s) [Goodfellow et al., 2014, Radford et al., 2016]. While autoencoders use pixel-wise

regression, e.g. mean squared error, GAN’s compare generated images and real images using a

discriminator. The discriminator, Dφ, is simply an encoder trained with a cross-entropy loss; the

labels are set to one for real images from the training data and zero for generated/fake images.

The fake images are produced by the generator, Gθ, a decoder model which is given random

latent codes as inputs. These latent codes are typically sampled from a prior distribution

such as a uniform or Gaussian distribution. The gradients for the generator come from the

discriminator. The two networks are optimized jointly based on Eqn. 2.40. The discriminator

is optimized by maximizing Eqn. 2.40, which is equivalent to minimizing the binary cross-

entropy of a standard classification task for real images (with label one) and fake images (with

label zero). The generator is optimized by minimizing Eqn. 2.40, which leads to generating

inputs that the discriminator classifies as real. Figure 2.5 shows an example generator and

discriminator. Once trained, the latent space can be sampled to generate images. Just as

with VAE’s, the learned representation of a GAN can provide a low dimensional manifold of

the data. Slowly varying elements in the latent codes can correspond to smooth transitions

between generated images. In Figure 2.6, two random dimensions of the latent space are linearly

changed within a fixed range.

min
θ

max
φ

Ex∼pdata

[
logDφ(x)

]
+ Ez∼pz

[
log
(
1−Dφ(Gθ(z))

)]
(2.40)

While GAN’s can produce very realistic images, they often suffer from instability in training.
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Figure 2.6: Interpolations in the latent space of a GAN correspond to smooth transitions
between generated images.

Methods such as Wasserstein GAN’s with gradient penalties [Arjovsky et al., 2017, Gulrajani

et al., 2017] and GAN’s with spectral normalization [Miyato et al., 2018a] impose different

forms of regularization, particularly on the discriminator. Other approaches simplify the train-

ing process by generating smaller images at the start and progressively increasing the resolution

throughout training [Karras et al., 2018]. One the most successful methods, known as Style-

GAN [Karras et al., 2019, Karras et al., 2020], builds on top of the previously mentioned

methods and redesigns the architecture of the generator. Instead of using a latent code as

the input for the generator, StyleGAN injects the latent code at every layer of the generator

using adaptive instance normalization (AdaIN) [Huang and Belongie, 2017]. For a given con-

volutional layer, AdaIN normalizes the activation values (layer outputs) to have zero mean and

unit standard deviation; then it uses the latent code to scale and shift the activations values.

This is shown in Eqn. 2.41, where x represents the activations and y represents parameters

relating to the latent code. This technique has previously been used to alter the style of an

image while preserving its content [Huang and Belongie, 2017]. Applying AdaIN at every layer

in the generator allows the latent code to alter the style of the image at different resolutions,

from coarse attributes to finer details. StyleGAN also inputs a source of stochastic variation
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by injecting noise before each AdaIN layer.

AdaIN(xi,y) = ys,i
xi − µ(xi)

σ(xi)
+ yb,i (2.41)

This section has reviewed several unsupervised methods for learning representations that are

useful for downstream tasks. At the core of each approach is an objective that is designed

to extract useful features when performed repeatedly across the entire dataset. Among all of

these methods, the coherence of the objective is an important consideration. Since there are

no labels to enforce consistency, special care must be taken so that gradient steps on different

batches (or tasks) are coordinated. If the objective is too unstable, the gradients can cause

random jitter preventing the parameters from settling on a useful minima. The objective must

also be sufficiently difficult such that the network cannot find a trivial solution. Depending on

the objective function, the learned representation can have different qualities; this can make it

more suitable for some tasks than others. As will be seen in later chapters, the utility of the

learned features depends heavily on the overlap between the training objective and the target

task.

2.4 Outlier Detection: Learning without Examples

Outlier detection is a unique setting, distinct from semi-supervised and unsupervised scenarios.

A common assumption in outlier detection is that only normal data is available during training.

This data is labelled, in the sense that it is known to be normal. However, the data is often

provided as a single class without any subclass labels. This rules out the possibility of using

a supervised discriminative objective function. It can also have implications for unsupervised

methods, particularly those that learn to compare and contrast or cluster samples. These meth-

ods provide some of the best representations for downstream classification tasks, but they are

often trained on multi-class data (withholding labels), sometimes with the same distribution

as the test data. As seen in the previous sections, this can provide an implicit bias and good

performance does not always translate to scenarios with a distribution mismatch [Oliver et al.,

2018b]. The test data in outlier detection is, by definition, from a different data distribution.
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Learning to detect outliers (without any examples of outliers to learn from) is a challenging and

underdefined [Zhang et al., 2021] problem. Nevertheless, there are many practical applications

including security/surveillance, quality control, content moderation, and disease screening. Be-

low is an overview of some of the key strategies for outlier detection, with a focus on methods

in the medical domain.

2.4.1 Reconstruction-based Approaches

A common strategy in outlier detection is to learn a model that can only reproduce normal

samples. A given test sample can then be compared with the closest matching approximation

that the model can produce. Ideally, the model will have all the features necessary to reconstruct

the normal components perfectly, while lacking the features needed to reproduce abnormal

content. Comparing the input to its reconstruction, e.g. with mean squared error, can thus

provide an outlier score. Since the outlier score is computed in the input space, this naturally

provides an interpretable localization of the deviating regions.

Many unsupervised methods can be used for reconstruction-based outlier detection. Autoen-

coders are a natural choice because their architecture is designed to project images onto a lower

dimensional manifold and decode the result back to the input space. Baur et al. perform a

comprehensive analysis comparing different types of autoencoders on MRI brain data [Baur

et al., 2021]. Some types of autoencoders, such as VQ-VAE’s, can be used to estimate the

likelihood of elements in a latent code; components with a low likelihood can then be replaced

with samples from the learned distribution [Marimont and Tarroni, 2021]. This method is

used to restore unusual content and produce a more typical image. GAN’s can also be used

as reconstruction-based methods as long as there is a way to map images to the latent codes

of the generator. One way to do this is to treat the latent code as a variable and optimize for

the code which gives the lowest reconstruction error (while keeping the generator’s parameters

unchanged) [Schlegl et al., 2017]. Alternatively, an encoder can be trained specifically to encode

samples, removing the need for optimization at test time [Schlegl et al., 2019]. Reconstruction-

based methods can also be applied at different scales or resolutions to cater to different types of
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outliers. Whole images give the most context and provide the complete anatomical structure.

This can help with detecting global abnormalities or large defects and lesions. However, some

generative models struggle to reproduce the finer details. For applications where texture is

important, such as breast cancer screening, models can be trained at the patch level [Wei et al.,

2018]. Using smaller patches can also simplify training for methods that struggle with stability

at higher resolutions, e.g. GAN’s [Alex et al., 2017].

Regardless of which model is used, there are several advantages and disadvantages that are

inherent to all reconstruction-based methods. Part of the intuition behind reconstruction-based

methods is that they should be able to detect any deviation because they reconstruct every

feature in the image. In theory, this provides a more systematic sweep over all possibilities and

circumvents the issue of specifying which features to focus on. However, in practice there is

often an implicit bias based on the limitations of the model. If reconstructions are blurry, then

fine grained anomalies could be missed and if the model only synthesizes textures, then it may

not be capable of detecting structural anomalies. Another issue is the capacity of the model.

Data with a wide range of natural variations may be harder to learn and any variations that are

not captured by the model could be deemed anomalous (even if they are normal and present in

the training data). Even if the model is able to produce high fidelity reconstructions, there are

inherent limitations to computing outlier scores in image space. Image space distance does not

correspond well to semantic differences. Trying to separate normal and abnormal samples in

image space would be tantamount to classifying ImageNet [Deng et al., 2009] correctly without

feature extraction. It can work in scenarios with well-behaved data and gross abnormalities,

but subtle semantic differences can easily be hidden.

2.4.2 Embedding-based Measures

Another class of methods focuses on embedding samples into a meaningful latent space. Map-

pings from image space to latent space can be very flexible and expressive, allowing them to

make subtle distinctions between classes [LeCun et al., 2015]. One method, named deep sup-

port vector data description (SVDD), trains an encoder to map normal samples to a compact
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sphere ([Ruff et al., 2018]). Architectural constraints prevent the network from learning a triv-

ial mapping of all samples to a single point. During testing, the sample is embedded in the

latent space and the distance from the center of the sphere can be used as an outlier score.

Another method compares patches in the latent space of an autoencoder [Alaverdyan et al.,

2020]. In addition to the reconstruction loss, this method trains the encoder to maximize the

cosine similarity between corresponding patches in brain data that has been normalized to the

MNI template [Mazziotta et al., 2001].

Encoders are often trained to separate images of different classes, sometimes using labels. But

in the case of outlier detection there are no labels and usually only one class is present in the

training data. As such, the mapping learned by these embedding-based methods may not em-

phasize the most relevant features. The dimensions in the embedding space may correspond to

feature variations exhibited within the training data. If the training data is composed of exclu-

sively normal samples, then distances in the embedding space can be non-zero for completely

normal images. If the training data is imperfect and contains a small percentage of outliers

then the representation may learn these relevant features. Unfortunately, this representation

may not be relevant for other types of unseen outliers. In general, embedding-based methods

have the potential to learn semantic representations; but without any contrasting classes, it is

not obvious what properties these representations will have.

2.4.3 Self-Supervised Tasks

Self-supervised methods have recently garnered attention in unsupervised applications. They

have also been applied to outlier detection, particularly through self-supervised tasks involving

geometric transformations [Golan and El-Yaniv, 2018]. Given a set of N transformations (e.g.

rotation, translation, etc.), this method forms N artificial classes. A normal training image

augmented using the ith transformation is then associated with the ith class. These transformed

images and corresponding class labels are then used to train an encoder with a standard cross-

entropy loss. This encoder will learn features that change with each transformation and ignore

aspects that are unaffected by the transformations (i.e. features that are not informative).
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As an example, consider horizontal flipping (left-right) as a transformation. If applied to

chest X-ray data, the network may learn the orientation of asymmetrical structures such as

the heart. Meanwhile, symmetrical structures such as the rib cage may be less helpful for

the self-supervised classification task. At test time, all N transformations are applied to the

test image and an outlier score is derived from the average classification accuracy on these

augmented images. A low classification accuracy corresponds to a high outlier score because

the image lacks the normal features that the network expects. In the X-ray example, a test

image without a heart may result in a high outlier score because the network relies on learned

asymmetrical structures to classify the orientation accurately. On the other hand, a missing

or broken rib may be ignored because the ribs are not normally useful for identifying the

horizontal flip transformation. Some methods add a second disjoint set of augmentations to

create positive pairs (same image, different augmentation) and negative pairs (different images)

for contrastive learning [Tack et al., 2020]. This helps to inject prior knowledge of class-

preserving augmentations and can lead to better representations. It also allows for new outlier

metrics such as the cosine similarity with the nearest (normal) training sample.

These methods perform much better than reconstruction or embedding based methods on

datasets such as CIFAR-10 [Krizhevsky, 2009]. These types of datasets exhibit high intra-class

variation. This can cause embedding-based methods to learn mostly normal variations which

is less useful for detecting different classes. Image space distance also becomes less meaningful

which puts reconstruction-based methods at a disadvantage. Although self-supervised methods

excel in these challenging scenarios, they may be less suitable for medical anomalies. Most of the

augmentations used in these methods encourage the network to detect the major structures in

the image. But most patients, even those with irregularities, possess all of the major anatomical

structures (organs, bones, etc.). Medical abnormalities can be subtle and highly semantic in

nature. Most pathologies of interest can only be diagnosed by specialists with very specific

domain expertise. As such, outlier detection in medical applications remains very much an

open problem. The following chapters study these challenges in closer detail and propose

solutions that are tailored to detecting medical outliers.
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This chapter examines some of the challenges associated with medical data and studies different

uses of labels within this context. Fetal ultrasound scans are exemplary for these purposes. As a

modality, ultrasound is quite versatile and data acquisition is relatively easy. Unfortunately, this

flexibility can lead to very unstructured data. For example, a large portion of the acquired data

may not contain any diagnostically relevant information, but can create severe class imbalance.

Another issue is that semantic distinctions in medical images can be based on obscure or subtle

features. This can make classification more difficult without explicit, detailed annotations.

This chapter explores i) whether semi-supervised methods can reduce annotation requirements

and ii) how to maximize the utility of the labels that are available, through multi-task learning

and test time perturbations. Although these methods cannot be used for outlier detection,

where no pathology annotations are available, the experiments demonstrate that techniques

38
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devised for natural images are often less effective in the medical domain. The same is true

for outlier detection and the methods proposed in later chapters are tailored to address these

subtle differences found in medical anomalies.

The chapter is organized into two sections based on publications listed above [Tan et al.,

2019, Tan et al., 2020].

The first section considers the use of semi-supervised learning in standard plane detection. This

is an important prerequisite step for nearly all applications in fetal ultrasound. An important

finding in this work is that highly performant methods can face difficulty when applied to

non-ideal data.

The second section presents a pipeline for automated detection of congenital heart disease. This

pipeline uses supervised learning, multi-task learning, and adversarial perturbations at test

time. The experiments demonstrate that diagnostic tasks can be difficult even when labelled

examples are available. Using different sets of labels, with multi-task learning, can enhance

the learned representation and improve the separation of healthy and pathological classes. The

results of these experiments inform the design of the proposed methods in later chapters.

3.1 Semi-Supervised Learning of Fetal Anatomy from Ul-

trasound

3.1.1 Overview

Semi-supervised learning methods have achieved excellent performance on standard benchmark

datasets using very few labelled images. Anatomy classification in fetal 2D ultrasound is an

ideal problem setting to test whether these results translate to non-ideal data. Our results

indicate that inclusion of a challenging background class can be detrimental and that semi-

supervised learning mostly benefits classes that are already distinct, sometimes at the expense

of more similar classes.
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3.1.2 Introduction

Fetal ultrasound is the most widespread screening tool for congenital abnormalities and is a

key recommendation in the World Health Organization’s guidelines for antenatal care [World

Health Organization et al., 2016]. Classification of standardized tomographic 2D planes is a

key step in nearly all screening exams. However, low image quality and shortage of experts

can compromise screening efficacy or in the least make quality heterogeneous across sites. To

democratize care, several efforts have been made to automate standard plane detection using

deep learning [Baumgartner et al., 2017, Cai et al., 2018, Chen et al., 2015a, Kong et al., 2018b].

However, many of these methods still rely on large amounts of labelled data.

Because labelling is expensive, semi-supervised learning (SSL) methods have become an active

area of research, particularly for image data [Laine and Aila, 2017, Xie et al., 2019] and in the

medical domain [Cheplygina et al., 2019]. Recent methods have achieved remarkable perfor-

mance by learning from unlabelled data. This added information can help to push decision

boundaries into lower density regions, resulting in better generalization. Amidst this progress,

Oliver et al. call for more “realistic evaluation” [Oliver et al., 2018a]. One key concern is that

benchmark datasets (e.g. CIFAR10, SVHN) do not reflect realistic scenarios.

We study the use of SSL for standard plane classification in fetal ultrasound [Baumgartner

et al., 2017]. This task includes a challenging background class, class imbalance, and different

levels of inter-class similarity. In accordance with Oliver et al. we demonstrate that supervised

baselines can cope with surprisingly few labelled images; that a background class can cause

SSL to become detrimental; and that SSL is effective for distinct classes, but can weaken

performance on classes which are prone to confusion.

3.1.3 Related Work

Automatic anatomy detection from ultrasound videos is a popular topic with many successful

approaches using convolutional neural networks [Baumgartner et al., 2017]. Further advance-

ments have added multi-task learning to predict sonographer gaze [Cai et al., 2018] or multi-
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scale networks to exploit lower and higher level features [Kong et al., 2018b]. Some methods

have also studied the challenge of limited labelled data by pretraining on natural images [Chen

et al., 2015a]. However there has been little investigation into the use of SSL. Exploring this

avenue can reveal what benefits SSL can bring, and conversely, what challenges remain for SSL

in non-ideal data scenarios.

Recently, SSL methods have gained momentum. Underlying many of these methods is a con-

sistency loss which minimizes sensitivity to perturbations (in input/weight space). Examples

of perturbations include image augmentations, gaussian noise, weight dropout [Laine and Aila,

2017], targeted augmentations [Xie et al., 2019], and mixup augmentations (interpolation be-

tween images) [Verma et al., 2019]. Input perturbations have been shown to minimize the

input-output Jacobian (linked to better generalization) [Athiwaratkun et al., 2019]. Despite

these advances, Oliver et al. point out that real unlabelled data is likely to be more irregular

than the perfectly balanced benchmark datasets. It may also include out-of-distribution or

confounding data that could hurt SSL [Singh et al., 2008]. We aim to study the ways in which

SSL might help in a real problem which stands to benefit from SSL.

3.1.4 Methods

The architecture used in this study, Sononet [Baumgartner et al., 2017], is a convolutional

neural network (similar to VGG [Simonyan and Zisserman, 2015]) that has been tailored for

the task of anatomical standard plane detection in fetal ultrasound. It contains 15 convolutional

layers, 4 maxpooling layers, and ends with global average pooling. This acts as a strong fully

supervised baseline. Supervised methods are trained using Adam [Kingma and Ba, 2015] with

a learning rate of 1E-3. All models are trained for 50 epochs with a batch size of 32.

For the SSL method, we use the consistency loss employed in both the Π model [Laine and

Aila, 2017] and the unsupervised data augmentation (UDA) method [Xie et al., 2019] which

are among the state of the art for standard benchmark datasets. This consistency loss uses the

softmax predictions for unlabelled data, DU , as labels for the same images under augmentations.

This consistency loss can be formalized as
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LKL(xu, w) = KL(f(xu;w)||f(x′u;w)). (3.1)

This is added to the typical supervised (cross-entropy) loss with some proportion λ. A value

of λ = 0.5 is chosen as a heuristic and kept constant throughout all experiments. A higher

λ would put more weight on unlabelled data, but many finer distinctions can only be learned

through the labelled samples. As such, we specifically choose a λ that lets the supervised loss

dominate. Note that the weights w are the same for inference on both the original image xu

(drawn from DU) and the corresponding augmented image x′u. In this case the augmentations

include random combinations of the following operations:

• Horizontal flipping

• Random contrast adjustment by a factor within [0.7, 1.3]

• Random rotation by an angle within [−π
4
, π

4
]

• Random cropping ranging from 1% to 20%

The same augmentation is applied to all methods, including supervised baselines. These aug-

mentations are not specially tailored to the data as is the case in UDA. For the best perfor-

mance, UDA uses AutoAugment [Cubuk et al., 2019], a reinforcement learning method that

finds the optimal augmentation policies. This would likely improve both SSL and fully su-

pervised regimes. However, as shown in the results, the scores of the supervised baselines are

already very high with surprisingly few labelled images; applying AutoAugment to both SSL

and fully supervised methods may truncate the margin for potential improvement that we wish

to study. We include a) training signal annealing (TSA), b) confidence-based masking (CBM),

c) entropy minimization, and d) softmax temperature controlling [Xie et al., 2019]. Since these

are proposed in [Xie et al., 2019], we refer to the combination of i) the consistency loss with ii)

these additional techniques, as UDA for simplicity and to acknowledge their contributions.

TSA [Xie et al., 2019] uses a threshold, ηtsa, to mask the contribution of a given labelled image,

xl (drawn from DL), to the supervised gradient. Specifically, an example only contributes to



3.1. Semi-Supervised Learning of Fetal Anatomy from Ultrasound 43

the gradient if the softmax probability in the ground truth class is greater than the threshold,

p(y∗|xl) > ηtsa. The threshold ηtsa starts at 1
#ofclasses

and is increased to 1 following a linear,

log, or exponential schedule across the total number of epochs.

CBM [Xie et al., 2019] uses a confidence threshold on unlabelled images. An unlabelled image

only contributes to the consistency gradient if, max(p(y|xu)) > ηcbm. A ηcbm of 0.75 is used for

all SSL experiments.

Entropy minimization [Grandvalet and Bengio, 2005] is applied to p(y|x′u), the prediction for

an augmented unlabelled image. Also the prediction for original unlabelled image is sharpened

by using a softmax temperature of 0.8.
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Figure 3.1: Distribution of the training data (a) and examples of standard views (b).

Dataset

Our dataset contains 13 anatomical classes plus 1 background class. The entire training dataset

consists of 22757 images (class distribution shown in Figure 3.1.a). For SSL, 100 images are

extracted from each class to make up the labelled data DL. The remaining images are treated

as unlabelled data DU . Experiments are performed using subsets of DL, specifically using 1,

5, 20, 50, and 100 images per class. The test set follows the same distribution, but totals to



44 Chapter 3. Making the Most of Limited Labels

5737 images. Each image is 224x288 pixels. These image frames are derived from a dataset

containing 2438 videos from over 2000 volunteers.

Examples of some of the classes are displayed in Figure 3.1.b. The cardiac classes are among the

most difficult to distinguish. While the spine and brain also span multiple classes, these images

are generally more clear and can have significant pose differences (spine). The background

class contains a diverse range of images sampled from the videos (excluding frames of standard

planes). All extracted samples satisfy a minimum image-space distance between neighbouring

frames. This means that most background frames are extracted during rapid probe movement

and not when the sonographer slows down to home in on the standard planes. However, some

images that resemble standard planes still make it through this naïve filtering approach. Also,

the background class is larger than any anatomical class (Figure 3.1.a). In short, the background

class introduces class imbalance; is not easily characterized by a single common feature; and

contains examples which resemble other classes.

Evaluation

Fully supervised methods are evaluated with 1, 5, 20, 50, and 100 labelled images per class.

Another experiment is performed using the entire labelled training set (total 22757 images).

The SSL framework is applied to the cases of 5, 20, and 50 labelled images per class, where there

is a large margin for potential improvement. These cases represent a very feasible labelling task

compared to labelling all 22757 images.

Each evaluation is done with and without the background class. To measure the impact of the

background class on anatomical classes, accuracy is reported only for the anatomical classes

(not background). Accuracy is also reported with a single merged cardiac class. In this case, any

cardiac view that is classified as any of the four cardiac views is considered correct. Comparing

the overall and grouped cardiac accuracies gives an indication of whether improvements extend

to the cardiac classes.
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3.1.5 Results

Accuracy for fully supervised baseline methods is shown in Figure 3.2. With only 20 labelled

examples per class, overall accuracy is near 70% and grouped cardiac accuracy is over 80%.

All baselines are trained for 50 epochs and did not grossly overfit (except for 1 image per class

which was trained for 5 epochs).

Figure 3.2: Supervised baselines with varying number of labelled images per class. Inclusion of
the background class increases the difficulty of the classification task. Accuracy is reported as
either overall or grouping all cardiac classes into a single class.

When applying the SSL consistency loss, we find the performance is sensitive to the consistency

loss masking threshold, ηcbm. This is particularly true for the cardiac classes. Table 3.1 compares

the performance of different thresholds for the cardiac classes. The threshold for all other classes

remains constant at 0.75. A cardiac threshold of 0.25 gives best performance and is used for

all further experiments.

Further experiments are performed with different UDA settings to find the optimal configuration

(Table 3.2). We find that a log TSA schedule gives the best performance. Log schedules are

suggested for cases when the network is less likely to quickly overfit[Xie et al., 2019].

The best found configuration is then used with 5, 20, and 50 labelled images per class, with

and without the background class. Accuracies are reported in Figure 3.3.

Confusion matrices are displayed in Figure 3.4. SSL improves accuracy for distinct classes
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Table 3.1: Confidence mask threshold values for cardiac classes. These experiments use 20
labelled images per class and exclude the background class.

Method
Cardiac Confidence
Mask Threshold

Grouping Cardiac Overall

Supervised N/A 0.868 0.720

Basic UDA

ηcbm 0.849 0.665
1
2
· ηcbm 0.840 0.661

1
3
· ηcbm 0.905 0.728

1
4
· ηcbm 0.831 0.664

> 1 (disabled) 0.631 0.631

UDA Best
Configuration

ηcbm 0.915 0.720
1
3
· ηcbm 0.936 0.754

Table 3.2: Different configurations for the case of 20 labelled images per class without the
background class.

Method Optimizer TSA Schedule Grouping Cardiac Overall
Supervised Adam: 1E-3 N/A 0.868 0.720

UDA

Adam: 1E-3 Linear 0.905 0.728
Momentum: 1E-3 Linear 0.891 0.692

SGD cyclic:[7E-3,5E-2] Linear 0.921 0.735
Adam: 1E-3 Log 0.936 0.754

SGD cyclic:[7E-3,5E-2] Log 0.935 0.744

such as brain, femur, kidney, and lips from mid 0.80 (a - supervised) to mid 0.90 (b - UDA),

which approaches the fully supervised performance shown in (c). However, for cardiac classes,

confusion is increased when using SSL.

3.1.6 Discussion

Similarly to Oliver et al. [Oliver et al., 2018a], we show that supervised baselines are surprisingly

accurate (Figure 3.2). There is also a clear diminishing return of increasing the number of

labelled images, which starts as early as 20 examples per class. Inclusion of the background

class decreases accuracy in almost all cases. This indicates that the background class adds

difficulty even in the fully supervised case.

Investigating sensitivity to confidence thresholds (Table 3.1), we see that 1
3
· ηcbm (0.25) is the

only setting that improves both grouped cardiac and overall accuracy for the basic UDA imple-
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Figure 3.3: Overall and grouped cardiac accuracies with and without the background class for
5, 20, and 50 labelled images per class. Red bars indicate supervised baseline performance.
Without the background class (green bars), SSL accuracy is almost always above supervised
baslines (red). Inclusion of the background class can cause SSL performance to drop below
supervised baselines.

mentation. A value near 0.25 is reasonable given that the network must divide its confidence

over 4 very similar cardiac classes. Even for the best UDA configuration, a threshold of 0.25

for the cardiac classes makes a considerable difference; without it, overall accuracy does not

improve from the supervised baseline.

Figure 3.3 displays that without the background class (green bars), the SSL regime can almost

always improve upon the fully supervised baseline. The only exception being the overall accu-

racy for 50 labelled examples. In this case the supervised baseline is already quite high and

any further improvement would likely depend on the cardiac classes which the SSL method

struggles with. In contrast, the inclusion of the background class (blue bars), not only reduces

the accuracy of the fully supervised baselines, but tends to be harmful to the SSL method. For

most of the blue bars, the SSL method fails to match, let alone surpass, the baseline accuracy.

This illustrates the negative impact of including confounding images in the unlabelled data.

Again, the case with 50 labelled examples is the exception. Perhaps 50 labelled examples is

sufficient to capture the majority of the variation in the background class, preventing it from

having a negative impact on the SSL loss.
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(a) Supervised baseline (b) UDA (c) Supervised on all data

Figure 3.4: Confusion matrices for the case of 20 labelled images per class without background.
The supervised baseline (a) performs surprisingly well given the limited data. SSL (b) is able
to make considerable improvement for distinct classes, but can increase confusion of cardiac
classes. Even when trained on the entire labelled dataset (c), some cardiac classes are prone to
confusion.

While the SSL has been shown to increase both grouped cardiac and overall accuracies, the

confusion matrices in Figure 3.4 clearly show that these improvements are often at the expense

of the cardiac classes. It seems unlabelled data can help the network to learn when the classes

are inherently more distinct, but can cause harm when classes are inherently similar.

3.1.7 Summary

Supervised baselines provide surprisingly reliable performance even in extremely low data

regimes (e.g. accuracy of 50% from only 5 labelled images per class). Recent developments

in SSL can further improve this performance. However, irregular data can cause SSL to be

detrimental rather than beneficial. Also, classes with high similarity, such as cardiac views,

can see an increase in confusion. For such classes, injecting domain knowledge (e.g. lowering

cardiac confidence thresholds) may be necessary to supplement a lack of labelled examples.
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3.2 Automated Detection of Congenital Heart Disease in

Fetal Ultrasound Screening

3.2.1 Overview

While the previous section dealt with standard plane detection, this section progresses to the

actual diagnostic task of detecting congenital heart disease. For some cardiac abnormalities,

prenatal screening with ultrasound can lower neonatal mortality substantially. However, the

need for human expertise, coupled with the high volume of screening cases, limits the practically

achievable detection rates. This section explores the potential for deep learning techniques to

aid in the detection of congenital heart disease (CHD) in fetal ultrasound. We propose a pipeline

for automated data curation and classification. During both training and inference, we exploit

an auxiliary view classification task to bias features toward relevant cardiac structures. This

bias helps to improve in F1-scores from 0.72 and 0.77 to 0.87 and 0.85 for healthy and CHD

classes respectively.

3.2.2 Introduction

Ultrasound is the foremost modality for fetal screening. Its portability, low cost, and fast imag-

ing make it one of the easiest imaging modalities to deploy. This gives front-line sonographers

the tools to perform screening at a population level. In each fetal examination, sonographers

must inspect a wide range of anatomical features including but not limited to the spine, brain,

and heart. The breadth of this task makes it difficult for sonographers to develop specialized

expertise for every anatomical feature. Unfortunately, this can lead to some conditions going

undiagnosed. The most fatal of which is congenital heart disease (CHD) which is associated

with over 47% of perinatal deaths and over 35% of infant deaths (only considering deaths re-

lated to congenital abnormalities) [National Congenital Anomaly and Rare Disease Registration

Service, 2017].

Experts can detect CHD’s with over 98% sensitivity and near 90% specificity [Bennasar et al.,
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2010, Yeo et al., 2018]. However, shortage of specialists means that over 96% of examinations

are performed by generalist sonographers [Van Velzen et al., 2016]. As a result, population-

based studies consistently report detection rates around 39% [Pinto et al., 2012] (with one

exception reaching 59% [Van Velzen et al., 2016]). Machine learning methods could help close

this gap and provide sonographers with assistance for more difficult diagnoses.

Deep learning has been used in many fetal ultrasound applications including standard plane

detection [Baumgartner et al., 2017, Cai et al., 2018, Chen et al., 2015b, Kong et al., 2018a],

extrapolation of 3D structure from 2D images [Cerrolaza et al., 2018], and biometric measure-

ments for developmental assessment [Sinclair et al., 2018, Kim et al., 2018]. However, there

have been relatively few works on diagnostic assistance in fetal screening. Some of the major

challenges in this application are i) data curation and ii) disease variance. Data curation is cru-

cial because only certain “standard planes” are considered diagnostic [National Health Service

and Public Health England, 2018]. Extracting relevant frames for CHD is particularly chal-

lenging because pathological cases by definition deviate from the description of these standard

planes. The high variation of the manifestation of CHD’s also make diagnosis difficult.

In this work we propose a pipeline to perform automated diagnosis of hypoplastic left heart

syndrome (HLHS), a term which encompasses a spectrum of malformations in the left ventricle

and its outflow tract [Simpson, 2000]. A standard plane detector is first used to extract relevant

frames from the healthy and pathological cases. This data is then used to train a classifier to

distinguish between normal control (NC) cases and HLHS patients.

3.2.3 Related Work

Most successful applications of deep learning in fetal ultrasound have been in pre-diagnostic

tasks. In particular, standard plane detection has been studied extensively[Baumgartner et al.,

2017, Cai et al., 2018, Chen et al., 2015b, Kong et al., 2018a]. Standard plane detection is

also involved in the proposed pipeline and is based on the SonoNet architecture [Baumgartner

et al., 2017].
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Most closely related to our work is a recent study on diagnosing HLHS and Tetralogy of Fallot

(TOF) in fetal ultrasound [Arnaout et al., 2018]. In their methodology, images are labelled

based on standard planes allowing for extraction of relevant images with high diagnostic quality.

Using these images, they train a series of binary classifiers to distinguish between healthy and

pathological cases. Each classifier is trained using images from only one standard plane. The

predictions from each plane are then summed and a threshold is used to determine the final

diagnosis.

They achieve high sensitivity and specificity demonstrating that neural networks can learn

to identify CHD. In their study, the training images are of high diagnostic quality and come

from a diverse dataset including about 600 patients (for normal vs. HLHS). These favorable

conditions are not always possible because of a lack of expert annotations and the rarity of

CHD conditions. As such, we aim to investigate the feasibility of CHD detection in the low

data regime, using a total of 100 patients. We also study the impact of automated and manual

data curation.

The design of [Arnaout et al., 2018] is also dependent on data curation. Training individual

networks for each standard plane means that training data must be accurately sorted into the

correct planes. It also means that test data must be accurately sorted for inference because

each network is only trained to recognize pathology in a single view. Furthermore, using

individual networks for each plane leads to larger memory requirements. Instead, we train a

single network for all views and explore the use of plane labels as an auxiliary task for multitask

learning [Caruana, 1997].

3.2.4 Method

The proposed pipeline consists of two key stages, plane extraction and pathology classification.

Given uncurated data, this automated workflow allows for a model to be trained for CHD

classification. Figure 3.5 depicts the overall workflow.
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Figure 3.5: Automated curation and classification pipeline.

Data Characteristics

Data was collected from 39 healthy patients and 61 patients diagnosed with HLHS, for a total

of 100 patients. Each patient’s data is collected as raw ultrasound DICOM videos. These

videos are unannotated, meaning they contain i) frames of irrelevant anatomy, ii) frames in the

vicinity of the heart, and iii) precise standard planes which are typically used for diagnosis.

Table 3.3 summarizes the distribution of frames. The final extracted frames used for training

are greyscale images of dimensions 224x188 pixels. The curation process used to go from raw

videos to extracted frames is described in the following section.

Table 3.3: Distribution of patients, clean cardiac frames, and different cardiac views.

NC HLHS

Unique Patients 39 61

Total frames in DICOM files 354867 741290

Clean frames after curation 189000 376337

Clean frames (cardiac views) 102993 143468

View 4CH LVOT RVOT 4CH LVOT RVOT

Extracted Frames 31938 62195 8452 49176 73203 19959
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Plane Extraction

The data curation pipeline involves i) extraction of B-mode frames, and ii) standard plane

extraction. In the B-mode extraction phase, frames are run through a series of tests which detect

the presence of certain colors, user interface elements, or particular histogram characteristics.

These help remove Doppler, split-view, and M-mode frames respectively.

A standard plane detector, SonoNet [Baumgartner et al., 2017], is used to extract relevant

cardiac frames. Specifically, the 4 chamber heart (4CH), left ventricular outflow tract (LVOT)

and right ventricular outflow tract (RVOT) views are used. Table 3.3 displays the number

of frames extracted for each view. Note that this standard plane detector has been trained

to detect cardiac frames in healthy patients. As such, its ability to detect relevant frames

in patients with malformed hearts may be impaired. Given the bias toward normal hearts,

the detector may not recognize frames which show gross defects, which would be the most

diagnostically relevant. Instead it may favor instances where the heart appears closer to normal,

potentially making them more difficult to distinguish. While this is unideal, it represents

the most general case where we do not have access to annotations which highlight the most

diagnostic frames. This circumvents the need to train individual plane detectors for every

pathology. To test whether diagnostic information can be gleaned from these images, we train

a classifier as described in the following section.

CHD Classification

We train a single classifier to discriminate between healthy and HLHS patients. All three

cardiac views are used for training within the same network. The network architecture is

the same as SonoNet [Baumgartner et al., 2017] which has been inspired by the staple VGG

network [Simonyan and Zisserman, 2015]. A standard binary cross-entropy loss (Eqn. 3.2) is

used for optimization.

In the low data regime (particularly when the number of unique patients is low) it is difficult

to ensure that the classifier learns features that are genuinely related to pathology. Instead,
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the network might learn extraneous features that are reliable within the training data but are

not robust within the test set. It is also prohibitively expensive to annotate which regions are

important in each image. As such, we exploit the view labels which come for free from the

data curation pipeline. Discriminating between the 4CH, LVOT and RVOT views requires the

network to identify cardiac structures. It is also an intra-patient task, meaning that patient-

specific features are not reliable. View classification is thus added as auxiliary task to bias the

network toward cardiac structures and away from memorization of patient-specific characteris-

tics that do not generalize to test data. The auxiliary loss and combined multitask [Caruana,

1997] loss are given in Eqn. 3.3 and Eqn. 3.4 respectively.

LCHD(xi, yi, f) = −
N=2∑

c=1

yi,clog(f(xi,c)) (3.2)

Lview(xi, vi, f) = −
N=3∑

c=1

vi,clog(f(xi,c)) (3.3)

LMultitask(xi, yi, vi, f) = LCHD + λLview (3.4)

λi = 1− 0.5L′
CHD(xi, yi, f) (3.5)

The weight of the view loss, λ, is computed individually for each instance (Eqn. 3.5). It is

based on the minmax-scaled CHD loss values, L′
CHD ∈ [0, 1], of each sample within a batch.

The view loss only increases when a sample has a lower CHD loss, making CHD the network’s

priority. There are more sophisticated ways of finding the optimal weighting between tasks,

e.g. [Kendall et al., 2018], but this simplistic approach has little overhead and demonstrates an

improvement over a naive setting of λ = 1.

Assessing Diagnostic Quality during Inference

The automated curation pipeline helps to reduce manual data processing. However, it may

extract low quality frames which have less diagnostic information. Including predictions on

such frames adds noise to the overall diagnosis. As such, we aim to identify and remove

unreliable predictions. Note that even if all frames from a patient are rejected, it is better than
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providing a diagnosis which is unreliable.

A reliable prediction for cardiac disease should depend on the cardiac structures themselves,

rather than extraneous features in the background. Such a prediction should be robust to small

perturbations as long as the cardiac structures are kept intact. Our aim is to generate these

perturbations and use them to identify which predictions are reliable.

Generating perturbations that preserve the cardiac structures requires knowledge of the location

of the cardiac structures. However, annotating these structures is expensive. As such, we exploit

the auxiliary view task as a proxy. The view classification task determines which cardiac plane

is presented in the image, which depends heavily on the cardiac structures. To generate a

perturbation we use the gradient from the view task to distort the image in a way that does

not change the the view prediction (i.e. the cardiac structures). This is similar to adversarial

examples [Szegedy et al., 2014], except we keep the prediction the same (Eqn. 3.6) by following

the negative gradient (Eqn. 3.7 [Madry et al., 2018]). Multiple perturbation steps, δ, can be

taken; each time using a step size of α = 2 up to a maximum perturbation of ±8 from a pixel’s

original value p ∈ [0, 300].

min
δ∈∆

Lview(xi + δ, v∗i , f) , where v∗i = f(xi) (3.6)

δ = −αsgn(∇xLview(xi, v
∗
i , f)) (3.7)

Evaluation

After automatically extracting the relevant frames for all patients, manual curation was per-

formed on images from roughly 20% of the patients. In manual curation, the images are sorted

into three groups based on their diagnostic quality (high, medium, and low) by expert clinicians.

Half of these patients are used for testing and the other half are used for validation. Evaluation

on the test data measures how well the model is able to learn generalizable features from the

automatically curated data. The quality of the automated curation can also be measured by

comparing results on test sets with and without manual curation. We report precision, recall,

F1-scores and the area under curve for the receiver operator characteristic curve (ROC-AUC).
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3.2.5 Results

An overview of the results is presented in Table 3.4. The test data produced by automated

curation contains images with varying levels of diagnostic quality. Testing on all levels (low-

high quality) results in poor performance. Using medium-high quality immediately improves

all metrics. The multitask loss provides a considerable improvement and the weighted mul-

titask approach (λ ∝ LCHD, Eqn. 3.5) further improves performance. Using robust inference

(described in Section 3.2.4) helps to remove predictions that are deemed less reliable. The

fact that performance increases indicates that robust inference is effective in identifying and

excluding predictions that are less accurate.

Table 3.4: Pathology classification results for different models using testing data with different
diagnostic quality.

Loss Test
Quality

Precision
(NC:CHD)

Recall
(NC:CHD)

F1-score
(NC:CHD)

ROC-
AUC

CHD All 0.72 0.64 0.59 0.76 0.65 0.70 0.75

CHD Med-High 0.72 0.77 0.71 0.77 0.72 0.77 0.82

Multitask (λ = 1) Med-High 0.77 0.81 0.77 0.81 0.77 0.81 0.87

Multitask (λ ∝ LCHD) Med-High 0.80 0.80 0.74 0.85 0.77 0.83 0.89

Multitask (λ ∝ LCHD) Robust Frames 0.83 0.89 0.90 0.82 0.87 0.85 0.93

Figure 3.6: ROC-AUC comparison of regular and robust inference. Including low quality frames
quickly leads to a sharp decline in performance (blue). Robust inference can help to identify
frames that are more reliable (white hatch, right y-axis). Evaluating only reliable frames leads
to more accurate overall predictions (green).

A closer examination of robust inference is given in Figure 3.6. Using regular inference (blue),

the ROC-AUC becomes severely compromised when including low quality images. However,
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the performance can be recovered by using robust inference (green) to automatically determine

when a prediction is less reliable.

The white hatched bars (Figure 3.6) indicate the percentage of images which are deemed reliable

in each set. The percentage of reliable images increases as the expert-rated quality increases.

This indicates that the proposed reliability rating corresponds to expert judgement to some

extent. Ideally 100% of the high quality images should be retained; however 73% are deemed

reliable. Nonetheless the excluded predictions were indeed unreliable and their exclusion results

in an improvement of almost 0.03 (solid and dotted red lines). In the low-high set, only 61%

of frames are retained. To put this in perspective, experts only considered 39% of the low-high

set as being of acceptable quality (medium or above).

Figure 3.7: ROC-AUC using different approaches of frame quality assessment. All methods
improve upon regular inference (black). Cardiac-preserving perturbations stand out as being
considerably better at removing unreliable predictions (green).

We also compare different approaches to robust inference in Figure 3.7. The view verification

approach excludes any images which produce an incorrect view prediction (based on ‘ground

truth’ view labels provided by the plane detector in the curation pipeline). This gives very

limited improvement (grey).

The proposed cardiac-preserving perturbations are able to find and remove inaccurate pre-

dictions, which consistently improves ROC-AUC (Figure 3.7, green). In fact, increasing the

number of perturbation steps actually leads to better results. In comparison, random (purple)

and cardiac-altering perturbations (i.e. adversarial examples - blue) do not provide as much

improvement.
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3.2.6 Discussion

Various elements, including multitask learning [Caruana, 1997] and robust inference, contribute

toward improving the ROC-AUC from 0.75 to over 0.91. With a small number of unique

patients and a lack of manual curation, the standard classifier performs poorly. Multitask

learning [Caruana, 1997] helps to provide a bias toward cardiac structures that are relevant for

the view classification task. These features are also helpful for pathology classification and lead

to an increase in performance (Table 3.4).

Robust inference also helps to improve the scores by filtering out unreliable predictions. Pre-

dictions are considered less reliable if they change when the image is perturbed in a way that

preserves cardiac features. Stronger perturbations (using more steps) are more likely to alter

predictions. However, predictions that rely on cardiac features should remain unaffected. Fig-

ure 3.7 demonstrates that strong cardiac-preserving perturbations are the most adept at finding

unreliable predictions. In comparison, random and cardiac-altering (adversarial) perturbations

are not able to tease apart reliable and unreliable predictions.

We find that robust inference is an important component because the automated curation

pipeline includes many images of low diagnostic quality. Typically, these frames would have

to be manually vetted in order to reduce the noise in the overall prediction. However, robust

inference can serve as a filter to remove predictions from low quality images. For low-high

quality images, robust inference improves the ROC-AUC from 0.83 to 0.92. This is on par

with the ROC-AUC achieved with regular inference on only high quality images (0.92). This

is highlighted in Figure 3.6 with a red dotted line.

Measuring the reliability of a prediction is similar to uncertainty estimation (e.g. [Gal and

Ghahramani, 2016]). However, uncertainty quantification is a much more complex task and

is not always straightforward to interpret [Yao et al., 2019]. Instead, we simply measure the

prediction’s dependence on cardiac structures (which should hold key diagnostic information).

With this prior knowledge we can estimate our confidence in the prediction, rather than the

network’s intrinsic uncertainty.
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We demonstrate that it is possible to train a classifier to identify CHD from standard B-mode

images. In the future, temporal information or Doppler images could be used to provide more

diagnostic information. Nevertheless, this work represents a step toward the goal of assisting

front-line sonographers with CHD diagnosis at a population level.

3.2.7 Summary

This section proposes an automated pipeline for curating and classifying CHD in fetal ul-

trasound. The curation step extracts relevant frames which makes training possible. Still,

automated curation includes many images with poor diagnostic quality. Noisy predictions on

such images can lead to a reduction in overall performance. As such, robust inference is intro-

duced in this work to exclude predictions which may be less trustworthy. This helps to achieve

a F1-score of 0.87 and 0.85 for NC and CHD classes respectively and an ROC-AUC of 0.93.

Overall this chapter demonstrates that medical data can exhibit non-ideal characteristics and

class distinctions can be difficult to learn without detailed annotations. To tackle these prob-

lems, it is often necessary to adapt conventional methods, as seen throughout this chapter. But

some problems call for new alternative strategies. Outlier detection can be considered as an

extreme case of class imbalance, where only one class is available. Medical applications can

be particularly difficult because anomalous classes can be subtle and difficult to detect even

with supervised learning. The following chapters present methods that aim to learn subtle

distinctions while using data from only one class.



Chapter 4

Divergent Search for Few-shot Image

Classification

Publications Associated with this Chapter

[1] Tan, J. and Kainz, B. (2020). Divergent search for image classification behaviors. In Proceed-

ings of the 2020 Genetic and Evolutionary Computation Conference Companion, pages 91–92.

https://doi.org/10.1145/3377929.3389973

The previous chapter showed that existing methods for semi-supervised learning are only help-

ful when the unlabelled data is evenly distributed among equally distinct classes. This chapter

deals with strategies for unsupervised learning that are less dependent on the compatibility

between the unlabelled (training) data and the target task. Afterall, the goal in outlier detec-

tion is to detect unseen classes, so the exact target task is generally unknown prior to testing.

The proposed method in this chapter uses divergent search to accumulate a repertoire of fea-

tures [Tan and Kainz, 2020]. This approach is inspired by the way that evolution diversifies

in order to fill all of the niches in a fitness landscape [Ricklefs, 2010]. Once this repertoire has

been mined from the training data, it can be harnessed for the target task through few-shot

learning.
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4.1 Overview

When data is unlabelled and the target task is not known a priori, divergent search offers a

strategy for learning a wide range of skills. Having such a repertoire allows a system to adapt

to new, unforeseen tasks. Unlabelled image data is plentiful, but it is not always known which

features will be required for downstream tasks. We propose a method for divergent search in

the few-shot image classification setting and evaluate with Omniglot and Mini-ImageNet. This

high-dimensional behavior space includes all possible ways of partitioning the data. To manage

divergent search in this space, we rely on a meta-learning framework to integrate useful features

from diverse tasks into a single model. The final layer of this model is used as an index into

the “archive” of all past behaviors. We search for regions in the behavior space that the current

archive cannot reach. As expected, divergent search is outperformed by models with a strong

bias toward the evaluation tasks. But it is able to match and sometimes exceed the performance

of models that have a weak bias toward the target task or none at all. This demonstrates that

divergent search is a viable approach, even in high-dimensional behavior spaces.

4.2 Introduction

Unsupervised learning is attractive because it avoids the need for manual data labelling; but

also because human-crafted objectives are often only proxies for desired behaviors. For image

classification, self-supervision and clustering are some of the most popular approaches that do

not depend on labels. A lesser known alternative is divergent discriminative feature accumu-

lation (DDFA). It searches for features that partition the data in novel ways and accumulates

these features in an archive [Szerlip et al., 2015]. The advantage of a divergent search is that

it explores as many diverse partition behaviors as possible. Learning a wide range of behaviors

helps prepare a system when the target task is not known a priori. In image classification, a

single image can be classified in different ways based on its contents. An image of a dog at a

park could be classified based on the breed of the dog, the dog’s action/pose, the trees in the

background, the season, the weather, or whether it is day or night time. Convergent algorithms
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generally settle on one partition of the set and may fail to consider other possible arrangements.

In many cases, image-space similarities dominate and more specific/subtle features are hard to

discover without explicit supervision. We aim to use divergent search to continually seek novel

partitions rather than converging to the cardinal dimensions of variation.

Figure 4.1: Overall framework with examples of Omniglot images. Each inner loop starts with
the same model parameters, θi. Then a search for novel behaviors begins: a fully connected
layer, θfc, acts as an index to all of the features stored in θi, which acts as an archive of past
behaviors. A teacher model, φ1, aims to find the parameterization of a behavior that is outside
of the current capabilities of the archive θi. Then a learner ψ1 is trained on that behavior.
Finally the average of the gradients from each learner is used to update θi and the process
repeats with an updated archive of behaviors.

Thus far, DDFA has only been demonstrated in very restricted settings (i.e. single layer fea-

tures). One challenge of using divergent search with deep networks is the feature accumulation

aspect. It is impractical to store copies of every network that produces a new partition behavior.

It is even less feasible to search across a collection of networks for useful features to combine in

the fine-tuning process. Recent work in meta-learning offers a simple way to learn from different

tasks within a single network [Finn et al., 2017, Nichol et al., 2018]. These approaches aim to

learn a set of features that is generally useful (or quickly adaptable) for a range of tasks, which

may have never been presented during training. This lends itself well to divergent search.

Another challenge of using DDFA with deeper networks is the divergent search itself. Searching

solely for novel partitions may suffice when the network’s discriminative ability is inherently
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limited (i.e. single-layer features), but deeper networks are able to learn parameter settings

that perfectly match random labels [Zhang et al., 2017]. To prevent accumulation of arbitrary

and low utility features, a measure of quality must be included in the divergent search. In

the absence of ground truth labels, robust consistency between network outputs has become a

popular surrogate for quality [Laine and Aila, 2017, Han et al., 2018]. We jointly search for

novelty and quality by optimizing a teacher network to exhibit behaviors that

1. have robust consistency with a student model, but

2. cannot be learned by an archive of past behaviors (i.e. by reusing existing features)

Every novel behavior that is found in this search is integrated into the network. This increases

its repertoire of discriminative behaviors and redefines novelty - pushing the search to new

behaviors.

4.3 Related Work

This work aims to translate the motivation from DDFA into more modern meta-learning frame-

works. Both approaches are outlined below.

Divergent Search

One of the seminal works in this area is novelty search [Lehman and Stanley, 2011a], which

eschews performance-based objectives in favor of finding novel behaviors. Since the proposal

of novelty search, divergent strategies have become a central component of many evolutionary

methods, particularly in the field of quality diversity (QD). QD argues that the strength of

evolutionary computation lies in discovering new behaviors rather than optimizing toward a

single targeted objective [Pugh et al., 2016]. This paradigm has been used in many agent-based

problem settings. For example, in robotics it has been used to learn a repertoire of behaviors

spanning a robot’s capabilities. This endows the robot with a range of pre-learned skills making
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it better prepared for uncertain terrain or new, unseen tasks [Cully et al., 2015]. Note the close

parallels with unsupervised learning and meta-learning.

Szerlip et al. proposed DDFA to harness divergent search for unsupervised image classifica-

tion [Szerlip et al., 2015]. DDFA sets out to learn a repertoire of discriminative behaviors in

hopes that some of these features will be useful for the target task. In their framework, each

candidate feature is a single-layer feature (no hidden nodes) which outputs a scalar response

for a given image. Behavior is measured as a feature’s response to every image in the training

set, forming a vector of length equal to the number of images. Novelty is then quantified as the

distance between behavior vectors. In this way, new features are accumulated in an archive if

their behavior vector is sufficiently different from existing features. Finally, a classifier can be

trained on top of these features using labelled examples from a target task.

Single-layer features are not sufficient for most computer vision applications [Krizhevsky et al.,

2012]. Scaling up to deeper networks is challenging because it is impractical to accumulate entire

networks as opposed to individual features. The fine-tuning process also becomes unwieldy if

the classifier must search for and combine features from an archive of networks. Furthermore,

since deep networks have more discriminative capability than single-layer features, the space of

possible behaviors could include virtually all possible partitions of the data. Running novelty

search in this behavior space could lead to accumulation of features with very little semantic

quality or utility.

Meta-Learning

Recent work in meta-learning could help to resolve some of DDFA’s issues, specifically the

integration of features for different tasks into a single network. Two very similar methods,

model-agnostic meta-learning (MAML) [Finn et al., 2017] and Reptile (a play on words) [Nichol

et al., 2018], aim to learn a good initialization point which can quickly adapt to new tasks.

Both use an inner loop which learns from a single task, and an outer loop which aggregates

information from multiple tasks. We choose Reptile as the basis for this work for its simplicity

and computational efficiency. Reptile learns parameter settings for a task by taking several



4.3. Related Work 65

ordinary gradient steps. This repeats for every task included in the outer loop, always restarting

from the same initialization point. In the meta step, the initialization point is moved toward

the mean of all task-tuned parameter settings.

Unsupervised Meta-Learning

While meta-learning approaches are typically used in supervised settings, they offer attractive

properties for unsupervised learning. Of primary interest is their ability to learn and generalize

from tasks that are related, but not exactly the same as the the target task. This gives us more

lenience when generating tasks for training (in an unsupervised way). Hsu et al. have exploited

this fact for the purpose of unsupervised meta-learning [Hsu et al., 2019]. Their approach

is based on clustering to automatically generate tasks for unsupervised model-agnostic meta-

learning (CACTUs-MAML). They use existing self-supervised and clustering based methods

to generate mock tasks for training the meta-learning framework (in their case MAML). Note

that the meta-learning model is typically small to prevent overfitting on few-shot tasks; but the

self-supervised/clustering model can be much larger, creating a distillation effect [Hinton et al.,

2015] from a more sophisticated model. The first step is to train a self-supervised/clustering

method. Then k-means clustering is used to partition the embeddings of the entire training

dataset, in the latent space of the self-supervised/clustering network. Using these clusters as

labels, regular tasks can be created for training the meta-learning framework. Hsu et al. show

that i) different self-supervised/clustering methods work better for different datasets and ii)

the meta-learning performance is directly related to the quality of the mock tasks, i.e. the self-

supervised/clustering method [Hsu et al., 2019]. As such, this process requires three distinct

phases (self-supervision/clustering, k-means labelling, and meta-learning) with the potential

need for trial-and-error in the self-supervised/clustering step. This process can be quite time-

consuming and resource intensive.

To circumvent the arduous training of CACTUs-MAML, Khodadadeh et al. propose unsu-

pervised meta-learning for few-shot image classification (UMTRA) [Khodadadeh et al., 2019].

Their method uses domain knowledge as a substitute for explicit labels to construct tasks that



66 Chapter 4. Divergent Search for Few-shot Image Classification

are similar to the supervised tasks, but without the need for expensive labelling. First UMTRA

exploits knowledge of the data distribution. Given the distribution of most few-shot datasets

– these include many classes and only a small number of examples within each class – the

samples in a small batch of images are likely to come from unique classes. UMTRA begins by

sampling a small number of images and assigns unique labels to each image under the assump-

tion that they are from unique classes. Their calculations indicate that a sample of five images

from Omniglot has a 99.2% chance of containing five unique classes (and a chance of 85.2% for

Mini-ImageNet) [Khodadadeh et al., 2019]. Data distributions of both datasets are shown in

Table 4.1. The second source of domain knowledge is knowledge of identity preserving trans-

formations. Khodadadeh et al. use data augmentation to artificially expand this small sample

of images [Khodadadeh et al., 2019]. The best results are achieved when AutoAugment [Cubuk

et al., 2019] is used, which optimizes an augmentation policy to increase accuracy on a valida-

tion set. This combination of i) statistically-favorable sampling and ii) artificial upsampling,

aims to create tasks which are as similar as possible to supervised tasks.

State-of-the-art approaches use self-supervision, clustering, or domain knowledge to construct

tasks that closely approximate supervised tasks. The goal of training on these tasks is to give

a bias toward the type of behaviors that the model will be evaluated on. Training and testing

on the same behavior is a cornerstone of machine learning. But recent works in evolutionary

computation have asked the question of whether undirected search, which lacks any specific

objective, can discover useful behaviors on its own. Many of these investigations co-evolve

tasks and solutions together in an open-ended fashion. For example generating mazes and

their solvers [Brant and Stanley, 2017] or courses with new terrains and agents that traverse

them [Wang et al., 2019]. Similarly, we aim to learn teacher and student models that jointly

explore image classification behaviors. This behavior space is very high-dimensional and lacks

the interpretability enjoyed by many reinforcement learning problems (e.g. agent sensors/states

which correspond to different actions, or environment parameterizations that correspond to

different obstacles). Using divergent search in this type of behavior space provides insight into

its suitability for such problems and the remaining unmet needs.
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4.4 Methods

In this work, unsupervised learning is formulated as a divergent search for novel partition

behaviors. A meta-learning approach inspired by Reptile [Nichol et al., 2018] forms the basis

of our method. An inner loop is used to derive a single task, while an outer loop is used to

aggregate learning from multiple tasks. The overall framework is depicted in Figure 4.1.

4.4.1 Inner-loop

Each iteration of the inner loop is an attempt to find a novel partition behavior. Three neural

networks are used for this process. The archive is a fixed model which is parameterized by

θi. At the start of each inner loop, all three networks are initialized to θi. Note that all

models follow the same architecture, which is described later in Section 4.4.3. The final fully

connected layer of the archive, θfc, is mutable. This means that the contribution of different

higher-level features to a given logit can be changed. In this way, the fully connected layer

acts as an index to all previous behaviors. This also includes exaptations of these archived

features. In other words, features used for past behaviors can be repurposed for direct use in

new behaviors. This allows the archive to span an even larger region of behavior space which

includes all permutations of previous partition behaviors.

The teacher model aims to find regions of the behavior space outside of the subspace already

spanned by the archive (green region in Figure 4.1). It is parameterized by φ. Unfortunately

it is difficult to analytically determine the ‘span’ of the archive in behavior space. It is also

prohibitively expensive to sample every possible index, θfc. As such, the archive index and

teacher model are jointly optimized. The archive index is optimized to match the behavior of

the teacher. Let pφ(x) denote the teacher’s prediction for image x where

pφ(x) = argmax f(x;φ), (4.1)

and let fθ(x) denote the archive outputs:

fθ(x) = f(x; θi, θfc). (4.2)
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The archive index is then optimized to reduce the categorical cross-entropy between its outputs

and the teacher’s predictions:

min
θfc

−
N=C∑

c=1

pφ (x) log fθ (x) (4.3)

Meanwhile, the teacher is optimized according to

min
φ

−JS(fθ(x)||fφ(x)), (4.4)

which aims to maximize the Jensen-Shannon (JS) divergence between the outputs of the archive

and the teacher. The teacher and archive index are updated iteratively for a limited number of

steps. In theory, a longer optimization process may find a better teacher behavior. To reduce

computation time we restrict the number of iterations to 20 for all experiments. This is roughly

double the number of steps that a model is typically given in the Reptile framework to train

on a labelled classification task. As such, this limit is sufficient for learning new behaviors.

Another consideration is the optimizer, which in this case is Adam [Kingma and Ba, 2015].

Typically the momentum is disabled for the optimizer used in the Reptile framework because

it leads to poorer performance [Nichol et al., 2018]. However, in our case we find it helpful to

restore momentum for the teacher optimizer to avoid oscillations between different behaviors

within the archive’s reach.

Also note that the teacher is given a head-start by starting at a random mutation of the archive

parameters through

φi = θi + sη. (4.5)

Here η is the parameter space noise, sampled from a normal distribution N (0, σ). The standard

deviation, σ, is set low and increased until the teacher behavior differs from the initial archive

behavior by at least one prediction within a batch of images. Each parameter has a noise

scaling factor s, which scales the noise to a reasonable range. This is estimated by ‘safe

mutations’ which considers the magnitude of the gradient of all outputs with respect to a given

weight [Lehman et al., 2018].
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At the end of this process, a learner model is trained according to

min
ψ

−
N=C∑

c=1

pφ (x) log fψ (x) , (4.6)

which attempts to match the teacher behavior. The learner model starts with the same parame-

ters as the archive, ψi = θi. The optimization of the learner is exactly the same as the standard

inner loop in the Reptile framework [Nichol et al., 2018], but using the teacher predictions in

place of ground truth labels.

4.4.2 Outer-loop

The standard outer loop for Reptile [Nichol et al., 2018] simply takes the final parameter

values of the learner from each inner loop iteration and calculates the mean (Eqn 4.7). Then a

meta-step is taken toward this mean, depicted by the blue arrow in Figure 4.1.

ψ =
1

n

n∑

i=1

ψi. (4.7)

Using ground truth labels, it is natural to weight each task equally. In an unsupervised setting,

however, some tasks may be higher quality than others. In fact, a critical step in QD is

measuring the novelty and quality of a behavior to determine whether it should be kept or

discarded. We assess novelty by measuring how accurately the archive is able to match the

teacher behavior. Meanwhile quality is judged based on the robustness of the teacher behavior.

To estimate robustness, we measure how accurately the teacher behavior can be matched when

a model is trained on noisy examples of the teacher behavior. During the joint optimization

of the archive index and teacher (described in Section 4.4.1), we include another copy of the

archive that is trained on noisy teacher predictions (Eqn. 4.8). This is similar to Eqn. 4.3,

except that i) optimization is no longer restricted to the last layer, θfc, and ii) the teacher

predictions are affected by Bernoulli noise in the inputs to the fully connected layer φfc, i.e.

dropout [Srivastava et al., 2014]. Using dropout in the final layer of the teacher will alter

predictions that are less robust, while preserving predictions that are more robust.



70 Chapter 4. Divergent Search for Few-shot Image Classification

min
θ

−
N=C∑

c=1

pφ (x, nfc) log fθ (x) ,

where nfc ∼ Bernoulli(0.5)

(4.8)

Accuracy for each copy of the archive is calculated according to Eqn. 4.9. The value of a be-

havior is then calculated as the difference in accuracy between the two archive copies which are

optimized according to Eqn. 4.3 and Eqn. 4.8, which represent scores in novelty and robustness

respectively. In other words, Vφ = Arobustness − Anovelty. Note that a lower Anovelty corresponds

to a more novel behavior because the archive index was not able to find a past behavior which

accurately fit the teacher behavior.

Aθ =
1

m

m∑

j=1

pθ (x) == pφ (x) . (4.9)

If the behavior value is negative, the behavior is discarded and a new inner loop starts. The

final set of positive values is normalized to have a unit sum. These values are then used to

calculate a weighted average of the learners:

ψ =
n∑

i=1

viψi , where
n∑

i=1

vi = 1, vi > 0. (4.10)

This weighted meta-step has parallels with evolution strategies (ES) [Salimans et al., 2017].

In ES, samples in parameter space are evaluated using a potentially non-differentiable loss

function. Then the update is found by averaging all parameter sets, weighted by their loss. In

our case, the non-differentiable loss function aims to measure quality and diversity of behaviors,

and the loss evaluation is a complete inner loop.

4.4.3 Model Architecture

The models used in our experiments follow the same architecture and hyperparameter settings

as the original Reptile framework [Nichol et al., 2018]. A neural network is used with four

convolutional layers, followed by a fully connected layer (Figure 4.2). Each convolution is



4.5. Experimental Studies 71

followed by batch normalization and a ReLU activation. In the case of Mini-ImageNet, there

is also a max-pooling operation before the ReLU. The convolutional layers have 64 feature

channels for the Omniglot dataset and 32 for Mini-ImageNet.

Convolution-BatchNorm-(MaxPool)

ReLU Fully Connected

Figure 4.2: Network architecture with Omniglot example inputs.

4.5 Experimental Studies

4.5.1 Datasets

Two of the most commonly used datasets for few-shot learning are Omniglot [Lake et al., 2015]

and Mini-ImageNet [Vinyals et al., 2016, Russakovsky et al., 2015]. Each of these datasets

consists of many classes and relatively few examples (see Table 4.1). Omniglot images are

hand-written characters from many different alphabet systems, captured in grayscale with

dimensions 28x28 pixels. Mini-ImageNet consists of natural images of different subjects (e.g.

golden retriever, poncho, school bus) captured in color with dimensions 84x84 pixels.

Table 4.1: Dataset specifications.

Dataset Omniglot Mini-ImageNet
Pre-training Classes 1200 64
Evaluation Classes 423 36
Images per Class 20 600
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4.5.2 Image Sampling

An important consideration is how images are sampled for each inner loop. As mentioned

in Section 4.3, UMTRA exploits knowledge of the data distribution to sample small batches

which are likely to contain images from different classes. Figure 4.3 illustrates that UMTRA’s

statistically-favorable sampling, combined with augmentation, simulates genuine class-based

sampling. Instead of relying on statistically-favorable sampling, we wish to simulate a case

where sample size can no longer be exploited. The probability that each sample in a batch

comes from a different class is

P =
c! ·mN · (c ·m−N)!

(c−N)! · (c ·m)!
, (4.11)

where c is the number of classes, m is the number of images in each class, and N is the sample

size [Khodadadeh et al., 2019].

By using a sample size of 20 images for Mini-ImageNet and 90 images for Omniglot, we can

reduce the chance that all images are from unique classes to about 3%. We use this setting,

depicted in the last row of Figure 4.3, for the proposed method. This distribution will likely con-

tain multiple images from the same class, but it will also likely contain more classes than avail-

able logits. This means that pre-training tasks will almost certainly violate class-boundaries.

These conditions are not favorable for inducing a bias toward class-oriented evaluation tasks.

However, it simulates the most general case of unsupervised learning, where the number of

classes and the distribution among classes is not known a priori.

4.5.3 Evaluation

A few-shot learning task is used to evaluate whether the algorithm has learned useful features.

In this setting, N classes are selected and K + 1 images are sampled from each class. The

model is given the first K images (from each class) along with their ground truth labels. After

the model is fine-tuned using these labelled examples, the model must predict the correct class

for the final (+1) image in each class. Note that ‘fine-tuning’ will be used to refer to the
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Figure 4.3: Examples from Mini-ImageNet based on different sampling schemes. Each row
represents a batch.

learning that occurs during the evaluation stage (using the K labelled examples); meanwhile

‘pre-training’ will be used to refer to all learning that occurs before the evaluation stage. The

reported accuracy metric is the average across 10,000 tasks, where each task uses a random set

of N classes. Note that the pre-training classes and test classes are disjoint sets.

4.5.4 Benchmark Methods

Most existing approaches, whether supervised or unsupervised, attempt to give the model a

bias toward tasks that are similar to the evaluation tasks. In contrast, the proposed method

is not biased toward any particular type of classification, but instead tries to learn as many

discriminative behaviors as it can. A major question that arises is: whether the features learned

by an undirected, divergent search are useful for downstream tasks designed by humans. In

particular, how does it compare with methods that induce a strong/weak bias toward the

evaluation tasks or indeed away from the evaluation tasks. We use four main benchmarks to

represent biases of varying strength: i) fully supervised, ii) UMTRA, iii) random initialization,

and iv) random labels.
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Fully Supervised

The fully supervised setting (Reptile [Nichol et al., 2018]) represents the most explicit way

to create an inductive bias toward tasks that are similar to the evaluation tasks. Supervised

pre-training uses labelled images to learn tasks that are essentially equivalent to the evaluation

tasks, but using different classes.

Unsupervised meta-learning for few-shot image classification.

UMTRA uses domain knowledge as a substitute for explicit labels to construct tasks that

are similar to the evaluation tasks. It combines a) statistically-favorable sampling and b)

artificial upsampling through data augmentation [Khodadadeh et al., 2019]. We re-implement

UMTRA within the Reptile [Nichol et al., 2018] framework for a more direct comparison.

The original UMTRA uses AutoAugment [Cubuk et al., 2019] to create new realistic samples.

AutoAugment has recently surpassed state-of-the-art scores on formidable challenges such as

ImageNet [Russakovsky et al., 2015], purely through data augmentation. In our case, we

restrict augmentations to a more modest set of standard transformations, including random

combinations of:

• Horizontal flipping

• Hue, saturation, brightness and contrast adjustment by a random factor within ranges

[-0.08,0.08],[0.6,1.6],[-0.05,0.05], and [0.7, 1.3] respectively

• Random rotation by an angle within [−π
4
, π

4
]

• Random cropping ranging from 1% to 20%

While the original UMTRA uses strong augmentation to effectively ‘generate’ additional exam-

ples of each class, our low-augmentation setting is more akin to teaching invariance to simple

transformations. We use this baseline to represent a weaker bias toward evaluation tasks and

include the original UMTRA results for reference.



4.6. Results 75

Random Initialization

Random initialization represents an unbiased baseline, i.e. the performance of a model without

pre-training. This method learns only from the fine-tuning during evaluation.

Fixed Random Labels

The fixed random labels approach represents a bias away from the evaluation tasks. Assigning

fixed random labels to the images creates new tasks that are very unlikely to overlap with the

type of tasks used in evaluation. In these randomly labelled tasks, images with the same label

are likely to come from different classes and the same class may appear under more than one

label. As such, class-specific features are no longer reliable signals for discrimination. Instead,

the model may rely on extraneous information in the images (e.g. noise or background objects).

Note that, in some cases, pre-training on random labels (i.e. ‘memorizing’) can actually lead

to an increase in accuracy for a supervised task as compared with starting from a random

initialization [Pondenkandath et al., 2018].

To summarize, (i) fully supervised and (ii) low-augmentation UMTRA represent strong and

weak biases toward the evaluation tasks respectively; (iii) random initialization represents an

unbiased starting point; and (iv) random labels acts as a bias away from the evaluation tasks.

Comparing a divergent strategy to this spectrum of pre-training approaches allows us to assess

how useful the discovered features are for real, human-designed tasks.

4.6 Results

Evaluation was performed using N = 5 classes and K = 5 fine-tuning examples (k = 1 was

also tested). The results are summarized in Table 4.2 and Table 4.3. The primary bench-

mark methods are shown in bold and below them are additional results summarized from

literature [Hsu et al., 2019, Khodadadeh et al., 2019]. Note that bidirectional generative ad-

versarial network (BiGAN) [Donahue et al., 2017], adversarially constrained autoencoder in-
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terpolation (ACAI) [Berthelot et al., 2019], and DeepCluster [Caron et al., 2018] are different

self-supervised/clustering approaches. The representation learned from these methods can be

used in several ways, e.g. a linear classifier trained on top of the representation or a k-nearest

neighbors approach. Here, only the best and worst scores are included. For full details, refer

to the original work by Hsu et al. [Hsu et al., 2019]. Note that despite the effort required to

train these various methods, several of them produce scores below random initialization.

Table 4.2: Omniglot results for N = 5, K = 5 and N = 5, K = 1 evaluation tasks. Bottom
results summarized from [Hsu et al., 2019, Khodadadeh et al., 2019].

Omniglot
Algorithm (way-shot) (5,1) (5,5)

train test train test
Fixed Random Labels 21.11 20.84 26.05 25.60
Random Initialization 34.11 33.64 66.28 64.29
Proposed 59.53 55.79 80.87 77.85
UMTRA-Reptile Low Aug 66.21 65.26 85.32 83.48
Fully Supervised 98.32 97.64 99.54 99.68
Random Initialization MAML - - 52.50 - - 74.78
BiGAN worst scores - - 40.54 - - 58.52
BiGAN best scores - - 49.55 - - 68.72
BiGAN CACTUs-MAML - - 58.18 - - 78.66
ACAI worst scores - - 51.95 - - 71.09
ACAI best scores - - 61.08 - - 81.82
ACAI CACTUs-MAML - - 68.84 - - 87.78
UMTRA-MAML - - 83.80 - - 95.43

For both datasets, the proposed divergent search strategy achieves similar performance to meth-

ods with a weak bias toward evaluation tasks (low-augmentation UMTRA). However, methods

with a stronger bias (fully supervised, original UMTRA, and CACTUs-MAML methods), still

perform significantly better. Meanwhile the fixed random labels approach actually degrades

performance compared to an unbiased start from randomly initialized parameters.

A closer examination of the classification behaviors requires inspection of individual tasks.

Figure 4.4 displays several example tasks using t-distributed stochastic neighbor embedding (t-

SNE) plots [Maaten and Hinton, 2008, Policar et al., 2019]. In each case, the model is fine-tuned

on K = 5 examples from N = 5 classes. Then 10 test images are sampled from each class and

the logit outputs are visualized using t-SNE. Although t-SNE is not deterministic, the resulting

plots provide a potential interpretation of the model’s sorting criteria. Red and green borders
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Table 4.3: Mini-ImageNet results for N = 5, K = 5 and N = 5, K = 1 evaluation tasks.
Bottom results summarized from [Hsu et al., 2019, Khodadadeh et al., 2019].

Mini-ImageNet
Algorithm (way-shot) (5,1) (5,5)

train test train test
Fixed Random Labels 25.78 24.46 36.97 32.49
Random Initialization 26.02 24.59 39.93 36.52
Proposed 33.74 30.90 47.58 43.41
UMTRA-Reptile Low Aug 34.13 31.45 46.84 42.15
Fully Supervised 64.24 50.65 78.52 66.33
Random Initialization MAML - - 27.59 - - 38.48
BiGAN worst scores - - 22.91 - - 29.06
BiGAN best scores - - 27.08 - - 33.91
BiGAN CACTUs-MAML - - 36.24 - - 51.28
DeepCluster worst scores - - 22.20 - - 23.50
DeepCluster best scores - - 29.44 - - 42.25
DeepCluster CACTUs-MAML - - 39.90 - - 53.97
UMTRA-MAML - - 39.92 - - 50.73

Table 4.4: Ablation study on Mini-ImageNet with N = 5, K = 5 evaluation tasks.

Ablation Study
Algorithm Accuracy

train test
Random Search 32.54 26.63
Random Initialization 39.93 36.52
Proposed (Diversity Only) 46.52 42.41
Proposed (Quality Diversity) 47.58 43.41

around each image indicate the classification outcome (incorrect/correct respectively). In some

instances, classification outcome is poor, but the images are still embedded in meaningful ways.

We also perform an ablation study (Table 4.4). First, the quality aspect is removed by accepting

every behavior found by the divergent search in the inner loop (‘Divergent Only’). Then,

the divergent search is replaced by random search. In random search, labels are sampled

dynamically from a discrete uniform distribution across all possible classes. Note that this is

different from the fixed random labels setting where an image is assigned to a fixed group for the

entire pre-training process. Each component of the proposed method increases the evaluation

accuracy, especially the divergent search used in the inner loop.
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Figure 4.4: Example t-SNE plots using the logit outputs for 10 test images per class after fine-
tuning on N = 5, K = 5 examples. Each row is a different task. Green/red borders indicate
whether images were correctly/incorrectly classified. The fully supervised approach is able
to group images by class characteristics that are invariant to transformations. The proposed
divergent approach appears to rely on more generic features such as spatial frequency, pose, or
image style. Best viewed digitally.

4.7 Discussion

Evaluation on class-based tasks indicates the usefulness of a model’s learned features. Super-

vised tasks and tasks that are constructed to approximate supervised tasks lead to the highest

performance. Divergent search is able to learn features which are more beneficial than harmful.

However, as expected, its performance is still significantly lower than methods with a strong

bias toward evaluation tasks. The image sampling protocol (Section 4.5.2) used in the proposed

method produces batches of images that do not neatly fit into five classes. Nonetheless, the pro-

posed algorithm tries to find a new, high quality behavior for each batch. In contrast, UMTRA

relies on statistically-favorable sampling and CACTUs-MAML draws samples from distinct re-
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gions in an embedding space, all in an effort to approximate supervised tasks. These results

demonstrate that despite unfavorable conditions, an undirected search in a high-dimensional

behavior space can still be fruitful. In comparison, many of the learned embeddings (BiGAN,

ACAI, DeepCluster) perform worse than divergent search, sometimes even worse than random

initialization. These learned embeddings typically find features that are relevant to the data;

but without a bias toward evaluation tasks, their efforts can be detrimental.

The random fixed labels approach also leads to a drop in performance (Table 4.2 and Table 4.3).

This suggests that the model is specializing in a behavior that is counterproductive. Hsu et al.

found a similar reduction in performance when training on random labels [Hsu et al., 2019].

These random tasks often include a) multiple classes under the same label and b) the same

class under multiple labels. As such, it is reasonable that the bias learned from this pre-training

is harmful when performing class-based evaluation tasks. However, the tasks constructed in

a divergent search are also likely to violate class-boundaries. In spite of this, the divergent

search is able to learn features that are more beneficial than harmful. One key consideration

is that optimization on fixed random labels will lead to specialized discriminative behaviors

for that distribution of tasks. In contrast, a divergent search tries to explore as many novel

discriminative behaviors as possible.

Ideally, a divergent search should accumulate specialists in many different behaviors. But in this

setting the model size is restricted for fair comparison with benchmarks. It is also impractical

to use niche-preserving methods (e.g. novelty search with local competition [Lehman and

Stanley, 2011b]) when dealing with such a high-dimensional behavior space. As such the model

is incapable of learning a specialized set of behaviors for every task it encounters as niche-

preserving methods do. Instead, the best use of the model capacity may be a set of generic

features that have the most overall utility. Figure 4.4 shows that the proposed method may

have learned to distinguish images by their spatial frequency, pose, and style, all of which

are fairly generic descriptors. This type of undirected learning may eventually lead to more

robust, general-purpose features than those found by tuning a model precisely to human-crafted

objectives. However, the wide gap in performance when compared to strongly biased methods

suggests that its current state leaves much to be desired.
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The fully supervised method achieves higher scores by grouping images based on characteristics

associated with class identity. For example, in Figure 4.4 panel (a), the model groups lions and

Dalmatians separately despite their high intra-class variance. Low-augmentation UMTRA,

panel (b), is also able to make this distinction. Both have learned some amount of invariance

to identity-preserving transformations thanks to the bias in their pre-training strategies.

Divergent search is also often compared with random search. In this case, the tasks for random

search are constructed by dynamically sampling labels from a discrete uniform distribution

over all possible classes. Sampling random tasks in this way effectively asks the model to

perform diverse random behaviors. Uniform random search in behavior space has recently been

proposed as an interpretation of the overall outcome of novelty search [Doncieux et al., 2019].

Given these intuitions, random search might be expected to perform just as well as a divergent

search. However, Table 4.4 indicates that this formulation of random search actually has a

deleterious effect on evaluation performance. The main difference between a random behavior

task and a divergent task is that the divergent task is strongly connected to the model’s current

capabilities. In our case, the divergent task originates from a task that the model can already

perform. Then it is optimized away from the space of behaviors that the model can achieve

given its current features. This optimization process is stochastic, heuristic and imperfect.

The resulting task may lie somewhere between easy (the model’s current behavior) and hard

(a behavior that is impossible with the model’s current features). This may unintentionally

regularize the difficulty of divergent tasks and form a sort of curriculum [Bengio et al., 2009]. As

such, these divergent tasks may have more structure than the random search in high-dimensional

behavior space, allowing for more constructive learning.

Our experiments explore the application of divergent search to image classification. Although

the motivation is similar to many existing works on divergent search, there are several key

differences. One difference is in the nature of the task. In maze solving tasks, which is a common

problem setting for divergent and open ended evolution studies [Lehman and Stanley, 2011a,

Brant and Stanley, 2017], the complexity of a maze is fairly simple to measure and provides a

meaningful metric of progression. This is useful for creating a trivial starting point (e.g. empty

maze) for behaviors to develop. It also inherently provides a direction for learning which can
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gradually increase in complexity, e.g. sequentially adding more barriers. Neither of these are

available in the image classification setting. A trivial behavior could be classifying all images

as the same class, but this is actually a degenerate behavior as compared to an initialization

from random [Glorot and Bengio, 2010] parameters. Furthermore, task complexity is not easily

measurable and more complex tasks do not lead to better or more useful behaviors. Another

difference is that the behavior space is very high-dimensional compared to the environments

used in many reinforcement learning problems. In agent-based frameworks, the behaviors can

often be conflated onto a low-dimensional space where nearly all regions are meaningful [Lehman

and Stanley, 2011b]. Exploring this behavior space is very likely to be fruitful. In the case of

image classification, the behavior space is vast and many regions of the space do not correspond

to anything meaningful. Although this is a challenging setting, the behavior space found in

nature is even larger. Bringing divergent search into these larger playgrounds can provide

insight into the needs that are currently unmet.

4.8 Summary

Divergent search is a major component of QD methods which aim to learn a repertoire of

behaviors in the absence of specific behavioral objectives. The reasoning behind this approach

is that a system equipped with a whole host of skills will be able to handle novel tasks better

than a system which is tuned for one specific task. Meta-learning, i.e. learning how to best

learn a new task, has a very similar end goal. However it is typically approached from the angle

of generalizing from tasks that are similar to the target task. In this work we investigate the

use of divergent search in a few-shot image classification setting. Comparing divergent search

to meta-learning approaches, which are biased toward the target task, reveals a significant gap

in performance. But compared to weaker biases or methods which are not specifically biased,

divergent search is often comparable or better. These results demonstrate that divergent search

is a viable approach, even in a high-dimensional behavior space. There is also considerable room

for improvement, particularly in the measurement of behavior quality. In future work, better

quality metrics could help condense the behavior space to dimensions with more utility. A
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more modular architecture could also preserve archived behaviors in a better way, facilitating

exaptation.

Another takeaway from these experiments is that simple biases toward the target task can have

a huge impact on performance. General, unbiased feature learning is certainly a meaningful

endeavor. But practical solutions must often accept some drawbacks to achieve better perfor-

mance within a narrower scope. The following chapters explore more targeted solutions that

are specifically tailored to medical outliers.
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Detecting Outliers with Foreign Patch

Interpolation

Publications Associated with this Chapter

[1] Tan, J., Hou, B., Batten, J., Qiu, H., Kainz, B., et al. (2022). Detecting outliers with foreign

patch interpolation. Machine Learning for Biomedical Imaging, 1(April 2022 issue):1–10

This chapter presents a novel method for detecting outliers called foreign patch interpola-

tion [Tan et al., 2020]. This method achieved first place in the 2020 medical out-of-distribution

Analysis (MOOD) challenge in both sample and pixel level categories [Zimmerer et al., 2020a].

The MOOD challenge is run under the medical image computing and computer assisted inter-

vention (MICCAI) conference. It has also been published in the journal of machine learning

for biomedical imaging (MELBA).

The divergent search method proposed in the previous chapter is theoretically interesting, but

lacks the performance required for practical applications. Self-supervision is one of the best

strategies for learning useful representations. The types of features that are learned depends

completely on the self-supervised task. As such, the goal is to craft a task that pertains to the

most relevant features. The proposed method takes a normal image and introduces a “foreign”

irregularity from another normal image. The network is then trained to estimate the degree

of deviation from normal. This self-supervised task encourages the network to learn normal

83
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features and to detect subtle deviations.

5.1 Overview

In medical imaging, outliers can contain hypo/hyper-intensities, minor deformations, or com-

pletely altered anatomy. To detect these irregularities it is helpful to learn the features present

in both normal and abnormal images. However this is difficult because of the wide range of

possible abnormalities and also the number of ways that normal anatomy can vary naturally.

As such, we leverage the natural variations in normal anatomy to create a range of synthetic

abnormalities. Specifically, the same patch region is extracted from two independent samples

and replaced with an interpolation between both patches. The interpolation factor, patch size,

and patch location are randomly sampled from uniform distributions. A wide residual encoder

decoder is trained to give a pixel-wise prediction of the patch and its interpolation factor. This

encourages the network to learn what features to expect normally and to identify where foreign

patterns have been introduced. The estimate of the interpolation factor lends itself nicely to the

derivation of an outlier score. Meanwhile the pixel-wise output allows for pixel- and subject-

level predictions using the same model.

5.2 Introduction

Outliers in medical data can range from obvious lesions to subtle artifacts. This wide range can

make it difficult for a single detection system to identify all irregularities. Moreover, examples

of outliers are often not available before testing takes place. This makes it difficult to use

conventional classification methods that rely on training data to learn how to recognize test

images that come from the same distribution. Without knowing what to look for, this task

can be challenging even for human radiologists. For example, when focused on a lung nodule

detection task, 83% of radiologists failed to notice a gorilla superimposed on the image ([Drew

et al., 2013]). This indicates that human attention can cause even experts to be blind to
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unexpected stimuli. It is infeasible to have radiologists repeatedly scan for every conceivable

irregularity. As such, there may be an opportunity for automated systems to support detection,

especially if these tools can offer a complementary view of the data.

Recent works have used neural networks to create high performance image recognition systems.

These systems typically learn to recognize different image classes based on features that distin-

guish them from each other. However, outlier classes are not available during training, so it is

not known a priori which features will be most relevant.

To circumvent this issue, reconstruction-based methods ([Baur et al., 2020, Zimmerer et al.,

2019a, Alex et al., 2017, Schlegl et al., 2017]) aim to learn a complete model of the normal

data. Abnormalities are then found by comparing the original image to its reconstruction. A

key limitation of this approach is that it directly compares pixel intensities under the assumption

that intensity differences will be proportional to abnormality.

Self-supervised methods offer an alternative approach to feature learning. These methods

employ data augmentation techniques to create their own labelled samples from unlabelled data.

Methods such as geometric transformations ([Golan and El-Yaniv, 2018]) have been successfully

applied to outlier detection and outperform reconstruction-based methods on datasets with high

variation such as CIFAR-10 ([Krizhevsky, 2009]). These methods can tolerate higher variation

in normal data because they learn to identify salient structures in the normal class rather than

relying on precise reconstruction of every pixel. However, for most cases in medical imaging,

all of the major anatomical structures are present, even in abnormal cases. To detect medically

relevant outliers, we aim to develop a method that can tolerate variations of normal anatomy

while also being sensitive to fine-grained deviations from normal.

We propose a self-supervised task to train a model to learn where and to what degree a foreign

pattern has been introduced. The goal is to encourage the model to learn what features to

expect normally, given the context, and to be sensitive to subtle irregularities.

We evaluate this approach on an internal evaluation set with synthetic abnormalities and sub-

mitted the technique to the 2020 MICCAI medical out-of-distribution (MOOD) analysis chal-
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lenge ([Zimmerer et al., 2020b]) where it ranked first in both sample and pixel level tasks.

We also evaluate our method’s ability to detect real medical anomalies using the DeepLesion

dataset ([Yan et al., 2018a]).

5.3 Related Work

Out-of-distribution (OOD) detection is a broad topic discussed by many communities ([Pimentel

et al., 2014, Pang et al., 2020]). Depending on the context, OOD samples may contain minute

defects or completely unrelated content. It is often hard to formally define what constitutes

an OOD sample, especially without any reference examples. This makes the task inherently

heuristic and each approach must accept some assumptions which will impact its ability to

detect different types of outliers. One strategy is to choose assumptions that will generalize as

broadly as possible and be sensitive to the types of outliers that are of most interest. Most

existing methods detect outliers based on reconstruction error, embedding space distances, or

more recently, performance on self-supervised tasks.

Before discussing unsupervised methods, it is important to note that there are many supervised

and semi-supervised methods for detecting abnormalities. Supervised methods have achieved

expert-level performance in detecting breast cancer ([Wu et al., 2019]), retinal disease ([De Fauw

et al., 2018]), pneumonia and other chest abnormalities ([Tang et al., 2020]). Some of these

methods also delineate the boundaries of abnormalities, e.g., brain tumor segmentation ([Menze

et al., 2014]). Typically, these supervised methods learn from labelled examples of the target

class and are not designed to generalize to other types of abnormalities. Alternatively, there are

outlier detection methods that use labelled examples from a subset of anomalies with the goal of

detecting broader classes of outliers. One example is outlier exposure ([Hendrycks et al., 2019]),

which trains a multi-class classifier on several classes of normal data and tunes the network to

make less confident predictions on a set of OOD training samples that do not belong to any

of the normal classes. This tuning can help the model to make less confident predictions on

OOD samples, even if they come from a different distribution than the OOD training samples.
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However, for medical anomalies, which can be very subtle, it is not always possible to obtain

a relevant OOD training dataset. Since our proposed method uses only normal samples, we

focus on comparing to similar unsupervised methods described below.

Reconstruction-based methods attempt to reproduce images using a model of the normal data.

This model may be characterised by the bottleneck of an autoencoder ([Atlason et al., 2019]) or

variational autoencoder (VAE) ([Zimmerer et al., 2019a]) or by the latent space of a generative

adversarial network (GAN) ([Schlegl et al., 2017]). Reconstruction-based methods are especially

common in medical imaging applications. They allow for pixel-level localization and offer some

level of interpretability through the reconstructed images. Baur et al. provide a comparative

study with many variants of reconstruction-based methods using brain MRI data ([Baur et al.,

2021]). Autoencoders are versatile and easy to implement across a wide range of datasets

and configurations. For example, different variations have been applied to chest X-ray ([Mao

et al., 2020]), mammography ([Wei et al., 2018]), and brain CT ([Pawlowski et al., 2018])

data. Unconstrained, autoencoders run the risk of reconstructing anomalies along with normal

anatomy. As such, many methods use some form of regularization on the latent representation.

For instance, [Zimmerer et al., 2019a] use a VAE, which maps samples to distributions over the

latent space and minimizes the Kullback-Leibler divergence between the approximate posterior

and a prior. Alternatively, a discriminator can be used to match the distribution of latent codes

to a prior; this type of adversarial autoencoder has also been used in outlier detection ([Chen

and Konukoglu, 2018]). Another option is to eliminate the bottleneck entirely by using a GAN

to learn the distribution of normal data. To reconstruct a query image, a latent code can be

optimized to find the best match within the learned distribution ([Schlegl et al., 2017]) or an

encoder can be learned to map images directly into latent codes in a single step ([Schlegl et al.,

2019]). There are also restorative methods that replace low likelihood regions in the image

with samples from a learned prior ([You et al., 2019, Marimont and Tarroni, 2021]). As such,

there are multiple strategies for reconstructing the normal components of the input image. Any

errors in the reconstruction are then used to highlight anomalies. However, this means that

the abnormality score is proportional to intensity differences in the input space. This neglects

some of the key advantages of deep learning. Primarily, it fails to make use of learned mappings
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that bring raw inputs into representations where semantic differences can be distinguished more

easily ([LeCun et al., 2015]).

All of the above methods use whole images, but the reconstruction task can also be simplified

to focus on patterns at a smaller scale. Patch-level reconstruction can be effective for detecting

pathological textures in mammograms ([Wei et al., 2018]). Decomposing an image into smaller

patches can also make it easier to train models, such as GAN’s, without down-sampling or

losing high-resolution texture information ([Alex et al., 2017]). Even if a model is trained

at the patch level, anomaly scores can be recovered at the pixel level by using overlapping

patches during inference ([Alaverdyan et al., 2020]). Some of these methods are trained using

autoencoder or GAN losses, but exploit components other than the reconstruction error to

compute anomaly scores. These can include the discriminator of a GAN ([Alex et al., 2017]) or

the latent representation of an autoencoder ([Alaverdyan et al., 2020]). Using the embeddings

of an encoder has the potential to facilitate semantic distinctions. However, if the encoder

is not trained with an appropriate loss, then the representation may not distinguish relevant

samples. For example, a discriminator is trained to separate real and generated samples. This

does not necessarily make the representation suitable for separating real healthy samples from

real pathological samples.

Other approaches train encoders using losses that are specifically designed for outlier detection.

One example of this learns to map training samples to a compact sphere ([Ruff et al., 2018]).

However, without any examples of outliers in the training data, this latent space may accentuate

the wrong features, i.e., variations within the normal data that are class invariant. Some

embedding approaches introduce a disjoint set of outlier examples ([Bozorgtabar et al., 2020])

to overcome this issue. However in this work we focus on methods using only normal data.

Self-supervised methods have recently become a popular approach for unsupervised feature

learning, especially variants of contrastive predictive coding (CPC) ([Oord et al., 2018, Hénaff

et al., 2019]). Self-supervised methods have also been used for outlier detection ([Golan and

El-Yaniv, 2018]), in some cases also combined with CPC ([Tack et al., 2020]). The main

principle underlying many of these methods is to transform the images (e.g., rotation) and
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train a network to identify the transformation. This will sensitize the network to any features

that change consistently with the transformation. For example, the brainstem (in a coronal

view) may provide a reliable signal for predicting image rotation. However, if the brainstem

structure is missing or occluded, the prediction accuracy may go down, indicating a potential

outlier. This approach works well for recognizing key characteristics present in normal data.

However, in medical images many pathological outliers may still conform to the same global

structure as normal data.

Data augmentation and image synthesis play important roles in several outlier detection meth-

ods including our proposed method. In natural image datasets, data augmentation has been

used to apply affine transformations, blur or sharpen images, or alter the color, brightness, and

contrast of images. Methods such as AutoAugment and RandAugment find the most suitable

combination of transformations and achieve state-of-the-art performance on supervised tasks

through data augmentation alone ([Cubuk et al., 2019, Cubuk et al., 2020]). For medical imag-

ing applications, elastic deformations and image synthesis can help generate more relevant or

realistic augmentations ([Nalepa et al., 2019]). Some methods even model artifacts from the

imaging modality used for data acquisition, e.g., the bias field in MRI ([Chen et al., 2020a]).

The data augmentation method that is most closely related to ours is Mixup ([Zhang et al.,

2018]), which has previously been applied to improve brain tumor segmentation ([Eaton-Rosen

et al., 2018]). Mixup creates convex combinations of samples and their respective labels. This

helps regularize the network to behave linearly in-between classes. It also improves general-

ization and robustness to adversarial examples. Similarly, CutMix ([Yun et al., 2019]) works

by copying a patch from one image and placing it into another image. The labels from both

of these images are then mixed (as a convex combination) using a mixing factor equal to the

patch area divided by the total image area.

Both Mixup and CutMix use convex combinations of ground truth labels. However, when there

is only one class, which is the case in outlier detection, these convex combinations become mean-

ingless. Self-supervised methods solve this problem by creating new classes through augmenta-

tions, e.g., geometric transformations. However, these methods detect outliers through a proxy

task, i.e., classifying transformations, instead of directly identifying deviations from normal.
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This can make it harder to recognize more fine-grained, localized irregularities. Classification-

based proxy tasks also lack a direct means of locating abnormalities in the image. In this work,

we show that these elements can be combined in a novel way, using convex combinations to

create a new class that represents abnormality. This allows us to train directly on the task of

estimating deviation from normal. Meanwhile, our patch-level augmentation setup naturally

lends itself to pixel-level localization.

We provide the full details of our proposed method in the following section. Compared to

existing methods, our self-supervised task is designed specifically to improve sensitivity to

subtle irregularities. We target these cases because 1) they may be more medically relevant

and 2) detecting them may be more useful to radiologists since fine-grained outliers typically

require more intense scrutiny, time, and energy to detect.

5.4 Method

Most self-supervised methods train a network on a proxy task (e.g., identifying geometric

transformations ([Golan and El-Yaniv, 2018])) and subsequently measure abnormality as failure

to perform this task. Many of these tasks are helpful for detecting the presence (or absence)

of prominent structures that appear in the normal class. But medical images often contain

more fine-grained outliers, where most major structures are still intact. As such, we propose a

patch-level self-supervision task.

To create a variety of subtle outliers we extract the same patch from two independent subjects

and replace the patch with an interpolation between both patches. The operation is shown in

Eqn. 5.1 where A and B are independent samples, i refers to individual pixels in a patch h,

and α is the interpolation factor. Note that A, B, and A′ are full sized images. Pixels outside

of the patch remain unchanged and whole images are used as inputs. The patch size, hs, patch

center coordinates, hc, and the interpolation factor are all randomly sampled from uniform

distributions (Eqn. 5.2-5.4). The pixel coordinates of the patch define the region that will be

extracted from both samples, A and B. For volumetric data, each slice is paired with the
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corresponding slice from a second subject, based on slice indices. For 2D data or data without

a uniform number of slices, images are paired randomly. In both cases, we do not perform

any registration preprocessing steps on the data. Instead, we exploit the natural variations

and misalignment to create diverse training examples. Patches are square unless truncated by

image boundaries or in pixels where A and B have the same value. Patch width ranges between

10% and 40% of the image width, d.

A′
i = (1− α)Ai + αBi , ∀ i ∈ h (5.1)

hs ∼ U(0.1 · d, 0.4 · d) (5.2)

hc ∼ U2(0.1 · d, 0.9 · d) (5.3)

α ∼ U(0, 1) for continuous α or

α ∈ {0, 0.25, 0.50, 0.75, 1} for discrete α

(5.4)

Although A and B are both normal on their own, the differences between them will cause

the interpolation, A′, to have artificial defects. We train a network to estimate where, and to

what degree, a foreign pattern has been introduced. Given A′ as input, the corresponding label

includes the patch, h, and the interpolation factor, α, in the form of pixel-level values (Eqn. 5.5).

The loss is thus a pixel-wise regression if α is continuous, or a pixel-wise classification if α is

discrete. In both cases a standard cross-entropy loss is used (Eqn. 5.6-5.7, where f represents

the model). For continuous α, cross-entropy operates on labels that are not one-hot; this is

similar to applications such as label smoothing ([Szegedy et al., 2016]), network distillation

with soft targets ([Hinton et al., 2015]), and MixUp augmentations ([Zhang et al., 2018]) and

has been studied extensively in its own right ([Müller et al., 2019, Lukasik et al., 2020]). To

obtain predictions during testing, the abnormality score is derived directly from the model’s

estimate of the interpolation factor α. Examples of A and A′, with varying alpha, are shown

in Figure 5.1. The corresponding label for each example is equal to the label mask scaled by

the α value.
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αi =





α, if i ∈ h and Ai 6= Bi

0, otherwise

(5.5)

Lbce(A
′, αi, f) = −αilog(f(A′))− (1− αi)log(1− f(A′)) (5.6)

Lcce(A
′, αi, f) = −

N=5∑

c=1

αi,clog(f(A′)) (5.7)

Figure 5.1: Examples of foreign patch interpolation in brain and abdominal data from the
MOOD challenge ([Zimmerer et al., 2020b]). Different α values correspond to different convex
combinations. Scaling the label mask by the α value gives the label for each example. Green
markers indicate the corners of the patch. Regions where A and A′ are equal, e.g., background,
are truncated in the label according to Eqn. 5.5. More examples are given in Appendix 5.A and
5.B.

Note that FPI does not involve any image registration steps. Nevertheless, it is able to create

a range of subtle training samples through simple linear interpolation (as seen in Figure 5.1

and Appendices 5.A and 5.B). We experiment on datasets with varying degrees of alignment,

e.g., brain MRI volumes with affine registration and CT data with no alignment (details in

Section 5.4.1). In all cases, FPI is able to form useful training samples that improve detection

of outliers.
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Architecture

The network architecture is a wide residual encoder-decoder. The encoder portion is a standard

wide residual network ([Zagoruyko and Komodakis, 2016]) with a width of 4 and a depth of 14.

This is designed for inputs with dimensions 256x256. For inputs with dimensions 512x512, an

additional residual block is added, bringing the depth up to 16. The decoder follows the same

structure as the encoder but in reverse. The terminating activation is sigmoid in the case of

continuous α or softmax with the appropriate number of output channels for discrete α.

Training

Training examples are created dynamically during training with random shuffling of the training

data at the start of every epoch. This creates different convex combinations with different sam-

ples. Each model is trained for 50 epochs using Adam ([Kingma and Ba, 2015]) with a learning

rate of 10−3. An additional training phase can be performed after regular training for stochastic

weight averaging ([Izmailov et al., 2018]). This step is not necessary to achieve good perfor-

mance (Figure 5.4). However, we include its implementation details for completeness. Note

that stochastic weight averaging was used in our submission to the MOOD challenge ([Zimmerer

et al., 2020b]). To perform stochastic weight averaging, the model is trained for an additional

10 epochs with stochastic gradient descent ([Robbins and Monro, 1951]) and a cyclic learning

rate oscillating in the range [10−4, 10−3]. The varying learning rate helps the model to escape

minima and settle in new ones. The parameters are saved whenever the learning rate reaches

a minimum (once per epoch). The final model is consolidated by taking the mean of the 10

saved minima. Stochastic weight averaging has been shown to give better generalization ([Iz-

mailov et al., 2018]) and approximates ensembling methods without needing to increase model

capacity.
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5.4.1 Evaluation

Our method is evaluated on three datasets. The first two come from the MOOD challenge ([Zim-

merer et al., 2020b]), while the third is a universal lesion dataset, DeepLesion ([Yan et al.,

2018a, Yan et al., 2018b]).

MOOD Datasets ([Zimmerer et al., 2020b]): the MOOD challenge provides two datasets,

800 brain MRI volumes (256x256x256) and 550 abdominal CT volumes (512x512x512). Each

subject is positioned in approximately the same way, but non-rigid registration is not used.

As such, the same voxel/location in two different volumes may contain different tissue. All

samples are assumed to be healthy with no abnormalities. Given that no test data is provided,

we reserve 10% of the data as healthy test cases and we use 30% of the data to create anomalous

test cases. The remaining 60% of the data is used for training. To create the anomalous test set,

we synthesize five types of outliers. In each case a sphere of random size and location is selected

within each volume; the pixels within that sphere are altered in one of five ways listed below. An

example of a sink/source synthetic outlier is given in Figure 5.2. Performance is evaluated using

average precision (AP), which is the metric originally used in the MOOD challenge ([Zimmerer

et al., 2020b]). We also include evaluation with area under the receiver operating characteristic

curve (AUROC) and an estimated DICE score (⌈DICE⌉). To compute an approximate DICE

score, pixel-level anomaly scores are converted to binary segmentation masks. Following Baur

et al., a greedy search is used to find an ideal threshold for this conversion ([Baur et al., 2021]).

• Uniform addition - a sphere of uniform intensity is added to the image;

A′
i = Ai + n, ∀ i ∈ h, where n ∼ N (0, 1) (5.8)

• Noise addition - a sphere of random intensities is added to the image;

A′
i = Ai + ni, ∀ i ∈ h, where ni ∼ N (0, 1) (5.9)
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• Sink/source deformation - pixels are shifted toward/away from the center of the sphere;

A′
I = AV , ∀ I ∈ h, where I = (i, j, k) and

V =





hc + s(I − hc), for source

I + (1− s)(I − hc), for sink

and s =

(
‖I − hc‖2

hs
2

)2

(5.10)

• Uniform shift - pixels in the sphere are resampled from a copy of the volume which has

been shifted by a random distance in a random direction;

A′
i,j,k = Ai+a, j+b, k+c ∀ i, j, k ∈ h,

where a, b, c ∼ σU(0.02 · d, 0.05 · d)

and σ =





+1, with prob. 1
2

−1, with prob. 1
2

(5.11)

• Reflection - pixels in the sphere are resampled from a copy of the volume that has been

reflected along an axis of symmetry.

A′
i,j,k = Ai,d−j,k ∀ i, j, k ∈ h,

where d is image width

(5.12)

(a) Original (b) Synthetic Outlier (c) Label

Figure 5.2: Example of sink/source deformation used to synthesize an outlier. Original sample
from MOOD challenge ([Zimmerer et al., 2020b]). All types of synthetic outliers are displayed
in Appendix 5.C.
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DeepLesion Dataset ([Yan et al., 2018a]): this dataset contains CT scans from 4,427

unique patients exhibiting a broad range of lesions. There are at least eight different types

of lesions including lung, abdomen, mediastinum, liver, pelvis, soft tissue, kidney, and bone.

Each lesion is annotated with a bounding box. This dataset also includes volumetric data

with slices above and below the annotated slice, typically about 30mm on both sides. In many

cases, there are multiple annotated slices contained within one volume. To extract normal data

from these volumes, we remove all annotated slices along with a margin about 10mm on either

side. We train on 270,561 normal slices and test on 116,026 normal slices and 4831 annotated

slices with lesions. A supervised benchmark is also trained using 22,496 slices with lesions and

corresponding bounding box labels. Image-level testing uses normal slices and slices containing

lesions. However, for pixel-level evaluation we only use slices with lesions. In this case, pixels

inside bounding boxes are considered anomalous and all pixels outside of the bounding boxes

are considered normal. All images are resized to 256x256. Performance is evaluated using

AUROC and ⌈DICE⌉. Receiver operating characteristic (ROC) curves are also plotted.

The annotations in this dataset are mined from radiology reports and the creators of DeepLesion

acknowledge that there may be lesions that have not been annotated, e.g., those that were not

relevant to the radiologist’s examination ([Yan et al., 2018a]). While this makes training more

difficult for outlier detection methods (and also for supervised methods), it represents a more

realistic scenario, where it is difficult to ensure that the normal data contains no abnormalities

of any kind.

5.4.2 Benchmark Methods

To evaluate the performance of the proposed method, foreign patch interpolation (FPI), we

compare with several benchmark methods. For the MOOD challenge data with synthetic

outliers, we compare with deep support vector data description (SVDD) ([Ruff et al., 2018]), a

convolutional autoencoder (CAE) ([Masci et al., 2011]), and a maximum-mean discrepancy VAE

(MMD-VAE) ([Zhao et al., 2019]). For the DeepLesion data with real medical abnormalities, we

compare with several more advanced benchmarks including MMD-VAE ([Zhao et al., 2019]), a
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hierarchical vector-quantized VAE (VQ-VAE2) ([Razavi et al., 2019b]), a restoration approach

with VQ-VAE2 ([You et al., 2019, Marimont and Tarroni, 2021]), and a supervised method.

Deep SVDD ([Ruff et al., 2018]) is an embedding-based approach that learns a compact

representation of the normal data. The network used is a convolutional encoder with equivalent

depth to the encoder of FPI.

CAE ([Masci et al., 2011]) is a reconstruction-based method. It reconstructs images using

features that are learned from normal data. Errors in the reconstruction are then used to

highlight abnormal regions. The architecture for the CAE is a convolutional network with

equivalent depth to the FPI network.

MMD-VAE ([Zhao et al., 2019]) uses maximum-mean discrepancy (MMD) ([Gretton et al.,

2007]) to measure the distance between a prior and the distribution of encodings from real

samples. Compared to conventional VAE’s, this method is more stable during training and

produces high fidelity reconstructions. For our implementation of MMD-VAE, we use the

same wide residual encoder-decoder as FPI. Fully connected layers are added to the bottleneck

resulting in latent codes of dimension 128.

VQ-VAE2 ([Razavi et al., 2019b]) compresses inputs by quantizing latent codes into discrete

values at two levels of the network. We implement VQ-VAE2 using the same wide-residual

encoder decoder network as FPI. Vector-quantization is performed at the two deepest layers

(closest to the bottleneck). These have dimensions 32x32 and 16x16 respectively. At both levels,

latent codes are quantized into 128 discrete values. The activations from the second deepest

layer of the encoder are combined with the output of the first layer of the decoder. This skip

connection structure allows VQ-VAE2 to produce more accurate reconstructions ([Razavi et al.,

2019b]).

VQ-VAE2 Restoration ([You et al., 2019, Marimont and Tarroni, 2021]) uses two PixelCNN

models ([Van Oord et al., 2016, Oord et al., 2016]), one at each of the vector quantized layers of

the VQ-VAE2. Note that the second PixelCNN takes the latent codes from the first PixelCNN

as a conditional input. After learning the distribution of the latent codes, the PixelCNN models
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can be used to estimate the likelihood of each discrete code. Codes that are deemed to have

a low likelihood are discarded and resampled from the learned distribution. The corrected

codes are then used to produce a restored image and an anomaly scores is computed from the

reconstruction error. Both PixelCNN models are composed of four residual blocks with masked

convolutions and four masked convolutional layers on their own.

StyleGAN implementation of AnoGAN ([Karras et al., 2019, Schlegl et al., 2017]) is a

reconstruction-based approach that aims to find a normal version of the query sample in the

latent space of a GAN. In this case, a StyleGAN ([Karras et al., 2019]) is used. The model

is trained from scratch at progressively higher resolutions, which improves stability and helps

to produce more detailed, high resolution images. Instead of using a single latent code as

input to the generator, StyleGAN maps a latent code into multiple style codes that are used to

control adaptive instance normalization layers throughout the generator ([Huang and Belongie,

2017]). Gaussian noise is also added at different layers throughout the generator as a source

of variation. To reconstruct a query image, we sample 80 initial sets of latent codes and noise

vectors and find the set that gives the lowest reconstruction error. Then we further optimize

the latent code and noise vectors to minimize the reconstruction error with 20 gradient steps.

Supervised training is also done for comparison. Unlike all other benchmarks, which are

trained on only normal data, this supervised method is trained on only abnormal data. Lesion

bounding boxes are used as labels. The network architecture is the same as the wide residual

encoder decoder used in FPI. As such, this benchmark is trained in the same way as FPI,

except the labels are real lesion bounding boxes rather than synthetic patch masks. Other

more sophisticated supervised methods use region proposal networks to identify and classify

patches ([Yan et al., 2018b]). But our arrangement allows us to directly assess the value of

ground truth annotations compared with artificial labels generated by FPI.
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5.5 Results

We first evaluate FPI on the MOOD challenge data and our synthetic testset. This includes

an ablation study and comparison with simple baselines. Then we present results on the

DeepLesion dataset and compare with more advanced benchmark methods.

5.5.1 MOOD Datasets with Synthetic Anomalies

Using the synthetic test data described in Section 5.4.1, we evaluate the method’s ability to

detect different types of outliers. Figure 5.3 displays the model’s response to a sink/source

deformation outlier and a normal sample. The plot includes abnormality scores for individual

slices across the entire volume. Slices that include the artificially deformed sphere produce a

strong and consistent activation (Figure 5.3, red). Meanwhile, normal slices elicit only weak

activations (Figure 5.3, blue).

Figure 5.3: Image-level abnormality scores for slices throughout the volume. Showing
sink/source outlier (red plot and top images) and normal sample (blue line and bottom images).
Data from MOOD ([Zimmerer et al., 2020b]). Slices with deformation have high anomaly
scores (red), concentrated around the bulbous deformation (top left image). Normal sample has
minimal abnormality scores.

We perform an ablation study by modifying the self-supervision task. A ‘binary’ model is

trained using a binary interpolation factor (α ∈ {0, 1}). For a ‘continuous round-up’ model,
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the training examples are generated using a continuous interpolation factor (α ∈ [0, 1]), but

the label supplied to the model is binary (α = 1 if α > 0). We also compare continuous and

discrete configurations (α ∈ {0, 0.25, 0.50, 0.75, 1}) as well as the application of stochastic weight

averaging. Figure 5.4 displays the results for individual types of outliers and also overall sample

and pixel level scores. Note that the overall scores (Figure 5.4, blue and green) are calculated

using all outlier samples and all normal samples, so the class distribution is different from the

individual scores. The binary and continuous round-up models are not able to detect the outliers

in the test set effectively. Both continuous and discrete models achieve high performance,

even without stochastic weight averaging. The low performance of the continuous stochastic

weight averaged model may indicate that optimization is less stable for the continuous task.

In contrast, stochastic weight averaging does not hurt performance for the discrete model and

can substantially improve pixel-level scores.

Figure 5.4: Average precision for MOOD brain data ([Zimmerer et al., 2020b]) using different
model configurations. The binary and continuous round-up models serve as simplified methods
used in our ablation study. The continuous and discrete models represent our standard method.
The addition of SWA is an optional extension.

The abdominal models were trained in a similar manner and the discrete stochastic weight

averaged model achieved the best overall performance. Table 5.1 shows the performance of

the final selected models which are both trained using the discrete stochastic weight averaged

configuration.

Since FPI is trained on synthetic examples, i.e., interpolated patches, it is able to detect

other similar classes of synthetic anomalies relatively easily. In comparison, reconstruction-
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Table 5.1: Evaluation on synthetic test data, originally from brain and abdominal MOOD
data ([Zimmerer et al., 2020b]).

Anatomy Method
Subject-level Pixel-level

AP AUROC AP AUROC ⌈DICE⌉

Brain

Deep SVDD ([Ruff et al., 2018]) 0.7695 0.5058 – – –

CAE ([Masci et al., 2011]) 0.7617 0.4947 0.0120 0.8695 0.0269

MMD-VAE ([Zhao et al., 2019]) 0.7572 0.4925 0.0144 0.8790 0.0350

FPI (ours) 0.9723 0.9321 0.7319 0.9852 0.7092

Abdomen

Deep SVDD ([Ruff et al., 2018]) 0.8318 0.5648 – – –

CAE ([Masci et al., 2011]) 0.7378 0.4717 0.0096 0.7240 0.0285

MMD-VAE ([Zhao et al., 2019]) 0.7356 0.4737 0.0079 0.7228 0.0235

FPI (ours) 0.8854 0.8025 0.6229 0.9292 0.6354

based methods have difficulty identifying these synthetic anomalies because they have minimal

intensity differences and occupy less than 1% of the total imaging volume of a subject. Although

the reconstruction-based methods have high scores for pixel-level AUROC, the DICE scores are

quite low (Table 5.1). This is because the DICE score focuses more on anomalous pixels, while

AUROC can be partly inflated by a large number of normal background pixels. These blank

pixels are easy to reconstruct without error. This increases the number of true negatives,

which in turn decreases the false positive rate (x-axis of the ROC curve) and increases the area

under the curve. In contrast, pixels in tissue regions often have some level of reconstruction

error because there is a limit to the amount of detail that the models can recreate. Since

the synthetic anomalies have similar intensity values, they also produce similar reconstruction

error. When the reconstruction error is averaged across the entire volume, the contribution

from the synthetic anomaly is hidden by the contributions from other healthy regions, which

leads to a poor subject-level AUROC. Meanwhile, FPI produces very low anomaly scores for

normal tissue and activates specifically for certain types of features, as seen in Figure 5.3.

In addition to the synthetic test set, which only includes local abnormalities, we provide ex-

amples of global abnormalities in Figure 5.5. A normal sample produces minimal activation

in its canonical orientation (Figure 5.5, left most image in (a)). However, rotating the sam-

ple produces scattered activations throughout the entire volume (Figure 5.5, (a)). Blurring or

substituting different anatomy produces even stronger activations (Figure 5.5, (b)).
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(a) Rotations (b) Blurred and abdominal data

Figure 5.5: Examples of global outliers using MOOD data ([Zimmerer et al., 2020b]). (a)
Original normal sample (top left) and rotations. (b) Gaussian blur (σ = 1) and abdominal
data. Note the change of scale in activation maps. Plots display the abnormality score across
slices.

5.5.2 DeepLesion Dataset with Medical Anomalies

For the DeepLesion dataset, FPI was trained under the continuous α (interpolation factor)

setting without stochastic weight averaging. The results demonstrate that FPI can identify

real medical anomalies despite being trained on only normal images. Table 5.2 displays both

image and pixel level AUROC scores as well as estimated DICE scores. ROC curves are shown

in Figure 5.6.

At the image level, the reconstruction-based methods score around 0.5 or below. Several factors

contribute toward this, including high variation in normal data, higher reconstruction error

from certain structures, and overrepresentation of certain tissue types in the normal test data.

Figure 5.8 shows that reconstruction-based models must learn to reproduce a wide range of

structures and different organs. Most of the reconstruction error comes from sharp edges with

high contrast and high spatial frequency, i.e., tissue interfaces. Also, the more pixels involved,

the higher the contribution to the overall (image-level) anomaly score. As an example, the lungs
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Table 5.2: Evaluation on DeepLesion data ([Yan et al., 2018a]). Image-level evaluation is
performed using normal slices and slices with lesions. Pixel-level evaluation is done using only
slices with lesions; bounding boxes serve as approximate lesion segmentation masks.

Method
Image-level Pixel-level

AUROC AUROC ⌈DICE⌉
Supervised 0.554 0.923 0.226

MMD-VAE ([Zhao et al., 2019]) 0.419 0.635 0.024

VQ-VAE2 ([Razavi et al., 2019b]) 0.405 0.576 0.018

VQ-VAE2 Restoration

([You et al., 2019, Marimont and Tarroni, 2021])
0.469 0.664 0.023

StyleGAN ([Karras et al., 2019]) 0.501 0.618 0.023

FPI (ours) 0.648 0.701 0.030

(a) Image-level (b) Pixel-level

Figure 5.6: ROC curves for DeepLesion data ([Yan et al., 2018a]) for each method at the
image-level (a) and pixel-level (b). AUROC reported in the legend.

generally have a high reconstruction error because they span across a large area and contain

details with high spatial frequency. The lungs may also be overrepresented in the normal test

data. As described in Section 5.4.1, each anomalous test image is accompanied by parallel slices

that give context above and below the anomalous slice. The context slices, minus a margin

around the anomalous slice, are used as normal test data, resulting in 116,026 normal test

images and 4831 anomalous test images. However, certain regions have more context slices

than others. For example, the average number of context slices for an anomalous lung image is

79, whereas soft tissue type lesions (muscle, skin, fat) only have 37 context slices on average. As

such, the normal test data may be skewed toward certain organs that have high reconstruction
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error. This can increase the false positive rate and reduce the area under the ROC curve. This

skew may exist in the training data as well, but reproducing details with high spatial frequency

can still be challenging for methods that rely on a lower dimensional representation of the data.

The supervised method, which is only trained on slices containing lesions, also performs poorly

when tested on images that are both normal and abnormal. This could be fixed by including

normal samples during supervised training. But it illustrates that even supervised methods

can face difficulty when the test distribution does not match the training distribution. FPI

is specifically designed to handle out-of-distribution samples and does not rely on proxy tasks

that require full image reconstruction. These properties makes it suitable for detecting subtle

lesions within highly variable data.

(a) FPI by lesion type (b) Supervised by lesion type

Figure 5.7: Pixel-level ROC curves for individual lesion types of DeepLesion data ([Yan et al.,
2018a]). FPI and a supervised method are plotted in (a) and (b), respectively.

For the pixel-level score, only slices with lesions are considered so that we can directly assess

localization. The supervised method excels in this setting because the training and test data

are consistent. Even so, the supervised DICE score is modest and the others are quite low. This

can be partly attributed to the fact that bounding boxes are used as approximate segmentation

masks. Although the pixel-level anomaly predictions may not overlap accurately with the

complete bounding boxes, the AUROC scores indicate that these regions tend to be rated as

more anomalous. This level of performance is insufficient for lesion segmentation, but may be

reasonable for highlighting suspicious regions in an anomaly setting. All unsupervised methods
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achieve an AUROC over 0.5 with FPI scoring the highest among the unsupervised methods.

Full ROC curves are plotted in Figure 5.6 (b). Individual ROC curves for each lesion type are

also shown for FPI in Figure 5.7 (a) and for the supervised method in Figure 5.7 (b). FPI

performs similarly on each lesion type, indicating that it is equally sensitive to a broad range

of lesions.

Input MMD-VAE VQ-VAE2 VQ Rest. StyleGAN FPI (ours)Supervised

Figure 5.8: Normal test samples from DeepLesion ([Yan et al., 2018a]) and outputs from each
method. Note that reconstruction error outputs are scaled down by a factor of five.

Figure 5.9 displays anomalous examples from the DeepLesion dataset with bounding box labels

for each lesion. The outputs from each method show varying levels of sensitivity. MMD-VAE

exhibits reconstruction errors throughout the images which reflects the difficulty of learning a

compact representation for data with high variation and detail. VQ-VAE2 uses a hierarchical

architecture to produce higher fidelity reconstructions with less error. However, this does not

help the network to be sensitive to specific irregularities such as lesions. Using the VQ-VAE2

for image restoration can help to highlight regions based on likelihood, rather than purely on

intensity differences. This approach can be more selective, but it also tends to highlight certain

natural variations that may be deemed less likely. Meanwhile, StyleGAN searches for a normal
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matching image in its latent space, but it is not always possible to find a good match when the

data has complex and detailed structures that can vary greatly across images. In comparison to

the reconstruction-based methods, FPI highlights more specific areas in the image that contain

lesions or other unusual elements that are not lesions. Finally, the supervised method gives the

most lesion-specific activations which can only be learned through labelled examples.

Input MMD-VAE VQ-VAE2 VQ Rest. StyleGAN FPI (ours)Supervised

Figure 5.9: Anomalous test samples from DeepLesion ([Yan et al., 2018a]) and outputs from
each method. Bounding boxes indicate lesions. Note that reconstruction error outputs are scaled
down by a factor of five.
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5.6 Discussion

The proposed method uses a simple self-supervised task to simulate subtle irregularities in

the image. Our ablation study suggests that two aspects of this task are important, exposure

and difficulty. Without these qualities, the network can overfit to the self-supervised task

and fail to detect other types of anomalies. For instance, generating samples with a binary

interpolation factor limits the network’s exposure to samples with swapped patches. This leads

to poor generalization to other types of synthetic anomalies (Figure 5.4, ‘Binary’). A varying

interpolation factor provides exposure to abnormalities with varying levels of subtlety. However,

exposure is not sufficient on its own. The challenge of estimating the value of the interpolation

factor is also crucial. If training examples are created using a varying interpolation factor

(α ∈ [0, 1]), but the task is simplified by rounding the label to a binary value (α = 1 if α > 0)

then generalization is also poor (Figure 5.4, ‘Continuous Round-up’). The difficulty and variety

of the proposed task allow FPI to achieve high performance, whether using continuous or

discrete α values. Stochastic weight averaging can also provide some benefit, particularly in

pixel-wise scores on our synthetic test data (Figure 5.4). Nonetheless, it is not strictly necessary

and good results can be achieved without it.

Due to the nature of the self-supervised task and the synthesized outliers, one concern is that

the network may only detect artifacts, such as discontinuities in image intensity. Indeed, if the

characteristics of the synthetic anomalies are more consistent than the characteristics of the

normal data, then the network may learn to recognize these artifacts instead of learning the

normal appearance of healthy anatomy, which is the real goal. As such, we evaluate FPI using

a range of synthetic anomalies, including intensity shifts and deformations; global anomalies

that have no discontinuities; and real medical anomalies. The results demonstrate that FPI

can detect a broad range of abnormalities, even if there are no discontinuities. This implies

that the self-supervised task helps the network to learn the normal appearance of anatomy to

some extent. Any deviations from that expectation are therefore seen as foreign patterns being

introduced (α > 0).

A major difference between this work and reconstruction-based methods is that we focus on
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subtle irregularities. In a reconstruction-based approach, the abnormality score is directly

proportional to the intensity differences between the test image and its reconstruction. This

makes it difficult to detect more subtle irregularities, especially if the normal data has a high

variance and is more difficult to faithfully reconstruct. The DeepLesion dataset exhibits both

of these characteristics. The lesions can be very subtle and the anatomy varies considerably.

In some cases the field of view is centered on the anatomy of interest and other structures are

missing or misaligned. Our evaluation on the DeepLesion dataset indicates that reconstruction-

based methods are sensitive to gross intensity differences and variations in anatomy. They are

largely unable to selectively highlight subtle lesions (Figure 5.9). Image level AUROC for both

reconstruction-based methods is actually below 0.5 (Table 5.2). This means that reconstruction

error is higher in some normal slices than it is in abnormal slices. This could be because normal

slices are peripheral to the lesion slices and may have more variance in structure. This in turn

can raise the reconstruction error which is dominated by larger structural differences in the

image. In contrast, FPI is able to ignore most variations in normal anatomy. Rather than

trying to reconstruct every detail, FPI is trained to detect only regions that are incongruous

with the rest of the image (i.e., foreign patches). This allows FPI to be more sensitive to subtle

irregularities such as lesions. In this way, FPI can complement reconstruction-based methods

and detect less obvious cases that might otherwise require more intense scrutiny.

One challenge in unsupervised outlier detection is selecting the best model. Validation sets can

be used to select the most performant model. However, this may introduce a bias toward the

types of outliers in the validation set. Even if the validation set is disjoint from the test set, there

are likely similarities. This may lead to overestimation of performance and failure on unexpected

outliers encountered during deployment. As such, we avoid using outliers for validation and

simply keep the training duration fixed. Using the same training regime we demonstrate FPI’s

capability across several datasets. For real world deployment, it may be important to add

elements such as uncertainty estimation to make predictions more informative.
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5.7 Summary

We propose a self-supervision framework for detecting fine-grained abnormalities, common in

medical data. Foreign patterns are drawn from independent subjects and used to simulate

abnormalities. The network is trained to detect where and to what degree a foreign pattern has

been introduced. The resulting model is able to generalize to a wide range of subtle irregularities

and achieved the highest rank in the 2020 MICCAI MOOD challenge ([Zimmerer et al., 2020b])

in both sample and pixel level tasks. We also demonstrate FPI’s ability to detect a broad range

of real medical lesions in the challenging DeepLesion dataset.

The goal of future work is to improve performance on cases where there is less structural

consistency. Further extensions could also provide uncertainty estimates for the predicted

anomaly scores. Ultimately we hope to reduce the burden placed on radiologists.

Code is available at https://github.com/jemtan/FPI.

https://github.com/jemtan/FPI
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5.A FPI in Brain Images

(a) Original (b) Interpolation (c) Label

Figure 5.10: MOOD brain images ([Zimmerer et al., 2020b]) with foreign patches.
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5.B FPI in Abdominal Images

(a) Original (b) Interpolation (c) Label

Figure 5.11: MOOD abdominal images ([Zimmerer et al., 2020b]) with foreign patches.
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5.C Examples of Synthetic Outliers

(a) Original (b) Synthetic Outlier (c) Label

Figure 5.12: Each row shows one type of synthetic outlier. From top to bottom these are uniform
addition, noise addition, sink/source deformation, uniform shift, and reflection. Original data
from MOOD challenge ([Zimmerer et al., 2020b]).
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This chapter covers two methods that build on the work presented in the last chapter (foreign

patch interpolation).

The first is Poisson image interpolation [Tan et al., 2021a], which enhances the self-supervised

task with advanced image editing. In particular, this method improves the way that foreign

patches are blended into the image by using Poisson image interpolation [Pérez et al., 2003].

This removes certain artifacts, such as sharp discontinuities, and broadens the range of possible

applications.

113
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The second part covers MetaDetector [Tan et al., 2021b], which incorporates some of the ideas

from Chapter 4 into the self-supervised framework. The motivation behind MetaDetector

is to learn more general features and allow for test time adaptation through meta-learning.

MetaDetector was also submitted to the 2021 medical out-of-distribution analysis (MOOD)

challenge [Petersen et al., 2021] and achieved second place in the pixel-level category.

6.1 Detecting Outliers with Poisson Image Interpolation

6.1.1 Overview

Supervised learning of every possible pathology is unrealistic for many primary care applications

like health screening. Image anomaly detection methods that learn normal appearance from

only healthy data have shown promising results recently. We propose an alternative to image

reconstruction-based and image embedding-based methods and propose a new self-supervised

method to tackle pathological anomaly detection. Our approach originates in the foreign patch

interpolation (FPI) strategy that has shown superior performance on brain MRI and abdominal

CT data. We propose to use a better patch interpolation strategy, Poisson image interpolation

(PII), which makes our method suitable for applications in challenging data regimes. PII

outperforms state-of-the-art methods by a good margin when tested on surrogate tasks like

identifying common lung anomalies in chest X-rays or hypo-plastic left heart syndrome in

prenatal, fetal cardiac ultrasound images.

6.1.2 Introduction

Doctors such as radiologists and cardiologists, along with allied imaging specialists such as

sonographers shoulder the heavy responsibility of making complex diagnoses. Their decisions

often determine patient treatment. Unfortunately, diagnostic errors lead to death or disability

almost twice as often as any other medical error [Tehrani et al., 2013]. In spite of this, the

medical imaging workload has continued to increase over the last 15 years [Bruls and Kwee,
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2020]. For instance, on-call radiology, which can involve high-stress and time-sensitive emer-

gency scenarios, has seen a 4-fold increase in workload [Bruls and Kwee, 2020].

One of the major goals of anomaly detection in medical images is to find abnormalities that

radiologists might miss due to excessive workload or inattention blindness [Drew et al., 2013].

Most of the existing, automated methods are only suitable for detecting gross differences that

are highly visible, even to observers without medical training. This undermines their usefulness

in routine applications. Detecting anomalies at the level of medical experts typically requires

supervised learning. This has been achieved for specific applications such as breast cancer [Wu

et al., 2019] or retinal disease [De Fauw et al., 2018]. However, detecting arbitrary irregularities,

without having any predefined target classes, remains an unsolved problem.

Recently, self-supervised methods have proven effective for unsupervised learning [Oord et al.,

2018, Hénaff et al., 2019]. Some of these methods use a self-supervised task that closely ap-

proximates the target task [Chen et al., 2020b, He et al., 2020] (albeit without labels). There

are also self-supervised methods that closely approximate the task of outlier detection. For

example, foreign patch interpolation (FPI) trains a model to detect foreign patterns in an im-

age [Tan et al., 2022]. The self-supervised task used for training takes a patch from one sample

and inserts it into another sample by linearly interpolating pixel intensities. This creates train-

ing samples with irregularities that range from subtle to more pronounced. But for data with

poor alignment and varying brightness, FPI’s linear interpolation will lead to patches that are

clearly incongruous with the rest of the image. This makes the self-supervised task too easy

and reduces the usefulness of the learned features.

Contribution: We propose Poisson image interpolation (PII), a self-supervised method that

trains a model to detect subtle irregularities introduced via Poisson image editing [Pérez et al.,

2003]. We demonstrate the usefulness of PII for anomaly detection in chest X-ray and fetal

ultrasound data. Both of these are challenging datasets for conventional anomaly detection

methods because the normal data has high variation and outliers are subtle in appearance.

Related Work: Reconstruction-based outlier detection approaches can use autoencoders,

variational autoencoders (VAEs) [Zimmerer et al., 2019b], adversarial autoencoders (AAEs) [Chen
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and Konukoglu, 2018], vector quantised variational autoencoders (VQ-VAE) [Razavi et al.,

2019a], or generative adversarial networks (GANs) [Schlegl et al., 2019]. Some generative mod-

els are also used for pseudo-healthy image generation [Xia et al., 2020]. Reconstruction can be

performed at the image [Baur et al., 2021], patch [Wei et al., 2018], or pixel [Alaverdyan et al.,

2020] level. In each case, the goal is to replicate test samples as closely as possible using only

features from the distribution of normal samples [Baur et al., 2021]. Abnormality is then mea-

sured as intensity differences between test samples and their reconstructions. Unfortunately,

raw pixel differences lack specificity, making semantic distinctions more difficult.

Disease classifiers specialize in making fine semantic distinctions. They do this by learning

very specific features and ignoring irrelevant variations [LeCun et al., 2015]. To harness the

qualities that make classifiers so successful, some methods compare samples as embeddings

within a learned representation. For example, deep support vector data description (SVDD)

learns to map normal samples to a compact hypersphere [Ruff et al., 2018]. Abnormality is then

measured as distance from the center of the hypersphere. Other methods, such as [Marimont

and Tarroni, 2021], learn a latent representation using a VQ-VAE and exploit the autoregressive

component to estimate the likelihood of a sample. Furthermore, components of the latent code

with low likelihood can be replaced with samples from the learned prior. This helps to prevent

the model from reconstructing anomalous features. A similar approach has also been proposed

using transformers [Pinaya et al., 2021]. Overall, comparing samples in a learned representation

space can allow for more semantic distinctions. But with only normal training examples, the

learned representation may emphasize irrelevant features, i.e., those pertaining to variations

within the normal class. This often requires careful calibration for applications.

Self-supervised methods aim to learn more relevant representations by training on proxy tasks.

One of the most effective strategies is to train a classifier to recognize geometric transformations

of normal samples [Golan and El-Yaniv, 2018, Tack et al., 2020]. By classifying transformations,

the network learns prominent features that can act as reliable landmarks. Outliers that lack

these key features will be harder to correctly classify when transformed. The anomaly score is

thus inversely proportional to the classification accuracy. This works well for natural images,

but in medical applications, disease appearance can be subtle. Many outliers still contain all
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of the major anatomical landmarks.

To target more subtle abnormalities, some methods use a localized self-supervised task. For

example, FPI synthesizes subtle defects within random patches in an image [Tan et al., 2022].

The corresponding pixel-level labels help the network to learn which regions are abnormal given

the surrounding context. This approach showed good performance for spatially aligned brain

MRI and abdominal CT data [Zimmerer et al., 2020a]. CutPaste [Li et al., 2021] also synthesizes

defects by translating patches within an image. This is effective for detecting damage or

manufacturing defects in natural images [Li et al., 2021]. However, unlike cracks or scratches

seen in manufacturing, many medical anomalies do not have sharp discontinuities. Overfitting

to obvious differences between the altered patch and its surroundings can limit generalization

to more organic and subtle outliers. We propose to resolve this issue using Poisson image

editing [Pérez et al., 2003]. This helps to create more subtle defects (for training) which in turn

improves generalization to real abnormalities.

6.1.3 Method

To begin, we provide a brief description of FPI. Consider two normal training samples, xi

and xj, of dimension N ×N , as well as a random patch h, and a random interpolation factor

α ∈ [0, 1]. FPI replaces the pixels in patch h with a convex combination of xi and xj, to produce

a training image x̃i (Eqn. 6.1). Note that x̃i = xi outside of h. For a given training image x̃i,

the corresponding label is ỹi, as specified by Eqn. 6.2.

x̃ip = (1− α)xip + αxjp , ∀ p ∈ h (6.1)

ỹip =





α if p ∈ h

0 otherwise

(6.2)

This approach has similarities to mixup [Zhang et al., 2018], a data augmentation method that

generates convex combinations of images and their respective labels. In the case of FPI, the

training data only contains normal samples. Without having any class labels, FPI calculates its
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own labels as convex combinations of self (0 for yi) and non-self (1 for yj) as shown in Eqn. 6.2.

If xi and xj have vastly different intensity levels or structures, the interpolated patch will be

inconsistent with the rest of the image. These differences are easy to spot and provide no

incentive for the model to learn features that constitute “normal” (a much harder task). To

create more challenging cases, we use a technique for seamless image blending. Poisson image

editing [Pérez et al., 2003] blends the content of a source image (xj) into the context of a

destination image (xi). Rather than taking the raw intensity values from the source, we extract

the relative intensity differences across the image, i.e. the image gradient. Combining the

gradient with Dirichlet boundary conditions (at the edge of the patch) makes it possible to

calculate the absolute intensities within the patch. This is illustrated in Figure 6.1.

Original FPI PII (ours)

Figure 6.1: Examples of patches altered by FPI (convex combination) and PII (Poisson blend-
ing). Arrows in the images indicate the location of the line plotted on the right. Altering patches
can simulate subtle (top) or dramatic (bottom) changes to anatomical structures. In both cases,
PII blends the changes into the image more naturally.

More formally, let fin be a scalar function representing the intensity values within the patch h.

The goal is to find intensity values of fin that will:

1. match the surrounding values, fout, of the destination image, along the border of the

patch (∂h), and

2. follow the relative changes (image gradient), v, of the source image.
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min
fin

x

h

|∇fin − v|2 with fin

∣∣∣
∂h

= fout

∣∣∣
∂h

(6.3)

∆fin = divv over h, with fin

∣∣∣
∂h

= fout

∣∣∣
∂h

(6.4)

These conditions are specified in Eqn. 6.3 [Pérez et al., 2003] and its solution is the Poisson

equation (Eqn. 6.4). Intuitively, the Laplacian, (∆· = ∂2·
∂x2

+ ∂2·
∂y2

), should be close to zero in

regions that vary smoothly and have a larger magnitude in areas where the gradient (v) changes

quickly.

To find fin for discrete pixels, a finite difference discretization can be used. Let p represent a

pixel in h and let q ∈ Np represent the four directly adjacent neighbours of p. The solution

should satisfy Eqn. 6.5 (or Eqn. 6.6 if any neighbouring pixels q overlap with the patch boundary

∂h) [Pérez et al., 2003].

|Np| finp
−
∑

q∈Np

finq
=
∑

q∈Np

vpq (6.5)

∑

q∈Np∩h

(
finp

− finq

)
=

∑

q∈Np∩∂h

foutq +
∑

q∈Np

vpq (6.6)

In our case the image gradient comes from finite differences in the source image xj, i.e. vpq =

xjp − xjq . Meanwhile, the boundary values, foutq , come directly from the destination image,

xiq . This system can be solved for all p ∈ h using an iterative solver. In some cases, this

interpolation can cause a smearing effect. For example, when there is a large difference between

the boundary values at opposite ends of the patch, but the gradient within the patch (from

xj) is very low. To compensate for this, Perez et al. suggest using the original gradient (from

xi) if it is larger than the gradient from xj (Eqn. 6.7) [Pérez et al., 2003]. We modify this to

introduce the interpolation factor, α, that FPI uses to control the contribution of xj to the

convex combination. In this case, α controls which image gradients take precedence (Eqn. 6.8).

This creates more variety in training samples, i.e. more ways in which two patches can be

combined. It also helps create a self-supervised task with varying degrees of difficulty, ranging

from very subtle to more prominent structural differences. Figure 6.1 demonstrates that this
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formulation can blend patches seamlessly.

vpq =





xip − xiq if
∣∣xip − xiq

∣∣ >
∣∣xjp − xjq

∣∣

xjp − xjq otherwise

(6.7)

vpq =





(1− α)
(
xip − xiq

)
if
∣∣(1− α)

(
xip − xiq

)∣∣ >
∣∣α
(
xjp − xjq

)∣∣

α
(
xjp − xjq

)
otherwise

(6.8)

PII uses the same loss as FPI, which is essentially a pixel-wise regression of the interpolation

factor α [Tan et al., 2022]. The loss is given in Eqn. 6.9:

Lbce = −ỹiplogAs(x̃ip)− (1− ỹip)log(1− As(x̃ip)) (6.9)

The inputs, x̃i, are training samples that contain a random patch with values fin, computed via

Poisson blending as described above. The output of the model is used directly as an anomaly

score, As. A diagram of the setup is given in Figure 6.2.

Architecture and Specifications: We follow the same network architecture as FPI, a wide

Figure 6.2: Illustration of PII self-supervised training. The network architecture starts with a
single convolutional layer (gray), followed by residual blocks (blue/green). Values above each
block indicate the number of feature channels in the convolutional layers. In all experiments we
use a single output channel, i.e. n = 1.

residual encoder-decoder [Tan et al., 2022]. The encoder is a standard wide residual net-

work [Zagoruyko and Komodakis, 2016] with a width of 4 and depth of 14. The decoder has

the same structure but in reverse. The output has the same shape as the input and uses a
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sigmoid activation. Training is done using Adam ([Kingma and Ba, 2015]) with a learning rate

of 10−3 for 50 epochs. The self-supervised task uses patches, h, that are randomly generated

with size hs ∼ U(0.1N, 0.4N), and center coordinates hc ∼ U2(0.1N, 0.9N). Each patch is also

given a random interpolation factor α ∼ U(0.05, 0.95).

Implementation: We use TensorFlowV1.15 and train on a Nvidia TITAN Xp GPU. Train-

ing on our largest dataset for 50 epochs takes about 11 hours. PII solves partial differential

equations on the fly to generate training samples dynamically. To achieve this we use mul-

tiprocessing [McKerns et al., 2012] to generate samples in parallel. The code is available at

https://github.com/jemtan/PII.

6.1.4 Evaluation and Results

To evaluate the performance of PII, we compare with an embedding-based method, a reconstruction-

based method, and a self-supervised method. For the embedding-based method, we use Deep

SVDD [Ruff et al., 2018] with a 6 layer convolutional neural network. Meanwhile, a vector-

quantized variational autoencoder (VQ-VAE2) [Razavi et al., 2019a] is used as a reconstruction-

based method. The VQ-VAE2 is trained using the same wide residual encoder-decoder archi-

tecture as PII, except the decoder is given the same capacity as the encoder to help produce

better reconstructions. FPI [Tan et al., 2022], which our method builds upon, is used as a self-

supervised benchmark method. To compare each method, we calculate the average precision

(AP) for each of the datasets described below. Average precision is a scalar metric for the area

under the precision-recall curve.

Data: Our first dataset is ChestX-ray14 [Wang et al., 2017], a public chest X-ray dataset with

108,948 images from 32,717 patients showing 14 pathological classes as well as a normal class.

From this large dataset, we extract 43,322 posteroanterior (PA) views of adult patients (over 18)

and split them into male (♂) and female (♀) partitions. All X-ray images are resized to 256x256

(down from 1024x1024) and normalized to have zero mean and unit standard deviation. The

training/test split is summarized in Table 6.1.
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The second dataset consists of a total of 13380 frames from 108 patients acquired during rou-

tine fetal ultrasound screening. This is an application where automated anomaly detection in

screening services would be of most use. We use cardiac standard view planes [National Health

Service and Public Health England, 2018], specifically 4-chamber heart (4CH) and 3-vessel and

trachea (3VT) views, from a private and de-identified dataset of ultrasound videos. For each

selected standard plane, 20 consecutive frames (10 before and 9 after) are extracted from the

ultrasound videos. Images are 224x288 and are normalized to zero mean, unit standard devia-

tion. Normal samples consist of healthy images from a single view (4CH/3VT) and anomalous

images are composed of alternate views (3VT/4CH) as well as pathological hearts of the same

view (4CH/3VT). For pathology we use cases of hypoplastic left heart syndrome (HLHS), a

condition that affects the development of the left side of the heart [Simpson, 2000]. The train-

ing/test split is outlined in Table 6.1. The scans are of volunteers at 18-24 weeks gestation

(Ethics: anonymous during review), in a fetal cardiology clinic, where patients are referred to

from primary screening and secondary care sites. Video clips have been acquired on Toshiba

Aplio i700, i800 and Philips EPIQ V7 G devices.

Results: We compare our method with recent state-of-the-art anomaly detection methods in

Table 6.1.

Dataset
Chest X-ray Fetal US

♂PA ♀PA 4CH 3VT

Number of Images

Normal Train 17852 14720 283×20 225×20
Normal Test 2634 2002 34×20 35×20
Anomalous Test 3366 2748 54×20 38×20

Average Precision

Deep SVDD 0.565 0.556 0.685 0.893
VQ-VAE2 0.503 0.516 0.617 0.578
FPI 0.533 0.586 0.658 0.710
PII 0.690 0.703 0.723 0.929

Table 6.1: Each dataset is presented in one column. The train-test split is shown for each
partition (top). Note that ultrasound images are extracted from videos as 20 frame clips.
Average precision is also listed for each method (bottom).
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Example test images are shown in Figure 6.3. The VQ-VAE2 reconstruction error indicates

that sharp edges are difficult to reproduce accurately. Meanwhile FPI is sensitive to sharp

edges because of the patch artifacts produced during training. In contrast, PII is sensitive to

specific areas that appear unusual.

Input VQ-VAE2 FPI PII
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Figure 6.3: Examples of test X-ray (left) and ultrasound (right) images with pixel-wise anomaly
scores from each method. Note that the VQ-VAE2 reconstruction error is scaled down by a
factor of 10.

(a) Deep SVDD (b) FPI (c) PII

Figure 6.4: Histograms of image level anomaly scores for Chest X-ray Female PA data (top)
and clip level anomaly scores for Fetal US 3VT data (bottom).

To see each method’s ability to separate normal from anomalous, we plot histograms of anomaly

scores for each method in Figure 6.4. The difficulty of these datasets is reflected in the fact

that existing methods have almost no discriminative ability. On average, PII gives anomalous

samples slightly higher scores than normal samples. The unusually high performance in the
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3VT dataset is partly due to the small size of the dataset as seen in Figure 6.4.

Discussion: We have shown that our method is suitable to detect pathologies when they are

considered anomalies compared to a training set that contains only healthy subjects. Training

from only normal data is an important aspect in our field since a) data from healthy volunteers

is usually available more easily, b) prevalence for certain conditions is low, thus collecting a

well balanced training set is challenging and c) supervised methods would require in the ideal

case equally many samples from every possible disease they are meant to detect. The latter is

particularly a problem in rare diseases where the number of patients are very low in the global

population.

6.1.5 Summary

In this work we have discussed an alternative to reconstruction-based anomaly detection meth-

ods. We base our method on the recently introduced FPI method, which formulates a self-

supervised task through patch-interpolation based on normal data only. We advance this idea

by introducing Poisson Image Interpolation, which mitigates interpolation issues for challeng-

ing data like chest X-Rays and fetal ultrasound examinations of the cardio-vascular system. In

future work we will explore spatio-temporal support for PII, which is in particular relevant for

ultrasound imaging.

6.2 MetaDetector: Detecting Outliers by Learning to Learn

from Self-supervision

6.2.1 Overview

Using self-supervision in anomaly detection can increase sensitivity to subtle irregularities.

However, increasing sensitivity to certain classes of outliers could result in decreased sensitivity

to other types. While a single model may have limited coverage, an adaptive method could help
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detect a broader range of outliers. Our proposed method explores whether meta learning can

increase the adaptability of self-supervised methods. Meta learning is often employed in few-

shot settings with labelled examples. To use it for anomaly detection, where labelled support

data is usually not available, we instead construct a self-supervised task using the test input

itself and reference samples from the normal training data. Specifically, patches from the test

image are introduced into normal reference images. This forms the basis of the few-shot task.

During training, the same few-shot process is used, but the test/query image is substituted

with a normal training image that contains a synthetic irregularity. Meta learning is then used

to learn how to learn from the few-shot task by computing second order gradients. Given the

importance of screening applications, e.g., in healthcare or security, any adaptability in the

method must be counterbalanced with robustness. Thus, we add strong regularization by i)

restricting meta learning to only layers near the bottleneck of our encoder-decoder architecture

and ii) computing the loss at multiple points during the few-shot process.

6.2.2 Introduction

The main goal in outlier detection is to detect unanticipated irregularities. Many important

problems can be framed in this way, including content moderation, security, and disease screen-

ing. All of these tasks can be very taxing on workers and phenomena such as inattentional

blindness can make it particularly difficult to detect unexpected stimuli [Drew et al., 2013].

Machine learning methods have the potential to assist in many of these tasks. While most

methods require labelled data to achieve expert-level performance, e.g., supervised methods for

detecting breast cancer [Wu et al., 2019] or retinal disease [De Fauw et al., 2018], self-supervised

methods have recently begun to close the gap [Oord et al., 2018, Hénaff et al., 2019, Chen et al.,

2020b, He et al., 2020].

Similar self-supervised approaches also exist in outlier detection [Golan and El-Yaniv, 2018,

Tack et al., 2020]. However, applications such as medical imaging can require very specific and

subtle features that are difficult to learn in an unsupervised manner. Many diseases can only

be detected by those with domain expertise; but being a specialist does not always improve
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detection. The “cost of expertise” is a bias toward familiar patterns, and can cause rigidity

in perception of new stimuli. For example, one study found that physicians have a tendency

to make diagnoses related to their speciality, even when examining cases outside of their do-

main [Hashem et al., 2003]. This is especially problematic in open-ended problems such as

outlier detection because there are no restrictions on what pathologies may appear.

As such, anomalous features can be subtle and disease specific, but can also vary immensely

across pathologies. Recent methods have increased sensitivity to subtle outliers through self-

supervision [Tan et al., 2022, Tan et al., 2021a]. Our aim in this work is to explore whether

meta learning can improve the adaptability of these methods. We construct a self-supervised

few-shot task to be used during both training and testing. During training, we use second order

gradients [Finn et al., 2017] to optimize for initial parameters that are adaptable to different

tasks. In testing, the few-shot task gives the model a chance to adapt to features in the test

data, potentially priming the model for better detection.

6.2.3 Related Work

Many methods have been developed to tackle outlier detection from different perspectives.

Reconstruction-based methods use auto-encoders [Baur et al., 2021] or generative models [Schlegl

et al., 2019] to reproduce or restore [Marimont and Tarroni, 2021] the normal components of the

image. Errors in the reconstruction are used to highlight abnormalities. This is most effective

for abnormalities that exhibit large intensity differences. Self-supervised methods are trained

on proxy tasks that can either exploit (i) whole image augmentations that help the network to

learn holistic features and major landmarks in the normal data [Golan and El-Yaniv, 2018, Tack

et al., 2020] or (ii) patch-based augmentations that increase sensitivity to sub-image anoma-

lies [Tan et al., 2022, Tan et al., 2021a, Li et al., 2021]. The design of the self-supervised task

can influence which types of features are learned and consequently which types of anomalies

are detected. This can help increase sensitivity to specific types of irregularities, but it can also

limit detection of other types of anomalies.

Meta learning can be applied to few-shot problems to allow models to adapt quickly to new
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tasks. One of the most ubiquitous strategies in this area is model-agnostic meta-learning

(MAML) [Finn et al., 2017]. While first order gradients point toward parameters that give

better outputs, second order gradients point toward parameters that give better few-shot gra-

dients. By backpropagating through the few-shot optimization steps, MAML aims to learn an

initialization point that benefits the most from the few-shot gradients. This strategy is typically

used in settings with labelled examples, but there are also extensions in unsupervised settings

that use clustering [Hsu et al., 2019]. There are even few-shot methods in outlier detection;

however, these exploit a small amount of real anomalous data [Ding et al., 2021], or use multi-

class data organized into normal and anomalous categories [Jeong and Kim, 2020]. The goal of

this work is to explore meta learning in a setting where the few-shot task is self-supervised.

6.2.4 Method

Our proposed method, MetaDetector, is a meta learning approach for self-supervised outlier

detection. In this section we briefly describe the self-supervised tasks, the meta learning process,

and the regularization involved in training.

The two self-supervised tasks used in this method are foreign patch interpolation (FPI) [Tan

et al., 2022] and Poisson image interpolation (PII) [Tan et al., 2021a]. In both tasks, a random

patch is taken from one image and introduced into another image. This is done through linear

interpolation in the case of FPI and by Poisson image editing [Pérez et al., 2003] in the case

of PII. In both cases, the corresponding label is a mask of the altered patch that is scaled by

the blending factor. Figure 6.5 depicts an example of FPI, where a patch in image xi has been

altered to produce x̃i. Using x̃i as an input, the output of the network, As(x̃i), is compared

with the label ỹi using a binary cross-entropy loss.

The meta learning component of our method is based on MAML [Finn et al., 2017] and it

involves an inner and outer optimization loop. The inner loop is the few-shot optimization

process. It involves a query image xq, which may or may not be anomalous, and a reference

image xr which is a normal image from the training data. Random patches from the query

image are introduced into the reference image using FPI, producing x̃r. This creates an input
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Figure 6.5: Network architecture with example inputs, labels, and outputs. Quantities above
each residual block indicate the number of feature channels.

and label, as shown in Figure 6.5, which can be used to take one optimization step in the inner

loop. This can be repeated k times depending on how many steps are desired in the few-shot

process. In each step, the query image remains the same, but a new reference image and a

new random patch are selected. In all of our experiments we use k = 2. This few-shot process

is applied during testing and training. In testing, the query image is an unknown sample, xq,

but during training the query image is a normal sample (from the training data) that has been

altered with FPI or PII, i.e., x̃q.

The loss for both self-supervised tasks is a pixel-wise regression using binary cross-entropy, as

defined by Eqn. 6.10. In this equation, fθ is used to represent the model parameterized by θ.

The parameter updates in the inner loop are characterized by Eqn. 6.11. This is a standard

gradient update. Meanwhile Eqn. 6.12 specifies the parameter updates for the outer loop. Note

that the loss is evaluated using the updated parameters from the inner loop, φ, and the query

sample, x̃q. However, the gradient is taken with respect to the initial parameters, θ, which

means that gradients must flow through the gradient steps of the inner loop.
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Figure 6.6: Meta learning process with self-supervised few-shot task. Random patches, high-
lighted in blue and yellow, are taken from each query image xq and introduced into reference
images, xr, forming x̃r. Each φ is the result of few-shot optimization using these synthetically
altered samples, x̃r. Second order gradients from each few-shot task are aggregated to improve
the initialization parameters, θ.

Lbce(x̃r, ỹr, fθ) = −ỹrlogfθ(x̃r)− (1− ỹr)log(1− fθ(x̃r)) (6.10)

φi = θ − α∇θLbce(x̃r, ỹr, fθ) (6.11)

θi = θ − β∇θLbce(x̃q, ỹq, fφ) (6.12)

Note that Eqn. 6.11 and Eqn. 6.12 are simplified for legibility. In reality, φi is the result of

several gradient steps, and θi is updated using an aggregate of multiple inner loops. This is

depicted in Figure 6.6. In our experiments, the step sizes α and β are set to 1e−2 and 1e−3

respectively.

The last component of our method is the regularization. Since the model is being trained

for fast adaptation, the predictions from the model could change drastically after only a few

gradient steps. This is useful for adaptability, but it could also negatively impact robustness.

We add strong regularization to the optimization process in two ways. First, we restrict meta

learning to parameters in the bottleneck residual block (orange in Figure 6.5). The rest of the

parameters are learned using standard self-supervised training (as in FPI [Tan et al., 2022] and
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PII [Tan et al., 2021a]) using only the query samples, x̃q. This limits the number of parameters

that can change during few-shot adaptation and drastically reduces computational costs.

Our second form of regularization is a multi-step loss based on a strategy proposed in MAML++ [An-

toniou et al., 2018]. The original MAML method computes outer loop gradients according to

Eqn. 6.12, specifically using fφ, the parameters that are reached after taking the final few-shot

step. With a multi-step approach, we compute the loss after every few-shot step [Antoniou

et al., 2018]. The total loss is a weighted sum, where coefficients increase linearly with step

number.

To run MetaDetector in evaluation mode, only the few-shot process is performed. Patches

from the test image, xq, are introduced into normal reference images, xr, which creates self-

supervised samples x̃r. The model is trained on these samples to reach the adapted parameters,

φ. The updated model is then used to run inference on the original test image, xq. The output

from this inference is used directly as an anomaly score map, As(xq).

6.2.5 Evaluation and Results

We train MetaDetector on normal brain MRI and abdominal CT data from the medical out-

of-distribution (MOOD) analysis challenge [Zimmerer et al., 2020b]. Since this dataset only

includes normal samples, we evaluate on a synthetic test dataset that includes spheres with

uniform intensity shifts, noise additions, sink/source deformations, uniform translations, and

reflections across axes of symmetry. The details and the code to reproduce these test cases are

provided in Tan et. al [Tan et al., 2022].

Table 6.2: Average precision for brain and abdominal synthetic test data [Tan et al., 2022]
(originally from the MOOD challenge [Zimmerer et al., 2020b]).

Anatomy Method Subject-level AP Pixel-level AP

Brain
FPI [Tan et al., 2022] 0.9723 0.7319

MetaDetector 0.9989 0.8551

Abdomen
FPI [Tan et al., 2022] 0.8854 0.6229

MetaDetector 0.9694 0.1657
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Figure 6.7: Qualitative samples from the MOOD challenge [Zimmerer et al., 2020b]. Input,
ground truth, and prediction (from left to right).

Preliminary results are given in Table 6.2 and Figure 6.7. Overall, MetaDetector outperforms

FPI [Tan et al., 2022] on synthetic test data. The low abdominal pixel-level score is likely

due to a bias in the synthetic test data toward visibility in the coronal view. While FPI[Tan

et al., 2022] was trained using 2D coronal slices [Tan et al., 2022], MetaDetector uses transverse

slices at half the resolution (256x256) in order to meet computational restrictions. Qualitative

examples in Figure 6.7 (provided by the MOOD organizers [Zimmerer et al., 2020b]) indicate

that MetaDetector can localize different types of subtle abnormalities. However, false positives

appear to be quite common. This could be either due to (i) synthetic training samples that are

too subtle or (ii) the few-shot process priming the model to recognize healthy tissue from the

query image as abnormal.
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6.2.6 Discussion and Summary

We explore the use of meta learning in self-supervised outlier detection. Meta learning tech-

niques such as MAML [Finn et al., 2017] can help models to quickly adapt to new data. We

present an approach that uses self-supervision for the few-shot task, which allows training

with only normal data. Early results indicate that the proposed method can outperform other

self-supervised methods, such as FPI [Tan et al., 2022], on synthetic test data. This basic

framework also has the potential to make outlier detection more adaptive and to better handle

new stimuli. In future work, we aim to design more varied self-supervised tasks to encourage

the model to rely more on information gained in the few-shot learning process.
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Conclusion

Outlier detection presents an interesting problem that is still challenging for current approaches.

Much of the success in machine learning is built on the premise that large amounts of labelled

examples are accessible before evaluation. But in the case of outlier detection, samples of

outliers are typically not available a priori. As such, alternative objective functions must be

explored. This thesis explores objective functions used in semi-supervised, unsupervised, and

self-supervised learning.

Semi-supervised methods can make use of unlabelled data, but they rely on supervised learning

to guide the process. When the distribution of unlabelled data differs considerably from the

distribution of labelled data, these methods can actually make performance worse (Chapter 3.1).

This can limit applicability in settings such as fetal ultrasound, where data is unbalanced.

Although some sources of unlabelled data may be evenly sorted into major classes, the video

data acquired during fetal examinations is heavily skewed toward a background class. In fact,

only a small percentage of frames contain sufficient diagnostic information to be of interest

to sonographers. Even after these key frames are extracted, diagnosing pathology can be

challenging and typically requires supervised learning (Chapter 3.2).

Unsupervised learning is another option when using unlabelled data. Some unsupervised meth-

ods are based on clustering or contrasting which use underlying assumptions of the data dis-

tribution and/or prior knowledge in the form of augmentations. These assumptions may not

133
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hold for problems in outlier detection, where the training data only contains one class and the

relevant features can change depending on the deviations in the test sample. Chapter 4 explores

an approach using divergent search to learn a repertoire of different clustering behaviors. The

appropriate sorting behavior can then be deployed during evaluation with a few-shot fine tuning

process. This allows for unsupervised learning without relying on predefined biases. Naturally,

methods that use an appropriate bias can achieve higher performance. But the results also show

that divergent search does in fact find useful features. As such, it may act as an alternative

strategy when appropriate biases are not known a priori.

Learning from the weaknesses of existing unsupervised methods, Chapter 5 proposes a self-

supervised task designed specifically for outlier detection in medical imaging. The goal of

foreign patch interpolation is to encourage the network to learn the characteristic features of

normal data. This is done by training the network to identify synthetic deviations and to

estimate the degree to which normal has been perturbed. This approach overcomes problems

with image space distances, seen in reconstruction-based methods, while also being sensitive to

more subtle irregularities that existing self-supervised methods can struggle with. As such, it

can complement existing methods and improve performance for certain types of outliers which

are particularly relevant for medical imaging.

Building on the method developed in Chapter 5, Chapter 6.1 uses Poisson image editing [Pérez

et al., 2003] to improve the quality of the image alterations. This produces more natural

looking irregularities and reduces overfitting to artifacts introduced during anomaly synthesis.

Chapter 6.2 proposes a step further, taking advantage of the adaptive properties of some meta-

learning methods. In this setup the self-supervised task is repurposed for few-shot learning.

This gives the model a chance to adapt to the current data (e.g. a specific neighbourhood of

slices) or potentially to irregular characteristics of the test sample.
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7.1 Limitations

Every outlier detection approach subsumes some assumptions, either implicitly or explicitly.

The proposed self-supervised methods are no exception. These assumptions can greatly impact

a method’s suitability for different types of data. For reconstruction-based methods, outlier

scores are computed as differences in input space. Intuitively, these metrics are more meaningful

in lower dimensional data or for gross abnormalities which are effectively lower dimensional, i.e.

still visible at greatly reduced resolutions. In contrast, the proposed methods can be sensitive to

specific features, based on their self-supervised tasks. For these methods it can be less obvious

which types of outliers will be identified accurately. Since it is generally not possible to predict

or control which types of outliers will appear, it is important to at least be aware of a method’s

blind spots.

Studying the blind spots of each method can also provide insights into how these self-supervised

tasks can be improved. Poisson image editing produces superior blending of foreign patches,

but it can sometimes create exceedingly natural abnormalities that approximate normality. On

one hand, it is important to explore the boundary of normality, but on the other hand, these

differences may have limited practical relevance. Another issue is that the patches are selected

randomly, but Poisson image editing was originally designed for manually selected patches.

Typically, the source patch contains a subject while the destination patch is a background

texture. Improving the patch selection process could improve the quality of synthetic anomalies

and their similarity to real anomalies. However, it is not obvious how to determine general

patch selection rules for a given dataset. It would likely require specific information about the

structures in the image (e.g. segmentation labels of important structures) and may introduce

unwanted biases.

Another aspect that could be improved is increasing the diversity of synthetic anomalies. Using

a variety of anomaly generation techniques could increase the generalization to more types of

real anomalies. This could also make better use of the proposed meta-learning approach. The

purpose of using meta-learning in this context is to find a general minimum that is near to

many task/anomaly specific minima. Currently, the same method is used to synthesize all
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anomalies, so the network may converge to a minimum that is only relevant for this style of

synthetic anomalies.

7.2 Future Work

Although perfect outlier detection without assumptions is an impossible task [Zhang et al.,

2021], there are still many settings that could benefit from imperfect, but practical solutions.

There are several areas of future work that can help bring these methods closer to the goal

of helping clinicians. Firstly, it is not always possible to predict or control which types of

outliers will appear. As such, it would be helpful to have an automated way of characterizing

which types of outliers will be detectable. This could be accomplished through comprehensive

empirical evaluation or by more theoretical study of generalization bounds. It could also take

the form of more precise definitions of the assumptions made by each method.

Performance itself could also be improved by synthesizing outliers of higher quality. This could

mean i) synthesizing anomalies that target the structures of highest importance, ii) new ways of

generating more relevant transformations/deformations, or iii) simply increasing the diversity of

anomaly generation techniques. A signature component of the proposed methods is the reliance

on intra-class differences as a source of irregularity (via patch blending). New ways of generating

sources of irregularity may provide more relevant, realistic, or varied synthetic anomalies. It

is important to remember that the main objective is to learn features that are present in the

normal data. In other words, the synthetic anomalies only exist for the purpose of providing

contrast. In future work, it may be helpful to perform a systematic study of different types of

contrasting classes and determine whether certain combinations provide further benefit.

Using more complete models of normal data could also lead to better anomaly detection. Having

a deeper understanding of the underlying structures and anatomy behind the observations in

an image could improve detection of semantic defects. However, this would likely require

substantial amounts of effort, either in collecting more complete data or in creating custom

models based on prior knowledge. Efforts such as the UK Biobank [Sudlow et al., 2015], which
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contains scans from more than 100 healthy subjects, could support the creation of atlases or

even functional models of specific organs. Meanwhile, more advanced generative methods could

also help by learning better internal representations, e.g. separating texture and pose [Karras

et al., 2021].

Robust performance for clinical practice may require the use of different strategies in concert.

Each approach has blind spots and hybrid methods may offer more comprehensive coverage.

Even clinical experts condone second opinions, so it is only natural to provide several answers.

All in all, outlier detection still has many remaining challenges and there is much to gain in

solving them.
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