473 research outputs found

    A correspondence-based neural mechanism for position invariant feature processing

    Get PDF
    Poster presentation: Introduction We here focus on constructing a hierarchical neural system for position-invariant recognition, which is one of the most fundamental invariant recognition achieved in visual processing [1,2]. The invariant recognition have been hypothesized to be done by matching a sensory image of a particular object stimulated on the retina to the most suitable representation stored in memory of the higher visual cortical area. Here arises a general problem: In such a visual processing, the position of the object image on the retina must be initially uncertain. Furthermore, the retinal activities possessing sensory information are being far from the ones in the higher area with a loss of the sensory object information. Nevertheless, with such recognition ambiguity, the particular object can effortlessly and easily be recognized. Our aim in this work is an attempt to resolve such a general recognition problem. ..

    Learning and generalization of compositional representations of visual scenes

    Full text link
    Complex visual scenes that are composed of multiple objects, each with attributes, such as object name, location, pose, color, etc., are challenging to describe in order to train neural networks. Usually,deep learning networks are trained supervised by categorical scene descriptions. The common categorical description of a scene contains the names of individual objects but lacks information about other attributes. Here, we use distributed representations of object attributes and vector operations in a vector symbolic architecture to create a full compositional description of a scene in a high-dimensional vector. To control the scene composition, we use artificial images composed of multiple, translated and colored MNIST digits. In contrast to learning category labels, here we train deep neural networks to output the full compositional vector description of an input image. The output of the deep network can then be interpreted by a VSA resonator network, to extract object identity or other properties of indiviual objects. We evaluate the performance and generalization properties of the system on randomly generated scenes. Specifically, we show that the network is able to learn the task and generalize to unseen seen digit shapes and scene configurations. Further, the generalisation ability of the trained model is limited. For example, with a gap in the training data, like an object not shown in a particular image location during training, the learning does not automatically fill this gap.Comment: 10 pages, 6 figure

    Using visual attention in a Nao humanoid to face the RoboCup any-ball challenge

    Get PDF
    Visual attention is a natural tool which allows animals to locate relevant objects or areas in a given scene, discarding the rest of elements present and thus reducing the amount of information to deal with. In this paper we present the design an implementation of a visual attention mechanism based on a saliency map and its implementation in the Nao humanoid. This control mechanism is applied to solve one of the challenges proposed in the RoboCup competition named ”any-ball”. The results obtained are analysed and future works derived from that analysis are presente

    The Brain's Router: A Cortical Network Model of Serial Processing in the Primate Brain

    Get PDF
    The human brain efficiently solves certain operations such as object recognition and categorization through a massively parallel network of dedicated processors. However, human cognition also relies on the ability to perform an arbitrarily large set of tasks by flexibly recombining different processors into a novel chain. This flexibility comes at the cost of a severe slowing down and a seriality of operations (100–500 ms per step). A limit on parallel processing is demonstrated in experimental setups such as the psychological refractory period (PRP) and the attentional blink (AB) in which the processing of an element either significantly delays (PRP) or impedes conscious access (AB) of a second, rapidly presented element. Here we present a spiking-neuron implementation of a cognitive architecture where a large number of local parallel processors assemble together to produce goal-driven behavior. The precise mapping of incoming sensory stimuli onto motor representations relies on a “router” network capable of flexibly interconnecting processors and rapidly changing its configuration from one task to another. Simulations show that, when presented with dual-task stimuli, the network exhibits parallel processing at peripheral sensory levels, a memory buffer capable of keeping the result of sensory processing on hold, and a slow serial performance at the router stage, resulting in a performance bottleneck. The network captures the detailed dynamics of human behavior during dual-task-performance, including both mean RTs and RT distributions, and establishes concrete predictions on neuronal dynamics during dual-task experiments in humans and non-human primates

    The brain’s router : a cortical network model of serial processing in the primate brain

    Get PDF
    The human brain efficiently solves certain operations such as object recognition and categorization through a massively parallel network of dedicated processors. However, human cognition also relies on the ability to perform an arbitrarily large set of tasks by flexibly recombining different processors into a novel chain. This flexibility comes at the cost of a severe slowing down and a seriality of operations (100–500 ms per step). A limit on parallel processing is demonstrated in experimental setups such as the psychological refractory period (PRP) and the attentional blink (AB) in which the processing of an element either significantly delays (PRP) or impedes conscious access (AB) of a second, rapidly presented element. Here we present a spiking-neuron implementation of a cognitive architecture where a large number of local parallel processors assemble together to produce goal-driven behavior. The precise mapping of incoming sensory stimuli onto motor representations relies on a ‘‘router’’ network capable of flexibly interconnecting processors and rapidly changing its configuration from one task to another. Simulations show that, when presented with dual-task stimuli, the network exhibits parallel processing at peripheral sensory levels, a memory buffer capable of keeping the result of sensory processing on hold, and a slow serial performance at the router stage, resulting in a performance bottleneck. The network captures the detailed dynamics of human behavior during dual-task-performance, including both mean RTs and RT distributions, and establishes concrete predictions on neuronal dynamics during dual-task experiments in humans and non-human primates.Fil: Zylberberg, Ariel. Laboratory of Integrative Neuroscience, Physics Department, University of Buenos Aires, Buenos Aires, Argentina. Institute of Biomedical Engineering, Faculty of Engineering, University of Buenos Aires, Buenos Aires, Argentina
    corecore