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Humans can resolve the fine details of visual stimuli although the
image projected on the retina is constantly drifting relative to the
photoreceptor array. Here we demonstrate that the brain must take
this drift into account when performing high acuity visual tasks.
Further, we propose a decoding strategy for interpreting the spikes
emitted by the retina, which takes into account the ambiguity caused
by retinal noise and the unknown trajectory of the projected image
on the retina. A main difficulty, addressed in our proposal, is the ex-
ponentially large number of possible stimuli which renders the ideal
Bayesian solution to the problem computationally intractable. In
contrast, the strategy that we propose suggests a realistic imple-
mentation in the visual cortex. The implementation involves two
populations of cells, one that tracks the position of the image, and
another that represents a stabilized estimate of the image itself.
Spikes from the retina are dynamically routed to the two populations
and are interpreted in a probabilistic manner. We consider the archi-
tecture of neural circuitry that could implement this strategy, and its
performance under measured statistics of human fixational eye mo-
tion. A salient prediction is that in high acuity tasks, fixed features
within the visual scene are beneficial because they provide informa-
tion about the drifting position of the image. Therefore, complete
elimination of peripheral features in the visual scene should degrade
performance on high acuity tasks involving very small stimuli.

Introduction
Our brain infers the structure of its surroundings from the sig-
nals of sensory neurons. When those signals are noisy, their
interpretation becomes ambiguous, and multiple hypotheses
about the outside world compete. Here we consider how the
brain estimates a 2D image of the visual scene based on the
neural signals from optic nerve fibers. Ambiguity in this pro-
cess derives from two primary sources: noise in the neural
circuitry of the retina, and random movements of the eye
that lead to image jitter on the retina. An ideal Bayesian
decoder in the brain would take these sources of ambigu-
ity into account and evaluate the likelihoods of different 2D
scenes leading to the spike trains from the retina. However,
the full probability distribution of an image with many pixels
includes an unfathomably large number of variables. Prior
work on Bayesian inference has focused on simplified prob-
lems in which the subject estimates only a single, typically
static sensory variable [1, 2, 3, 4, 5]. Thus there is consid-
erable uncertainty whether Bayesian inference of full images
is practicable at all. We begin by laying out the stochastic
constraints on this process.

Humans with normal vision can resolve visual features
spanning less than an arcminute, or ∼ 2 receptive fields of
ganglion cells in the central fovea, where each ganglion cell
receives input from a single cone photoreceptor. Indeed, the
letters ‘E’ and ‘F’ on the 20/20 line of a Snellen eye chart dif-
fer by just a few photoreceptors (Fig. 1A). While we perform
this discrimination, the letter drifts across the retina over dis-
tances much larger than its own size. In the time between two
subsequent spikes of any ganglion cell, the image shifts across
several receptive fields (Fig. 1A), so that the cell is driven
by a different part of the visual scene by the time the second
spike is emitted. To properly decode the image from these

spikes, it would seem that downstream visual areas require
knowledge of the image trajectory.

The image jitter on the retina during fixation is a com-
bined effect of body, head, and eye movements [6, 7]. Whereas
the brain can often estimate the sensory effects of self-
generated movement using proprioceptive or efference copy
signals, such information is not available for the net eye move-
ment at the required accuracy ([8, 9, 10], reviewed in [11] ).
Thus the image trajectory must be inferred from the incom-
ing retinal spikes, along with the image itself. In so doing, an
ideal decoder based on the Bayesian framework would keep
track of the joint probability for each possible trajectory and
image, updating this probability distribution in response to
the incoming spikes [5, 11]. However, the images encountered
during natural vision are drawn from a huge ensemble. For ex-
ample, there are 2900 possible black-and-white images with 30
× 30 pixels, which covers only a portion of the fovea. Clearly
the brain cannot represent a distinct likelihood for each of
these scenes, and this calls into question the practicality of a
Bayesian estimator in the visual system.

Here we propose a solution to this problem, based on a
factorized approximation of the probability distribution. This
introduces a dramatic simplification, and yet the emerging de-
coding scheme is useful for coping with the fixational image
drift. We present a neural network that executes this dynamic
algorithm and could realistically be implemented in the visual
cortex. It is based on reciprocal connections between two pop-
ulations of neurons, of which one encodes the content of the
image and the other the retinal trajectory.

Results
In order to address how the visual system may deal with ran-
dom drift we need, first, a model of how retinal ganglion cells
(RGCs) respond to light falling on the retina, a model of the
visual stimulus, and a model for how the stimulus is shifted
relative to the photoreceptor array. Each one of these ingre-
dients is probabilistic. Together, they define the likelihood
of every possible stimulus given the spikes generated by the
retina.

We model the fovea as a homogeneous array of retinal gan-
glion cells of a single type, arranged on a rectangular grid (Fig.
1A). The images consist of black-and-white pixels on this same
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grid, whose intensities are drawn independently from a binary
distribution. The firing of each cell is an inhomogeneous Pois-
son process whose rate depends on the image pixel in the re-
ceptive field. We begin with a simple model where the cell
responds instantaneously, firing at a rate λ1 if the pixel is on,
and at a background rate λ0 if it is off. Later on, we consider
a more realistic version where the rate depends on the past
light intensity within the retina’s integration time. The fixa-
tional movements of the image over the retina are modeled as
a discrete random walk [12].

Spike accumulation and the magnitude of fixational motion.
It is instructive to consider first what an ideal decoder would
do if the image trajectory was known. An incoming spike
from RGC i could then be associated uniquely with the pixel
i − x(t), where x(t) is the known position of the image at the
discharge time of the cell. After this routing of spikes to pixels,
the performance would be the same as for a static image. Due
to the noisy nature of ganglion cell firing, the decoder must
accumulate spikes over a minimal time interval. For example,
using firing rates of λ0 = 10 Hz and λ1 = 100 Hz, the letters
on the “20/20” line of the Snellen eye chart can be estimated
to reasonable accuracy within 40ms (Fig. 1C, left).

Without some knowledge of the image trajectory, such a
reconstruction is impossible. Human eye movements resemble
a random walk with a diffusion coefficient D ≃ 100 arcmin2/s
[13, 12, 11]. In the 40ms interval considered above, the result-
ing image drift can cover some 200 different pixels. Indeed,
images of a Snellen letter derived from simple spike accumu-
lation in each pixel seem almost random (Fig. 1C, right).
Thus one is led to a decoding scheme that estimates the im-
age trajectory and uses it to reconstruct the content of the
image.

Factorized Bayesian decoder. The ideal decoder of such spike
trains would use Bayes’ rule to continuously update a proba-
bilistic estimate of the image s and retinal position x, based
on all the spikes observed up to time t. Because the num-
ber of possible images s is prohibitively large, we explored an
approximate strategy that maintains the Bayesian inference
scheme, but with a dramatically simplified representation of
the probabilities. Specifically, the full Bayesian estimate is
approximated by a factorized posterior distribution

p(s, x, t) = p(x, t)
Y

i

pi(si, t) [1]

where p(x, t) is a probability distribution of positions and
pi(si, t) are probability distributions for individual pixels in
the stabilized coordinates of the image. This form ignores
any correlations between the values of different pixels, or be-
tween the image and its position. To update the posterior af-
ter a short time interval, ∆t, while maintaining its factorized
structure, we perform two steps. First, the factorized pos-
terior p(s, x, t) is updated according to the incoming spikes
between t and t+∆t, based on Bayes’ rule. Subsequently, the
result is recast into the factorized form. This leads to update
rules that are derived in the SI Appendix and are summarized
below. We define mi(t) to be the estimated probability that
si = 1: mi(t) = pi(1, t) = 1 − pi(0, t).

Update between spikes. Between spikes the dynamics of
p(x, t) are described by a diffusion equation,

∂p(x, t)

∂t
= D∇2p(x, t) [2]

which reflects the increasing uncertainty about position due
to the random walk statistics of image drift. The dynamics of

mi(t) are described by the differential equation

∂mi(t)

∂t
= −∆λ [1 − mi(t)] mi(t). [3]

where ∆λ = λ1 − λ0. Thus, mi(t) decays towards zero in the
absence of spikes, with a rate proportional to ∆λ. We note
also that if mi is either 0 or 1, such that the decoder is certain
about the value of pixel i, mi remains unchanged.

Update due to a spike. If ganglion cell k fires a spike at
time t then p(x, t) changes as

p(x, t+) ∝ [λ0 + ∆λmk−x(t−)] · p(x, t−), [4]

where t+ designates the time right after the update, t− rep-
resents the time right before the update, and a multiplicative
prefactor keeps the probability distribution normalized. The
quantity in the brackets is the estimated firing rate of ganglion
cell k if the image is at position x. Thus, p(x, t−) is multiplied
by the estimated likelihood that ganglion cell k has produced
a spike. The update to the estimate of pixel i, following a
spike in cell k, is

mi(t+) = mi(t−) + φ [mi(t−)] · p (k − i, t+) [5]

where mi(t−) is the value immediately before the spike,
mi(t+) is the updated value following the spike, and φ(m)
is the nonlinear function φ(m) = ∆λm(1 − m)/(λ0 + ∆λm).
Therefore, the change in mi is proportional to the estimated
probability that the image is at position k − i.

Network implementation. In contrast to the ideal Bayesian
decoder, we can envision a neural implementation of the fac-
torized decoder because the number of probabilities that must
be tracked grows only linearly with the number of pixels. The
update rules (2)–(5) are particularly suggestive of an imple-
mentation that involves two populations of neurons: one rep-
resents the probability of image position p(x). The other –
the probability of pixel intensities mi. We refer to these two
populations as where and what neurons.

Within such an implementation, the update rules (4)–(5)
indicate how spiking of each RGC affects the activities of mul-
tiple where and what cells (Fig. 1D top). The effect of gan-
glion cell k on what cell i is gated in a multiplicative fashion
by the activity of where cell x = k − i. In turn, the update
to where cell x in response to a spike from ganglion cell k is
gated by the activity of what cell i = k − x. This suggests
a network architecture with two divergent projections from
retinal ganglion cells to the what cells and the where cells,
along with reciprocal recurrent connections between both of
these populations (Fig. 1D bottom). The diffusion dynamics
and normalization of p(x, t) can be implemented by horizon-
tal excitatory connection and divisive global inhibition within
the where population.

For concreteness, we will describe the factorized decoder
in terms of the above neural implementation, although other
implementations are possible.

Performance of the factorized decoder. The response of the
factorized decoder to a sample stimulus is illustrated in Fig. 2.
Activity in the where population successfully tracks the po-
sition of the image. The estimate of the image itself, repre-
sented by activity in the what population, gradually improves
with time. In this example almost all the pixels are estimated
correctly at 300 ms, the duration of a typical human fixation.
The what population effectively encodes the stabilized image,
from which the effects of eye motion have been removed.

Fixational image movements must be taken into account.
When tested with many random images, the factorized de-
coder routinely reconstructed 90% of the pixels correctly in
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just 100 ms (Fig. 2B). By comparison, a static decoder that
ignores eye movements and simply accumulates spikes per-
formed very poorly: Shortly after stimulus onset it reached a
maximum of nearly 60% correctly estimated pixels, but then
the blurring from retinal motion took its toll. Clearly, the
tracking of image movement is essential for successful recon-
struction.

Performance improves with slower eye movements, higher
firing rates, and larger image size. When D is small, the
decoder easily tracks the position of the image, and perfor-
mance is limited only by the stochasticity of the ganglion cell
response. As D increases, the performance degrades due to
uncertainty about the position (Fig. 3A). The convergence
time increases sharply above a critical value of D. This value
is proportional to the RGC firing rates, as can be deduced
from dimensional analysis. With a larger image, more infor-
mation is available about the trajectory, and the decoder’s
performance improves markedly (Fig. 3B). Further analysis
shows that increasing the number of pixels by a factor f acts
roughly like a reduction of D by a factor

√
f (SI Appendix,

Sec. II). This sensitivity to image size should be observable
in psychophysical experiments.

Performance under conditions of human vision. With D
set to 100 arcmin2/s, corresponding to the measured statistics
of human fixational drift [13, 12, 11], the factorized decoder
performs well on images that cover at least 40 x 40 pixels (20 x
20 arcmin) (Fig. 3B). Reconstruction improves dramatically
if one is satisfied with a lower resolution. For example, if the
pixel size is increased from 0.5 to 1 arcmin, then the eye drift
changes the pixel contents less rapidly, and four ganglion cells
are available to report each pixel. Under these conditions,
small 5 x 5 arcmin images can be decoded rapidly to high
accuracy (Fig. 3B).

Dynamics of the retinal response.So far we assumed that
RGCs modulate their firing rate instantaneously in response
to the stimulus. More realistically, RGCs integrate light in
their receptive field over a time window of ∼ 100 ms with a
biphasic impulse response (Fig. 4A, inset) [14]. Thus, a spike
from a given RGC conveys partial information about all the
pixels that passed through the cell’s receptive field within the
integration time. Therefore eye movements affect the qual-
ity of image inference even in a hypothetical scenario where
the decoder knows the image trajectory. Indeed, in this sce-
nario, about 250 ms are required to accurately identify pixels
in a drifting image at a resolution of 0.5 arcmin (Fig. 4A)
whereas, with a small D, the required time is only 50ms
(Fig. 4A). These estimates for a known trajectory serve as
an upper bound for any decoder which infers the image in the
more realistic case of unknown trajectory (SI Appendix).

Since spike generation depends not only on the current
image position but also its history, a fully Bayesian decoder
would need to track a probability distribution for every pos-
sible trajectory in the past ∼ 100 ms. Given how many such
trajectories exist, this approach seems unrealistic. Instead we
explored performance of the above factorized decoder that ig-
nores the dynamics of the retinal response. When presented
with spike trains produced by the dynamic response model,
this decoder fails to stabilize an image spanning 40 x 40 arcmin
with a pixel resolution of 0.5 arcmin (Fig. 4B). However, if the
resolution is lowered to 1 arcmin, this naive decoder performs
quite well, estimating correctly 90% of the pixels in ∼ 200 ms.
Thus, the factorized decoder can successfully infer pixels at
1 arcmin resolution, over the typical time interval between
saccades. As in the simpler case where RGC response is in-

stantaneous, reducing the size of the stimulus to 5 x 5 arcmin
leads to significant degradation in performance, which should
be observable in psychophysical experiments (Fig. 4B, inset).

Discrimination task. It is useful also to assess the performance
of the factorized decoder on a task for which there are clear
performance measures from human psychophysics. We thus
considered a discrimination task similar to the ‘20/20’ row
of the Snellen eye chart (Fig. 4C). The 26 possible images
represent the letters A–Z; each letter subtends 5 arcmin, and
occupies 10 x 10 pixels on a 30 x 30 background of off pixels.
Spikes are generated by a model retina with a biphasic tem-
poral filter and diffusion coefficient D = 100 arcmin2/s and
fed into the decoder. We evaluated the posterior probability
for each letter, and performed a maximum-likelihood deci-
sion. The decoder achieves a 90% success rate after ∼ 300 ms,
about the length of a human fixation, and is thus compatible
with human vision on this task. To test whether trajectory
tracking is required on this task we also considered the simple
static decoder that ignores eye movements altogether. The
static decoder reaches peak performance ∼ 40 ms after stimu-
lus onset, when it correctly identifies the letter in about 50%
of the trials, far short of human performance on this task.

Discussion
We proposed a computation by which the brain might inter-
pret the spikes obtained from the fovea of the retina, while
taking into account the statistics of image drift and the noisy
nature of retinal responses. First, our analysis confirmed the
intuition that the visual system must indeed take fixational
movements into account to achieve high acuity vision. Simply
integrating the retinal spikes with downstream neurons, while
ignoring the eye movements, results in poor performance in-
consistent with human abilities (Figs. 2B, 4C). Our proposed
strategy therefore estimates the trajectory of the image on
the retina all the while it estimates the image itself (Fig. 2).
The method relies on Bayesian inference, and thus needs to
grapple with the ‘curse of dimensionality’ from the combi-
natorially large ensemble of random images. To circumvent
this challenge, the factorized decoder keeps track of separate
probability distributions for each pixel in the image, and for
the image position. We hypothesize that this strategy is im-
plemented in the brain by a neural network architecture that
involves two cell populations, one that tracks the position of
the image, and another that accumulates evidence about the
image content in a stabilized representation devoid of any im-
age drifts (Fig. 1D).

Dependence on image size The performance of the decoder is
sensitive to the size of the presented image, because it rests
largely on the estimate of the image trajectory. In our model
this estimate was based only on spikes from the foveal region
of the retina, which also encode the image itself. However,
the ocular drift trajectory is common to all parts of the visual
field. Thus the brain might use signals from more periph-
eral areas for estimating the trajectory, their sheer number
possibly outweighing the sharp decrease in spatial resolution
compared to the fovea. Additionally, direction-selective gan-
glion cells specialized to encode fine image motion might be
recruited for the task. We therefore suggest that careful con-
trol of peripheral cues may be instructive in psychophysical
measurements of visual acuity. For small stimuli a few arcmin
in size, embedded in a featureless background, we expect to
see a significant degradation of fine spatial vision, compared to
conditions where a larger area is stimulated or fixed features
are added in the peripheral visual field (Figs. 3B, 4B).
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Alternative approaches The detailed architecture and nonlin-
earity of the circuit model, Fig. 1D, shares notable similar-
ities with the previously proposed shifter circuits for invari-
ant object recognition [15, 16]: Information from the retina
is dynamically routed to form a stabilized representation of
the image, based on multiplicative control signals represent-
ing the eye’s position. Here we show that for retinal image
stabilization, the control signal can be derived from the retinal
inputs, as was previously suggested in the context of visual at-
tention and invariant object recognition ([17]; see, also, [18] ),
and propose a specific algorithm to achieve this. Furthermore,
our approach treats in a probabilistic framework the signal-
to-noise levels of retinal responses and the statistics of rapid
eye movements. Hence the nature of the computations and
their neuronal implementation are more complex than the de-
terministic shifter circuit model.

By stabilizing the retinal image, as proposed here, fixa-
tional image motion is dealt with once and for all by dedicated
neural circuitry that performs the same computation regard-
less of the image content. Subsequent stages of the visual
system can then probe the content of this stabilized image to
perform any number of visual tasks without needing to deal
with image jitter. This division of labor is functionally attrac-
tive, but one can imagine an alternative scenario in which the
visual system deals with fixational motion separately when-
ever it analyzes the foveal image for a specific visual task.
We have tested this scenario for the letter discrimination task
(Fig. 4C) and found that, in principle, such an approach may
be successful: While the spikes from a single 30 ms time win-
dow were not sufficient to discriminate between letters, a pro-
cedure that accumulates evidence from many subsequent win-
dows performed quite well (Fig. 4C). This strategy, which we
call the piecewise static decoder (SI Appendix), involves two
steps: First, in each short time window, generate a position-
invariant likelihood that each of the possible letters is in the
image, using the static decoder. Second, summate these log-
likelihoods across windows to accumulate evidence over time,
while ignoring the continuity of the trajectory across adjoining
windows.

The piecewise static decoder does not involve an interme-
diate stage where the image is represented in stabilized co-
ordinates. Compared to the factorized decoder, the piecewise
static decoder seems complicated, because intricate neural cir-
cuitry must be set up for each possible pattern and every kind
of visual task. Additionally, position-invariant pattern recog-
nition apparently takes place late in the visual cortex, long
after inputs from the two eyes have converged. This would
make it difficult to eliminate the relative jitter of the two
eyes, compared to a solution based on neural circuitry at an
early stage of the visual process.

When the temporal response properties of RGCs are taken
into account, eye motion has two competing effects within our
model. On one hand, it introduces ambiguity in the interpre-
tation of retinal spikes. On the other hand, it helps drive the
RGCs, whose response to completely static stimuli is weak.
Previous analysis of ideal discrimination between two small
stimuli at the limit of visual acuity suggested that a small
drift would be beneficial, but the actual eye movements of hu-
man subjects are much larger and on balance deleterious [11].
This was confirmed in the present analysis for larger images
at the resolution limit (Fig 4A). For other visual tasks involv-
ing coarser features, the smearing effect of eye movements will
be less severe, and the beneficial effect, coming from more ro-
bust activation of the RGCs will be more prominent. Indeed,

recent eye-tracking experiments demonstrated that fixational
drift can be beneficial under those conditions [19].

The global image shifts introduced by eye movements are
such a prominent aspect of the retinal input, that one imagines
multiple strategies may have evolved to deal with them. In-
deed certain types of retinal ganglion cells appear designed to
ignore global image motion entirely and respond only when an
object moves relative to the background scene [20]. Clearly
these RGCs cannot contribute to a reconstruction of static
scenes. Their version of image processing – implemented al-
ready within retinal circuits – can be seen as complementary
to the image stabilization discussed here.

We considered here only the smooth fixational drifts be-
tween saccades or micro-saccades [6]. A broader question is
how the brain forms a stable scene representation across sac-
cades [21]. The computational principles presented here may
be useful also for treatment of these larger motions. However,
the size and speed of saccades are much larger than those of
fixational drift, and it seems unlikely that the brain deals with
both extremes of eye motion using the same neural circuitry.

Implementation in the brainWe considered image pixels as
the fundamental units that are reconstructed by the factorized
decoder. More realistically, if the computation is performed
in the visual cortex (see below), the decoder may represent
probabilities for presence of more complex features, such as
oriented edges.

Our neural implementation of the factorized decoding
strategy has several salient features. First, the computation
requires a divergence of afferents from ganglion cells to the
populations of what and where units (Fig. 1D). The required
span of divergence to the what population is determined by
the typical range of fixational drifts – about 10 minutes of arc
in each direction, whereas the number of what cells should
correspond at least to the size of the fovea. The where cells
need only represent the possible range of drift, and since this
is smaller than the size of the fovea, we expect far fewer where
cells than what cells. Thus, every ganglion cell in the foveal
region is expected to synapse into a subset of the what cells
and into all where cells. Second, the dynamic routing of in-
formation from the retina to the what and where populations
requires a multiplicative gating controlled in a reciprocal fash-
ion by the signals in those populations (Fig. 1D). Multi-
plicative gain is prevalent in sensory cortical areas [22, 23],
and many mechanisms for achieving it have been proposed
[24, 25, 26, 27]. Third, in the where population, local exci-
tatory connections [28] are required to implement the diffu-
sive update between spikes, and a global divisive mechanism
[24, 25, 29, 30] is needed to maintain normalization of the to-
tal activity. Finally, the rate dynamics in both populations
involve local nonlinearities as described by Eqs. (4)–(5).

Neural activity. What are the distinctive predictive fea-
tures of activity in the what and where populations? The
what cells represent a stabilized version of the image. Their
receptive fields should shift on the retina according to the eye
movements, but remain locked in the external visual space.
Further, ramping firing rates after the onset of fixation should
reflect the gradual accumulation of evidence about the image
content. The where cells are expected to have large receptive
fields, comparable at least to the size to the fovea. During
conditions conducive to image tracking their activity should
reflect the eye movement.

Location. Where might one find these circuits in the visual
system? Fixational eye drifts are largely independent in the
two eyes [31], so their compensation must occur within the
monocular part of the visual pathway, including the LGN and
parts of V1. The LGN does not provide the required conver-
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gence of afferents from the retina, over an area ∼ 20 arcmin in
diameter. Thus the recipient circuits in V1 are the first stage
at which fixational eye movements could be compensated.

It has been suggested previously that primary visual cor-
tex generates a stabilized representation of the visual image
[32], but more recent work [33, 34] has concluded that recep-
tive fields of V1 neurons are fixed in retinal coordinates. In
the present context, it is relevant that these recordings were
from V1 cells in the parafoveal region with relatively large
receptive fields 20-40 arcmin in diameter. For these neurons
the receptive field diameter exceeds the total drift during a
fixation, which obviates a strong need for stabilization. By
the same token, these receptive fields, if they are indeed fixed
on the retina, are too coarse to support visual acuity corre-
sponding to 20/20 vision or the equivalent in macaques [35].
Thus, the available evidence does not exclude a network for
fixational image stabilization within the foveal region of V1.

If, in fact, each of the two monocular pathways decodes
the image independently, one needs to ask how their image
estimates are combined. The simplest solution would be for
both monocular decoders to feed the same image estimate. In
the context of our factorized representation, this would mean
two monocular populations of where neurons that control the
inputs to a single population of what neurons (Fig. 4D). Such
a binocular representation of the stabilized image may ap-
pear in disparity selective neurons in V1 or downstream of
V1, for example in a binocular population in V2 that receives
monocular inputs. To test these predictions it would be very
instructive to record from cortical neurons that represent the
primate fovea, whose receptive field structure is fine enough
to resolve patterns close to the animal’s acuity.

Methods
Stimulus and simulated spike trains. We assume that the size
a of each pixel matches the receptive field of a single RGC, and
since there is little overlap between receptive fields in the fovea

[36], each ganglion cell reports on the value of a single pixel (For
0.5 arcmin reconstruction. For 1 arcmin reconstruction, we assume
that each pixels covers four receptive fields.) For each presentation
of the stimulus, we first generate a random walk trajectory for the
image. Image shifts occur randomly with a rate 4D/a2 and Pois-
son statistics. Jump size is a and the direction is selected randomly
with equal probabilities for up, down, left, or right shifts. We then
evaluate the time-dependent firing rate of each RGC, determined
either from the instantaneous pixel intensity at position or by the
recent history as

λi(t) = φ

»

λ0 + ∆λ

Z

dτf(τ)si−x(t−τ)

–

[6 ]

where x(t) is the position of the image at time t. The temporal ker-
nel f(τ) is biphasic and is chosen as described [11] [see, also, [14]
and SI Appendix]. We chose a background firing rate λ0 = 20Hz
based on measurements in macaque retina [37], and chose ∆λ such
that the maximal possible firing rate of the neuron is 200Hz. Firing
rates are then almost always within the range 0–100 Hz (Fig. S3A),
chosen to match maximal firing rates observed in macaque retina
[14, 38]. The linear rectification function φ(x) = min(x, λc) where
we chose the cutoff λc = 1Hz. Based on the rates λi(t), we generate
a spike train for each RGC using inhomogeneous Poisson statistics.
To simplify the numerical simulation, we use periodic boundary
conditions, and discretize time in steps dt = 0.1ms.

Factorized decoder. In Eq. (2) the Laplacian operator
stands for a discrete operator,

P

x′∈NN(x) p(x′, t) − 4p(x, t), where

NN(x) are the four nearest-neighbor locations near x. To speed up
the numerical calculation we used a version of the update rules as
described in SI Appendix (Sec. I.E) with a time step dt = 0.1ms.
In all simulations where the naive factorized decoder is applied
to spikes generated with a temporal filter, the decoder assumes
λ0 = 20Hz and λ1 = 100 Hz. Measurements of accuracy were
performed as described in Online Methods (SI Appendix).
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Fig. 1. A The letters “E” and “F” on the 20/20 line of the Snellen eye chart test, projected

on an image of the foveal cone mosaic [Photoreceptor image modified from [39]]. The 1-arcmin

features that distinguish the letters extend over only a few cones. Also shown is a sample

fixational eye movement trajectory for a standing subject [courtesy of [12]], sampled every 2

ms for a duration of 500 ms and then smoothed with a 4-ms boxcar filter. Red dots mark the

spike times from a neuron firing at 100 Hz. B Diagram of model for spike generation; see text

for details. C Spikes generated by our model retina, presented with a letter “E” spanning 5

arcmin for 40 ms (with instantaneous RGC response). Left: with no image drift. Right: with

image drift following statistics of human fixational eye motion. D Architecture of a neural

implementation of the factorized decoder. Each RGC projects to multiple what and where

cells (top). The projections are reciprocally gated between the two populations (bottom).
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Fig. 2. A Example of image reconstruction by the factorized decoder. Top, from left to

right: The stimulus; snapshot of activity in the where cell population at t = 10ms; track-

ing of horizontal and vertical image position over time, with probability (grayscale) compared

to actual trajectory (red). Parameters: 30x30 pixels, 0.5 arcmin/pixel, λ0,1 = 10/100 Hz,

D=100 arcmin2/s. Bottom: several snapshots of activity in the what cell population. B
Fraction of correctly estimated pixels as a function of time, averaged over 100 randomly se-

lected images each containing 50 x 50 pixels and spanning 25 x 25 arcmin. Spikes generated with

image motion are presented to the factorized and static decoders (solid traces). Performance

of static decoder is shown also for a static image (dashed trace).
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Fig. 3. A Performance as a function of D, averaged over 1000 presentations of random

images. The convergence time (at which 90% of pixels are estimated correctly) increases with

D (Left) and the accuracy (fraction of correctly estimated pixels at t = 300ms) decreases with

D (Right). Results are shown for images containing 40 x 40 pixels (20 x 20 arcmin). Increasing

the firing rate improves performance (λ0,1 = 10/100 Hz, solid traces; λ0,1 = 20/200 Hz,

dashed traces). B Performance improves with image size. Solid traces show performance for

several image sizes, indicated in the inset in units of arcmin. Dashed trace shows reconstruction

of 5 x 5 arcmin images consisting of 1 x 1 arcmin pixels; In all other traces resolution is 0.5 x 0.5

arcmin. Vertical dashed lines designate the value of D that corresponds to measured statistics

of human fixational eye motion [13, 12, 11].
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Fig. 4. Performance for spike trains generated with a temporal filter in RGC response. A
Convergence time when the trajectory is known to the decoder. In contrast to the case of

instantaneous response, performance depends on the diffusion statistics. Black traces show

the convergence time (for 90% accuracy), as a function of D for a factorized decoder that

takes into account the filter (SI Appendix, Sec. III). Parameters: 20 x 20 pixel images; 0.5

arcmin/pixel (dashed trace) and 1 arcmin/pixel (solid trace). For known trajectory, image size

has little effect (SI Appendix). Vertical dashed line: D = 100 arcmin2/s. Inset: The temporal

filter f(τ). B Performance of the naive factorized decoder when spikes are generated with

a temporal filter (unknown trajectory). Traces show fraction of correctly estimated pixels as a

function of time, averaged over 1000 presentations of random images of sizes 40 x 40 arcmin,

with D = 100 arcmin2/s. Solid and dashed traces: 1 x 1 arcmin and 0.5 x 0.5 arcmin pixels,

respectively. The non-monotonic dependence at short times is related to the structure of the

temporal filter, and can be eliminated using a modified version of the update rules (SI Appendix,

Sec. III and Fig. S3). Inset: accuracy at t = 300ms measured for several images sizes, with

1 x 1 arcmin pixels (average over 1000 presentations). C Performance on a discrimination

task between 26 patterns representing the letters “A” – “Z”, averaged over 400 trials (see

main text for all other parameters). Factorized decoder, black trace; Static decoder, red trace;

Piecewise static decoder (see Discussion and SI Appendix), gray trace. D Architecture of a

neural implementation of the factorized decoder for binocular vision (see Discussion).
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