153 research outputs found

    Operations planning test bed under rolling horizons, multiproduct,multiechelon, multiprocess for capacitated production planning modelling with strokes

    Full text link
    [EN] One of the problems when conducting research in mathematical programming models for operations planning is having an adequate database of experiments that can be used to verify advances and developments with enough factors to understand different consequences. This paper presents a test bed generator and instances database for a rolling horizons analysis for multiechelon planning, multiproduct with alternatives processes, multistroke, multicapacity with different stochastic demand patterns to be used with a stroke-like bill of materials considering production costs, setup, storage and delays for operations management. From the analysis of the operations planning obtained from this test bed, it is concluded that a product structure with an alternative process obtains the lowest total cost and the highest service level. In addition, decreasing seasonal demand could present a lower total cost than constant demand, but would generate a worse service level. This test bed will allow researchers further investigation so as to verify improvements in forecast methods, rolling horizons parameters, employed software, etc.Rius-Sorolla, G.; Maheut, J.; Estelles Miguel, S.; García Sabater, JP. (2021). Operations planning test bed under rolling horizons, multiproduct,multiechelon, multiprocess for capacitated production planning modelling with strokes. Central European Journal of Operations Research. 29:1289-1315. https://doi.org/10.1007/s10100-020-00687-5S1289131529Araujo SA, Arenales MN, Clark A (2007) Joint rolling-horizon scheduling of materials processing and lot-sizing with sequence-dependent setups. J Heuristics 13(4):337–358. https://doi.org/10.1007/s10732-007-9011-9ASIC (2018) Clúster de cálculo: Rigel. http://www.upv.es/entidades/ASIC/catalogo/857893normalc.html. Accessed date 22 July 2018Baker KR (1977) An experimental study of the effectiveness of rolling schedules in production planning. Decis Sci 8(1):19–27. https://doi.org/10.1111/j.1540-5915.1977.tb01065.xBarrett RT, LaForge RL (1991) A study of replanning frequencies in a material requirements planning system. Comput Oper Res 18(6):569–578. https://doi.org/10.1016/0305-0548(91)90062-VBehnamian J, Fatemi Ghomi SMT (2014) A survey of multi-factory scheduling. J Intell Manuf 27:1–19. https://doi.org/10.1007/s10845-014-0890-yBillington PJ, McClain JO, Thomas LJ (1983) Mathematical programming approaches to capacity-constrained MRP systems: review, formulation and problem reduction. Manag Sci 29(10):1126–1141. https://doi.org/10.1287/mnsc.29.10.1126Blackburn JD, Millen RA (1980) Heuristic lot-sizing performance in a rolling-schedule environment. Decis Sci 11(4):691–701. https://doi.org/10.1111/j.1540-5915.1980.tb01170.xCao Y (2015) Long-distance procurement planning in global sourcing. Ecole Centrale Paris. https://tel.archives-ouvertes.fr/tel-01154871/. Accessed 15 Dec 2017Carlson RC, Beckman SL, Kropp DH (1982) The effectiveness o extending the horizon in rolling production scheduling. Decis Sci 13(1):129–146. https://doi.org/10.1111/j.1540-5915.1982.tb00136.xChand S, Hsu VN, Sethi S (2002) Forecast, solution, and rolling horizons in operations management problems: a classified bibliography. Manuf Serv Oper Manag 4(1):25–43. https://doi.org/10.1287/msom.4.1.25.287Coronado-Hernández JR (2016) Análisis del efecto de algunos factores de complejidad e incertidumbre en el rendimiento de las Cadenas de Suministro. Propuesta de una herramienta de valoración basada en simulación. Universitat Politècnica de València, Valencia (Spain). https://doi.org/10.4995/Thesis/10251/61467de Sampaio RJB, Wollmann RRG, Vieira PFG (2017) A flexible production planning for rolling-horizons. Int J Prod Econ 190:31–36. https://doi.org/10.1016/j.ijpe.2017.01.003DeYong GD, Cattani KD (2016) Fenced in? Stochastic and deterministic planning models in a time-fenced, rolling-horizon scheduling system. Eur J Oper Res 251(1):85–95. https://doi.org/10.1016/j.ejor.2015.11.006Federgruen A, Tzur M (1994) Minimal forecast horizons and a new planning procedure for the general dynamic lot sizing model: nervousness revisited. Oper Res 42(3):456–468. https://doi.org/10.1287/opre.42.3.456Fisher ML, Ramdas K, Zheng YS (2001) Ending inventory valuation in multiperiod production scheduling. Manag Sci 47(5):679–692. https://doi.org/10.1287/mnsc.47.5.679.10485Garcia-Sabater JP, Maheut J, Garcia-Sabater JJ (2009. A capacitated material requirements planning model considering delivery constraints: a case study from the automotive industry. In: 2009 international conference on computers and industrial engineering, IEEE, pp 378–383. https://doi.org/10.1109/ICCIE.2009.5223806Garcia-Sabater JP, Maheut J, Garcia-Sabater JJ (2012) A two-stage sequential planning scheme for integrated operations planning and scheduling system using MILP: the case of an engine assembler. Flex Serv Manuf J 24(2):171–209. https://doi.org/10.1007/s10696-011-9126-zGarcia-Sabater JP, Maheut J, Marin-Garcia JA (2013) A new formulation technique to model materials and operations planning: the generic materials and operations planning (GMOP) problem. Eur J Ind Eng 7(2):119. https://doi.org/10.1504/EJIE.2013.052572Hair JF, Prentice E, Cano D (1999) Análisis multivariante. Prentice-Hall, Upper Saddle RiverHozak K, Hill JA (2009) Issues and opportunities regarding replanning and rescheduling frequencies. Int J Prod Res 47(18):4955–4970. https://doi.org/10.1080/00207540802047106Hsu CH, Yang HC (2017) Real-time near-optimal scheduling with rolling horizon for automatic manufacturing cell. IEEE Access 5:3369–3375. https://doi.org/10.1109/ACCESS.2016.2616366Jans R (2009) Solving lot-sizing problems on parallel identical machines using symmetry-breaking constraints. Inf J Comput 21(1):123–136. https://doi.org/10.1287/ijoc.1080.0283Karimi B, Fatemi Ghomi SMT, Wilson JM (2003) The capacitated lot sizing problem: a review of models and algorithms. Omega 31(5):365–378. https://doi.org/10.1016/S0305-0483(03)00059-8Kimms A (1997) Multi-level lot sizing and scheduling, vol 53. Physica-Verlag, Heidelberg. https://doi.org/10.1007/978-3-642-50162-3Kleindorfer P, Kunreuther H (1978) Stochastic horizons for the aggregate planning problem. Manag Sci 24(5):485–497. https://doi.org/10.1287/mnsc.24.5.485Kumar BK, Nagaraju D, Narayanan S (2016) Supply chain coordination models: a literature review. Indian J Sci Technol. https://doi.org/10.17485/ijst/2016/v9i38/86938Lalami I, Frein Y, Gayon JP (2017) Production planning in automotive powertrain plants: a case study. Int J Prod Res 55(18):5378–5393. https://doi.org/10.1080/00207543.2017.1315192Lee HL, Padmanabhan V, Whang S (1997) The bullwhip effect in supply chains 1. Sloan Manag Rev Assoc 38(3):93–102. https://doi.org/10.1287/mnsc.43.4.546Lee DU, Villasenor JD, Luk W, Leong PHW (2006) A hardware Gaussian noise generator using the box-muller method and its error analysis. IEEE Trans Comput 55(6):659–671. https://doi.org/10.1109/TC.2006.81Lv Y, Zhang J, Qin W (2017) A genetic regulatory network-based method for dynamic hybrid flow shop scheduling with uncertain processing times. Appl Sci 7(1):23. https://doi.org/10.3390/app7010023Maheut J (2013) Modelos y Algoritmos Basados en el Concepto Stroke para la Planificación y Programación de Operaciones con Alternativas en Redes de Suministro. Universitat Politècnica de València, Valencia (Spain). https://doi.org/10.4995/Thesis/10251/29290Maheut J, Garcia-Sabater JP (2011) La matriz de operaciones y materiales y la matriz de operaciones y recursos, un nuevo enfoque para resolver el problema GMOP basado en el concepto del stroke. Direccion y Organizacion 45:46–57Maheut J, Garcia-sabater JP, Mula J (2012) A supply chain operations lot-sizing and scheduling model with alternative operations. In: Sethi SP, Bogataj M, Ros-McDonnell L (eds) Industrial engineering: innovative networks. Springer, London, pp 309–316. https://doi.org/10.1007/978-1-4471-2321-7Meindl B, Templ M (2012) Analysis of commercial and free and open source solvers for linear optimization problems. Common Tools and Harmonized Methodologies for SDC in the ESS, pp 1–13. http://neon.vb.cbs.nl/cascprivate/..%5Ccasc%5CESSNet2%5Cdeliverable_solverstudy.pdf. Accessed 15 Dec 2016Meyr H (2002) Simultaneous lotsizing and scheduling on parallel machines. Eur J Oper Res 139(2):277–292. https://doi.org/10.1016/S0377-2217(01)00373-3Narayanan A, Robinson P (2010) Evaluation of joint replenishment lot-sizing procedures in rolling horizon planning systems. Int J Prod Econ 127(1):85–94. https://doi.org/10.1016/j.ijpe.2010.04.038Nedaei H, Mahlooji H (2014) Joint multi-objective master production scheduling and rolling horizon policy analysis in make-to-order supply chains. Int J Prod Res 52(9):2767–2787. https://doi.org/10.1080/00207543.2014.884732Newman M (2005) Power laws, Pareto distributions and Zipf’s law. Contemp Phys 46(5):323–351. https://doi.org/10.1080/00107510500052444Omar MK, Bennell JA (2009) Revising the master production schedule in a HPP framework context. Int J Prod Res 47(20):5857–5878. https://doi.org/10.1080/00207540802130803Pérez C (2002) Estadística práctica con Statgraphics®. PEARSON EDUCACIÓN, S. A, MadridPoler R, Mula J (2011) Forecasting model selection through out-of-sample rolling horizon weighted errors. Expert Syst Appl 38(12):14778–14785. https://doi.org/10.1016/j.eswa.2011.05.072Prasad PSS, Krishnaiah Chetty OV (2001) Multilevel lot sizing with a genetic algorithm under fixed and rolling horizons. Int J Adv Manuf Technol 18(7):520–527. https://doi.org/10.1007/s0017010180520Rafiei R, Gaudreault J, Bouchard M, Santa-Eulalia L (2012) A reactive planning approach for demand-driven wood remanufacturing industry: a real-scale application, vol 71. CIRRELT, MontrealRafiei R, Nourelfath M, Gaudreault J, Santa-Eulalia LA, Bouchard M (2014) A periodic re-planning approach for demand-driven wood remanufacturing industry: a real-scale application. Int J Prod Res 52(14):4198–4215. https://doi.org/10.1080/00207543.2013.869631Ramezanian R, Fallah Sanami S, Shafiei Nikabadi M (2017) A simultaneous planning of production and scheduling operations in flexible flow shops: case study of tile industry. Int J Adv Manuf Technol 88(9–12):2389–2403. https://doi.org/10.1007/s00170-016-8955-zRodriguez MA, Montagna JM, Vecchietti A, Corsano G (2017) Generalized disjunctive programming model for the multi-period production planning optimization: an application in a polyurethane foam manufacturing plant. Comput Chem Eng 103:69–80. https://doi.org/10.1016/j.compchemeng.2017.03.006Sahin F, Narayanan A, Robinson EP (2013) Rolling horizon planning in supply chains: review, implications and directions for future research. Int J Prod Res 51(18):5413–5436. https://doi.org/10.1080/00207543.2013.775523Sethi S, Sorger G (1991) A theory of rolling horizon decision making. Ann Oper Res 29(1):387–415. https://doi.org/10.1007/BF02283607Simpson NC (2001) Questioning the relative virtues of dynamic lot sizing rules. Comput Oper Res 28(9):899–914. https://doi.org/10.1016/S0305-0548(00)00015-0Stadtler H (2000) Improved rolling schedules for the dynamic single-level lot-sizing problem. Manag Sci 46(2):318–326. https://doi.org/10.1287/mnsc.46.2.318.11924Stadtler H (2003) Multilevel lot sizing with setup times and multiple constrained resources: internally rolling schedules with lot-sizing windows. Oper Res 51(3):487–502. https://doi.org/10.1287/opre.51.3.487.14949Tiacci L, Saetta S (2012) Demand forecasting, lot sizing and scheduling on a rolling horizon basis. Int J Prod Econ 140:803–814. https://doi.org/10.1016/j.ijpe.2012.02.007Trigeiro WW (1987) A dual-cost heuristic for the capacitated lot sizing problem. IIE Trans 19(1):67–72. https://doi.org/10.1080/07408178708975371Wolsey LA (2002) Solving multi-item lot-sizing problems with an MIP solver using classification and reformulation. Manage Sci 48(12):1587–1602. https://doi.org/10.1287/mnsc.48.12.1587.442Xie J, Zhao X, Lee TS (2003) Freezing the master production schedule under single resource constraint and demand uncertainty. Int J Prod Econ 83(1):65–84. https://doi.org/10.1016/S0925-5273(02)00262-1Yıldırım I, Tan B, Karaesmen F (2005) A multiperiod stochastic production planning and sourcing problem with service level constraints. OR Spectrum 27(2–3):471–489. https://doi.org/10.1007/s00291-005-0203-0Zhao X, Xie J (1998) Multilevel lot-sizing heuristics and freezing the master production schedule in material requirements planning systems. Prod Plan Control 9(4):371–384. https://doi.org/10.1080/095372898234109Zoller K, Robrade A (1988) Efficient heuristics for dynamic lot sizing. Int J Prod Res 26(2):249–265. https://doi.org/10.1080/00207548808947857Zulkafli NI, Kopanos GM (2017) Integrated condition-based planning of production and utility systems under uncertainty. J Clean Prod 167:776–805. https://doi.org/10.1016/j.jclepro.2017.08.15

    Production and distribution research center

    Get PDF
    Issued as Annual report, Project no. E-24-62

    Multiperiod optimisation and strategic planning for chemical processes

    Get PDF
    Il tema è l'ottimizzazione multiperiodale applicata a processi chimici, in particolare ottimizzazione dei livelli di scorte e pianificazione strategica

    Efficient neighborhood evaluations for the vehicle routing problem with multiple time windows

    Get PDF
    In the vehicle routing problem with multiple time windows (VRPMTW), a single time window must be selected for each customer from the multiple time windows provided. Compared with classical vehicle routing problems with only a single time window per customer, multiple time windows increase the complexity of the routing problem. To minimize the duration of any given route, we present an exact polynomial time algorithm to efficiently determine the optimal start time for servicing each customer. The proposed algorithm has a reduced worst-case and average complexity than existing exact algorithms. Furthermore, the proposed exact algorithm can be used to efficiently evaluate neighborhood operations during a local search resulting in significant acceleration. To examine the benefits of exact neighborhood evaluations and to solve the VRPMTW, the proposed algorithm is embedded in a simple metaheuristic framework generating numerous new best known solutions at competitive computation times

    An Optimization Framework for a Dynamic Multi-Skill Workforce Scheduling and Routing Problem with Time Windows and Synchronization Constraints

    Full text link
    This article addresses the dynamic multi-skill workforce scheduling and routing problem with time windows and synchronization constraints (DWSRP-TW-SC) inherent in the on-demand home services sector. In this problem, new service requests (tasks) emerge in real-time, necessitating a constant reevaluation of service team task plans. This reevaluation involves maintaining a portion of the plan unaltered, ensuring team-task compatibility, addressing task priorities, and managing synchronization when task demands exceed a team's capabilities. To address the problem, we introduce a real-time optimization framework triggered upon the arrival of new tasks or the elapse of a set time. This framework redesigns the routes of teams with the goal of minimizing the cumulative weighted throughput time for all tasks. For the route redesign phase of this framework, we develop both a mathematical model and an Adaptive Large Neighborhood Search (ALNS) algorithm. We conduct a comprehensive computational study to assess the performance of our proposed ALNS-based reoptimization framework and to examine the impact of reoptimization strategies, frozen period lengths, and varying degrees of dynamism. Our contributions provide practical insights and solutions for effective dynamic workforce management in on-demand home services

    A new mixed-integer programming model for harvest scheduling subject to maximum area restrictions

    Get PDF
    Forest ecosystem management often requires spatially explicit planning because the spatial arrangement of harvests has become a critical economic and environmental concern. Recent research on exact methods has addressed both the design and the solution of forest management problems with constraints on the clearcut size, but where simultaneously harvesting two adjacent stands in the same period does not necessarily exceed the maximum opening size. Two main integer programming approaches have been proposed for this area restriction model. However, both encompass an exponential number of variables or constraints. In this work, we present a new integer programming model with a polynomial number of variables and constraints. Branch and bound is used to solve it. The model was tested with both real and hypothetical forests ranging from 45 to 1,363 polygons. Results show that the proposed model’s solutions were within or slightly above 1% of the optimal solution and were obtained in a short computation time

    Inventory routing problem with backhaul considering returnable transport items collection

    Get PDF
    The Inventory Routing Problem (IRP) has been highlighted as a valuable strategy for tackling routing and inventory problems. This paper addresses the IRP but considers the forward delivery and the use of Returnable Transport Items (RTIs) in the distribution strategy. We develop an optimization model by considering inventory routing decisions with RTIs collection (backhaul customers) of a Closed-Loop Supply Chain (CLSC) within a short-term planning horizon. RTIs consider reusable packing materials such as trays, pallets, recyclable boxes, or crates. The RTIs represent an essential asset for many industries worldwide. The solution of the model allows concluding that if RTIs are considered for the distribution process, the relationship between the inventory handling costs of both the final goods and RTIs highly determines the overall performance of the logistics system under study. The obtained results show the efficiency of the proposed optimization scheme for solving the combined IRP with RTIs, which could be applied to different real industrial cases

    Petroleum refinery scheduling with consideration for uncertainty

    Get PDF
    Scheduling refinery operation promises a big cut in logistics cost, maximizes efficiency, organizes allocation of material and resources, and ensures that production meets targets set by planning team. Obtaining accurate and reliable schedules for execution in refinery plants under different scenarios has been a serious challenge. This research was undertaken with the aim to develop robust methodologies and solution procedures to address refinery scheduling problems with uncertainties in process parameters. The research goal was achieved by first developing a methodology for short-term crude oil unloading and transfer, as an extension to a scheduling model reported by Lee et al. (1996). The extended model considers real life technical issues not captured in the original model and has shown to be more reliable through case studies. Uncertainties due to disruptive events and low inventory at the end of scheduling horizon were addressed. With the extended model, crude oil scheduling problem was formulated under receding horizon control framework to address demand uncertainty. This work proposed a strategy called fixed end horizon whose efficiency in terms of performance was investigated and found out to be better in comparison with an existing approach. In the main refinery production area, a novel scheduling model was developed. A large scale refinery problem was used as a case study to test the model with scheduling horizon discretized into a number of time periods of variable length. An equivalent formulation with equal interval lengths was also presented and compared with the variable length formulation. The results obtained clearly show the advantage of using variable timing. A methodology under self-optimizing control (SOC) framework was then developed to address uncertainty in problems involving mixed integer formulation. Through case study and scenarios, the approach has proven to be efficient in dealing with uncertainty in crude oil composition

    A Decision Support System for Land Allocation under Multiple Objectives in Public Production Forests in the Brazilian Amazon

    Get PDF
    Logging in natural forests is a vital economic activity in the Brazilian Amazon. However, illegal and unplanned logging is exhausting forests rapidly. In 2006, a new forestry law in Brazil (Lei 11,284/2006) established the legal framework to develop state and national public forests for multiple uses. To support public forest planning efforts, we combine spatially explicit data on logging profits, biodiversity, and potential for community use for use within a forest planning optimization model. While generating optimal land use configurations, the model enables an assessment of the market and nonmarket tradeoffs associated with different land use priorities. We demonstrate the model's use for Faro State Forest, a 636,000 ha forest embedded within a large mosaic of conservation units recently established in the state of Pará. The datasets used span the entire Brazilian Amazon, implying that the analysis can be repeated for any public forest planning effort within the region
    • …
    corecore