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1. Introduction
The landscape pattern that results from harvest scheduling
has evolved into a critical issue in forest management. Effort
in model development has been shifting to better recognize
spatial concerns. These concerns have often been addressed
within the forest management scheduling adjacency prob-
lem. In this problem, stands are considered adjacent if they
share a common boundary, and adjacency conflict is defined
as a conflict between management alternatives involving
a clear-cut in adjacent stands in the same or in consecu-
tive planning periods (Borges and Hoganson 1999). Sev-
eral authors addressed this combinatorial optimization prob-
lem within an integer programming (IP) or mixed integer
linear programming (MILP) framework (e.g., Kirby 1980;
Covington et al. 1988; Torres Rojo and Brodie 1990; Hof
and Joyce 1993; Jones et al. 1991; Yoshimoto and Brodie
1994; Hof et al. 1994; Murray and Church 1996; Snyder
and Revelle 1997; Martins et al. 1999, 2005; McDill and
Braze 2000, 2001; McDill et al. 2002; Crowe et al. 2003;
Murray et al. 2004; Goycoolea et al. 2005). To circumvent
computational constraints to the use of exact methods, other
authors addressed spatial modeling with heuristics such as

Monte Carlo integer programming (e.g., O’Hara et al. 1989,
Nelson et al. 1991), simulated annealing (e.g., Lockwood
and Moore 1993, Dahlin and Sallnas 1993), tabu search
(e.g., Bettinger et al. 1998, Caro et al. 2003, Richards and
Gunn 2003), with dynamic programming-based approaches
(e.g., Hoganson and Borges 1998, Borges et al. 1999) or
with hybrid heuristic approaches (e.g., Pukkala and Kangas
1993, Boston and Bettinger 2002, Falcão and Borges 2002).
The concept of adjacency may be expanded to address

spatial conditions and outcomes of interest other than the
clear-cut size. For example, Hoganson et al. (2004) mod-
eled adjacency considerations to meet mature forest inte-
rior space goals in Northern Minnesota. Rebain and McDill
(2003) modeled minimum mature habitat patch constraints
to mitigate fragmentation impacts of strict adjacency. Again
both heuristics and exact methods come up as alterna-
tive or complementary modeling approaches to target land-
scape design. However, stand and management unit design
itself becomes prominent because it produces the landscape
spatial elements upon which decisions are made and thus
impacts the spatial conditions targeted by adjacency consid-
erations (Barrett 1997, Borges and Hoganson 1999, Murray
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and Weintraub 2002). In this framework, the area restric-
tion model (ARM) (Murray 1999) emerges as a formulation
better suited to address landscape design wider objectives
than the traditional unit restriction model formulation. The
former includes constraints on opening sizes, and yet it lets
the model itself suggest stand aggregation (design) when
their combined area does not violate those constraints. Sev-
eral authors reported heuristic solutions to the ARM (e.g.,
Lockwood and Moore 1993, Barrett et al. 1998, Clark et al.
2000, Richards and Gunn 2000, Boston and Bettinger 2002,
Falcão and Borges 2002). Nevertheless, computational con-
straints have been an obstacle to effective use of exact
methods to address the ARM.
Gunn and Richards (2005) reported good solutions for

a relaxed integer programming ARM. Two main integer
programming formulations have further been proposed to
overcome the computational obstacle. The first approach
encompassed an exponential number of constraints (e.g.,
Martins et al. 1999, McDill et al. 2002, Murray and
Weintraub 2002, Crowe et al. 2003). The second approach
encompassed an exponential number of variables (e.g.,
Martins et al. 1999, 2005; McDill et al. 2002; Goycoolea
et al. 2005; Vielma et al. 2007). In this paper, we present
a new integer programming formulation for the ARM that
has a polynomial number of variables and constraints. We
start by introducing the notation used to describe the ARM
and its main current formulations. An example forest with
eight stands is used for illustration purposes. A new model
is proposed and tested with both real and hypothetical
forests ranging from 45 to 1,363 polygons. Computational
efficiency of using the branch and bound to solve the model
is reported. Results show that the proposed model’s solu-
tions were within or slightly above 1% of the optimal solu-
tion and were obtained in a short computation time.

2. Area Restriction Model Formulations
Let a forest be represented by a graph G= �V �E�, where
each node in V = �1� � � � �NS� corresponds to a stand, and
the nodes to each edge in E correspond to two adjacent
stands. In this paper, two stands are considered adjacent
when both share a boundary that is not a discrete set of
points. Thus, the graph G is planar—that is, it can be re-
presented by a figure where the edges do not intersect
(Figure 1). See Diestel (2000) for a formal definition and
properties of planar graphs. Other definitions of adjacency
may be used (Goycoolea et al. 2005, for example, also con-
sider what they call the weak adjacency, where two stands
are adjacent if they share a single point at least).
It will be assumed that the forest management planning

encompasses the maximization of timber net present value
subject to maximum clear-cut size constraints. It will be
further assumed that each stand may be harvested only once
within the planning horizon, i.e., the minimum rotation is
longer than the latter. We will say that a set of stands is con-
tiguous if the corresponding subgraph of G is connected.

Example
Figure 1. Graph representation of a forest.
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A cluster is a set of contiguous stands. A clear-cut is a clus-
ter such that all stands are harvested in the same period,
and no neighboring stand is harvested in the same period.
Let T = �1� � � � �NT � represent the temporal horizon, ai

be the area of stand i, and Amax be the maximum clear-cut
size. pti corresponds to the timber net present value from
stand i if it is harvested in period t. These values may
be modified to include the value of the end condition of
the stands. The ARM for this problem will include con-
straints stating that the area of each clear-cut cannot exceed
Amax (constraints A1). It will further include constraints to
ensure that each stand is harvested at most once in the tem-
poral horizon (constraints A2). The ARM model may be
further extended to enforce regular timber flows. One may
add constraints to preclude periodic fluctuations exceeding
a percent value of vt , the volume of timber harvested in
period t, that is, �vt+1− vt���vt (constraints A3).
Next, we present the two main integer programming

formulations discussed in the literature. The first includes
stand variables and explicit area restriction constraints. The
second includes cluster variables corresponding to feasi-
ble clear-cuts. Then, we introduce the new model, which
includes stand variables with an additional index to decide
on the clear-cut.

2.1. Formulation with Stand Variables and
Explicit Area Restriction Constraints

In this model (Martins et al. 1999, McDill et al. 2002,
Murray and Weintraub 2002, Crowe et al. 2003), stand
management options are represented by binary variables:

xti =


1� stand i is harvested in period t�

0� otherwise�

To represent constraints A1, we consider the set � of all
possible clusters that cannot be harvested as a whole and
which are minimal. Each of these clusters is a contiguous
group of stands with total size larger than Amax that does not
contain any similar cluster. If r is the number of stands in
such a cluster, then at most r −1 of them can be harvested
in the same period.
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Example (Continued). For simplicity, we consider that
the area of each stand in our example forest is equal to 1 ha
and that the maximum clear-cut area is 2 ha. Thus,

�= �1–2–3�1–2–4�1–2–5�1–3–4�1–3–5�1–4–5�1–5–6�
1–5–8�2–3–4�2–3–5�2–4–5�2–4–7�3–4–5�3–4–7�

3–5–6�3–5–8�4–5–6�4–5–7�4–5–8�4–6–7�5–6–7�

5–6–8�6–7–8��

The formulation is as follows (without constraints A3):

max
∑
t∈T

∑
i∈V
ptix

t
i (1)

subject to
∑
t∈T
xti � 1 ∀ i ∈ V � (2)

∑
i∈R
xti � �R� − 1 ∀R ∈� and t ∈ T � (3)

xti ∈ �0�1� ∀ i ∈ V and t ∈ T � (4)

Equation (1) expresses the management objective of
maximizing the timber harvested net present value. Equa-
tion (2) ensures that each stand is harvested at most once
(constraints A2). Equation (3) guarantees that in each
period at least one stand in each R ∈ � is not harvested
(constraints A1). Therefore, each clear-cut will be no larger
than the maximum clear-cut area. Equation (4) states the
binary requirement on the variables.
The main drawback of this formulation is the huge num-

ber of constraints. It may grow exponentially with the num-
ber of stands. Nevertheless, if Amax is not too large when
compared to the area of most stands (say, three or four
times larger), the number of constraints may not be too
large, especially if the graph is planar. This is the case for
most test instances considered in the literature that further
discusses the computational costs of solving more complex
problems (e.g., McDill et al. 2002, Murray and Weintraub
2002).

2.2. Formulation with Cluster Variables

In this model (Martins et al. 1999, 2005; McDill et al. 2002;
Goycoolea et al. 2005; Vielma et al. 2007), decision vari-
ables represent feasible clear-cuts. Let � denote the set of
all clusters with area not exceeding Amax. Then, the cluster
variables will be

ztF =


1� cluster F ∈ � is harvested in period t�
0� otherwise�

Example (Continued). In the case of the eight-stand
example forest, we will have

�= �1�2�3�4�5�6�7�8�1–2�1–3�1–5�2–3�2–4�3–4�3–5�
4–5�4–7�5–6�5–8�6–7�6–8��

The formulation is as follows (without constraints A3):

max
∑
t∈T

∑
F ∈�

ptF z
t
F (5)

subject to
∑
t

∑
F � i∈F

ztF � 1 ∀ i ∈ V � (6)

∑
F∩�i� j�
=�

ztF � 1 ∀ �i� j� ∈E and t ∈ T � (7)

ztF ∈ �0�1� ∀F ∈ � and t ∈ T � (8)

where ptF =∑
i∈F pti is the net present value for cluster F

in period t. Equation (5) expresses the management objec-
tive of maximizing the timber harvested net present value.
Equation (6) ensures that each stand is harvested at most
once (constraints A2). Equation (7) guarantees that in each
period if a cluster is selected to be harvested, then no adja-
cent clusters or clusters with overlapping stands may be
harvested. This prevents the formation of large clusters with
area larger than Amax (constraints A1). Equation (8) states
the binary requirement on the variables.
This model can be enhanced by substituting Equation (7)

with a set of stronger inequalities, the so-called clique con-
straints (Goycoolea et al. 2005). A clique is a complete
subgraph of G; it is maximal if it is not contained in any
other clique. Let Q be the set of all subsets of nodes that
generate maximal cliques.

Example (Continued). In the case of our example forest,

Q= ��1�2�3�� �1�3�5�� �2�3�4�� �3�4�5��
�4�7�� �5�6�8�� �6�7���

Also, Equation (7) can be replaced by
∑

F∩P 
=�
ztF � 1 ∀P ∈Q and t ∈ T � (7′)

These constraints are stronger than (7) in the sense that
the set of points z satisfying (7′) is contained in the set
of points defined by (7), but not vice versa, yielding, in
general, better linear programming relaxation bounds, and
more efficient solving by branch and bound.
The main drawback of this model is the large number

of variables. It may grow exponentially with the number
of stands. Nevertheless, if NC is the maximum number of
stands of any feasible cluster, the number of variables
is bounded by a polynomial of degree NC. This allows
this model to have a reasonable performance for some
test instances. Goycoolea et al. (2005) reported solutions
within 1% of the optimum for some test forests. The aver-
age number of stands per cluster in these instances was 3.02
to 5.05. Vielma et al. (2005) were able to improve these
results through sophisticated computational enhancements.
Next, we introduce a new integer programming for-

mulation for the ARM, with a number of variables and
constraints bounded by a polynomial in the number of
stands NS.
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2.3. The New Formulation (Area Restriction with
Stand-Clear-Cut Variables—ARMSC)

In this model, there is no definition of any kind of regions
a priori. Observe that the number of clear-cuts in the forest
in each time period is less than the number of stands (NS).
Thus, we can represent the class of clear-cuts in the forest
as � = �C1� � � � �CNS�, where some sets Ci can be empty.
The particular choice of the stands in C1� � � � �CNS is left to
the model instead of being given a priori as in the cluster
formulation. We will consider decision variables:

yitj =


1 if stand j belongs to set Ci in period t�

0 otherwise�

To express constraints A1, we introduce another set of
variables. For each period t ∈ T , Ci ∈� and e ∈E, let

wite =




1 if at least one of the stands in edge e

belongs to set Ci in period t�

0 otherwise�

Note that for e = �j1� j2�, j1 and j2 cannot belong to
distinct clear-cuts in the same period t, so at most one of
the variables wite has the value one for each e and t.
We consider the following model (without constraints

A3):

max
∑
t∈T

∑
j∈V
ptj

∑
i∈V
yitj (9)

subject to yitj −wite � 0
∀ e ∈E� j ∈ e� i ∈ V � and t ∈ T � (10)∑

i∈V
wite � 1 ∀ e ∈E and t ∈ T � (11)

∑
t∈T

∑
j∈V
ajy

it
j �Amax ∀ i ∈ V � (12)

∑
t∈T

∑
i∈V
yitj � 1 ∀ j ∈ V � (13)

yitj ∈ �0�1� ∀ j ∈ V � i ∈ V � and t ∈ T � (14)

wite � 0 ∀ e ∈E� i ∈ V � and t ∈ T � (15)

Equation (9) expresses the management objective of
maximizing the timber harvested net present value. Equa-
tion (10) defines the relationship between variables y
and w. Equation (11) ensures that in each period every two
adjacent stands are in one clear-cut at most. Equation (12)
guarantees that each clear-cut does not exceed the maxi-
mum size requirement. Equations (11) and (12) guarantee
that constraints A1 are satisfied. Equation (13) states that
each stand is harvested at most once in the temporal hori-
zon (constraints A2). Actually, constraints (12) could be
replaced by the weaker

∑
j∈V ajyitj � Amax ∀ i ∈ V , t ∈ T ,

which state that in each time period no clear-cut is larger

than Amax. In the presence of constraints (13), each clear-
cut can occur at most once in the time horizon, so we can
add up the left-hand sides of these constraints for t ∈ T
and obtain (12). The remaining equations state binary and
nonnegativity requirements on the variables. Observe that
the integrality of variables yitj , together with Equation (10),
implies the integrality of variables wite in at least one opti-
mal solution. Volume constraints (A3) will be included later
in this model.
It is important to note that the solutions to this model

may not immediately give the set of clear-cuts in each time
period. Because there are no constraints enforcing the
connectivity of the sets Ci, they may correspond to dis-
connected regions with total area not exceeding Amax.
However, each of these regions is composed by one or
more connected regions, that is, clear-cuts with area not
exceeding Amax. Because the objective function coefficients
depend only on the choice of the stands harvested in each
time period, any solution with a disconnected harvested set
Ci is equivalent to the solution where Ci is replaced by its
connected components. For example, consider example 1,
with Amax = 2. Suppose that we have a feasible solution to
the above model with C1 = �1�7�� C8 = �8�, and Ci = �
for i = 2� � � � �7 in some time period. C1 corresponds to
a disconnected region. Then, the solution with C1 = �1�,
C7 = �7�, C8 = �8�, and Ci =� for i= 2� � � � �6 is equiva-
lent, and each nonempty set Ci corresponds to a clear-cut.
To preclude a large number of equivalent solutions (cor-

responding to all possible orderings of the elements of the
set �), we may assume that set Ci contains stand i, and
does not contain any stand j with j < i. Now each set
C = �i1� � � � � ip� has one and only one representative in �,
which is Ci with i = min�i1� � � � � ip�. The following vari-
ables may then be eliminated: yitj if j < i; w

it
e if e= �j1� j2�,

j1 < i and j2 < i. Equation (10) can also be removed if
j < i. Moreover, we may introduce the following equations
to strengthen the formulation:

yitj − yiti � 0 ∀ i� j ∈ V � j � i� and t ∈ T � (16)

wite − yiti � 0 ∀ i ∈ V � e= �j1� j2� ∈E�
with i� j1 or i� j2 and t ∈ T � (17)

∑
j�i

ajy
it
j �Amax× yiti ∀ i ∈ V and t ∈ T � (12′)

Equations (16) state that if yitj = 1 (stand j is in set Ci),
then yiti = 1 (i.e., i, the smallest index stand in Ci, is also
selected to this set). Observe that yiti = 1 if and only if set
Ci is selected to be harvested in period t. Equations (17)
force variables wite to be zero if set Ci is not selected in
that period. Equations (12′) are justified because yitj = 0
whenever yiti = 0. To see that (12′) dominates (12), just take
the sum of both sides of (12′) for t ∈ T to obtain the same
left-hand side as (12), and a right-hand side not larger than
one. Let ARMSC be the formulation defined by (9)–(11),
(12′), and (13)–(17).
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This formulation could be easily extended to encompass
features such as green-up exclusion period length larger
than one period and average area restrictions (e.g., Murray
et al. 2004).
If the green-up exclusion time length corresponds to s

periods, then constraints (11) should be replaced by∑
i∈V

∑
t−s<t′�t wit

′
e � 1 ∀ e ∈E and s � t �NT .

Average area restrictions state that the total area har-
vested divided by the total number of clear-cuts should not
exceed some value, Aave, in each period. This can be writ-
ten in the formulation as

∑
i� j∈V ajyitj �Aave

∑
i∈V yiti for all

periods t.
Formulation ARMSC has O(NS × NE × NT ) variables

and constraints, where NS is the number of stands (nodes
of G), NE is the number of adjacencies (edges of G), and
NT is the number of periods in the planning horizon. If G
is planar, the number of edges is of the order of the num-
ber of nodes (Diestel 2000), so in this case the formulation
has O(NS2 × NT ) variables and constraints. Even though
the number of variables is polynomial, it can be very large
for large instances. However, most variables have the value
zero in any feasible solution, and this can be determined
a priori. Let a chain in G, between nodes i and j , be
a sequence of nodes �i1� � � � � ip� such that i1 = i, ip = j ,
�ik� ik+1� ∈ E and ik > i with 1 < k � p. Let the weight
of the chain �i1� � � � � ip� be

∑p
k=1 aik . If the shortest weight

chain between nodes i and j �i < j� has weight larger
than Amax, then the area of any clear-cut that includes i and
j would be larger than Amax. In this case, i and j will never
be in the same clear-cut and, thus, yitj = 0 in any feasible
solution, so variables yitj can be removed from the formula-
tion for all t ∈ T . We can also remove variables wite for any
edge e such that yitj = 0 ∀ j ∈ e, i.e., edges with no nodes
in the set Ci. The elimination of these variables implies the
reduction of the number of constraints (10) and (16).
Similarly to the formulation with cluster variables, a

tighter formulation for the proposed approach may be
obtained replacing edges by cliques. Here the edge vari-
ables wite , e ∈ E, are replaced by clique variables Wit

P ,
P ∈Q, where Q is the set of maximal cliques of G. Let

witP =




1 if at least one of the stands in clique P

belongs to Ci in period t�

0 otherwise.

Then, Equations (10) and (11) are replaced by the following
equations:

yitj −Wit
P � 0 ∀P ∈Q� j ∈ P� i� j� and t ∈ T � (10′)∑

i∈V
W it
P � 1 ∀P ∈Q and t ∈ T �� (11′)

Equations (10′) and (11′) ensure that, in each period, the
stands in each maximal clique belong to at most one clear-
cut. Let P be the set of nodes of a maximal clique with

more than two stands, and let e denote an edge in P . By
Equation (10′), we have Wit

P � maxj∈P yitj � maxj∈e yitj =
wite for at least an optimal solution y. Thus,

∑
i∈V wite �∑

i∈V W it
P � 1, so (10′)–(11′) are stronger than (10)–(11).

Variables Wit
P can be removed for any P such that variables

yitj are removed ∀ j ∈ P . The elimination of these variables
implies the reduction of the number of Equations (10′)
and (11′).
Finally, the timber flow constraints A3 can be written as

�1−��∑
j∈V
V t−1
j

(∑
i�j

yi� t−1j

)

�
∑
j∈V
V t
j

(∑
i�j

yitj

)
� �1+��∑

j∈V
V t−1
j

(∑
i�j

yi� t−1j

)

∀ t = 2� � � � �NT � (18)

These constraints impose, for each period, that the volume
of timber harvested is within �% of that harvested in the
previous period.
We will refer to the formulation ARMSC with volume

constraints as ARMSCV. When we have clique variables
and Equations (10′) and (11′), we refer to those formula-
tions as ARMSC-C and ARMSCV-C, respectively.

3. Results
The main objective of the computational tests is to assess
the ability of a commercial MIP solver to obtain solutions
of a certain quality (say, less than 1% deviation from the
optimum) in a reasonable amount of time (up to two hours)
with this model. Solutions within these limits have been
obtained for all the instances considered.
As a secondary objective, we want to determine the im-

pact on the quality of the solutions obtained due to some
variations on the model.
We report results for both real and hypothetical test

forests. Real test forests include Leiria National Forest
(LNF) in Portugal and the El Dorado forest in the United
States. We give a short description of LNF; El Dorado
is referred to in Goycoolea et al. (2005). LNF is a pub-
lic forest located in the Portuguese central region by the
Atlantic Ocean. It extends over approximately 11,000 ha,
of which 8,700 have been allocated to a timber production
division. The remaining area is managed for conservation
purposes (e.g., wind protection) and was not considered in
this study. Maritime pine (Pinus pinaster Ait.) even aged
high forest stands occupy most of the area allocated for
timber production. This forest division was classified into
574 stands according to ecological and productive criteria.
Stand area ranges from 1 to 33 ha. The current distribu-
tion of stand area by age class is very irregular, with over
50% of the area with an age between 10 and 34 years. The
site index ranges from 12 to 24 m (base age of 50 years).
A typical prescription at LNF encompasses natural regen-
eration and/or plantation, leaving about 2,000 seedlings
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per ha and a noncommercial thinning at 15 years of age
that leaves about 1,500 trees per ha. In the period from 15
to 50 years of age, pine stands are thinned every five years.
We have considered a cutting age ranging from 50 to 100
years. The forest supplies two timber products. Logs with
larger diameters resulting from clear-cuts are a very valu-
able asset in LNF. However, there is also demand for mate-
rial with smaller diameters, resulting mostly from thinnings
and from younger rotations. For each stand, timber yields
were predicted following the models in Falcão (1997).
In the case of the hypothetical test forests, the graph of

the forest map has one of the configurations in Figure 2. For
these instances, the area of each stand is equal to 1 ha. The
stand age at the beginning of a planning horizon extending
to seven 10-year periods was generated randomly between
0 and 100. For each stand, timber yields were predicted
following the models in Falcão (1997). Thinnings were not
considered in the hypothetical forests. The minimum cut-
ting age is 40 years.
We also report results for two other instances available

at the website www.unbf.ca/fmos/, Bloedel and WLC (El
Dorado is in this site as well). For Bloedel, the area of each
stand is equal to 1 ha. For WLC, the minimum cutting age
is also 40 years.
The parameter � used in the timber flow constraints A3

is 0.15. In the case of Leiria, Bloedel, WLC, and hypothet-
ical test forests, the coefficients of the objective function
include the values for the ending conditions of stands.
An important parameter with impact on the size of the

formulation is the ratio Amax/ā, where ā is the average area
of the stands. Cluster and cell models grow exponentially
with this value. The growth is polynomial for the model
presented in this paper. We have considered values of that
ratio ranging in the interval '3�6(.
The forests had contrasting sizes (Table 1) to better test

the proposed approach. The number of stands ranged from
45 to 1,363 and the number of edges from 98 to 3,609.
The number of variables and constraints in ARMSC

and its variants grows polynomially with the number of
stands, but it can be extremely large for large instances (see
Table 2). Thus, we applied the variable reduction based on
stand numbering and shortest chains, as described earlier.

Figure 2. Graph configuration of the type-F instances
and the graph of instance G10x2.

G10x2Instances F

Note. The graph of this instance is used to exemplify the graph configu-
ration of the type-G instances.

Table 1. Size of the instances (ā is the average of the
stand’s area).

No. No. No.
Instance nodes edges cliques Amax (ha) ā (ha) Amax/ā

Leiria 574 1�152 740 52 14�96 3.46
El Dorado 1�363 3�609 2�041 40 12�78 3.13
F10x10 100 180 180 3; 4 1 3; 4
F15x15 225 420 420 3; 4 1 3; 4
F20x20 400 760 760 3; 4 1 3; 4
F25x25 625 1�200 1�200 3; 4; 5; 6 1 3; 4; 5; 6
G15x7 105 247 145 3; 4 1 3; 4
G40x10 400 988 596 3; 4 1 3; 4
G40x14 560 1�396 844 3; 4 1 3; 4
G60x10 600 1�492 904 3; 4; 5; 6 1 3; 4; 5; 6
Bloedel 45 112 37 4 1 4
WLC 73 98 63 40 10�12 3.95

The proposed procedures for the variable/constraint re-
duction had a substantial impact on problem sizes (Table 2).
In most cases, the reduction ((no. before − no. after)/no.
before× 100) was larger than 90% for the number of both
variables and constraints.
We present the results of tests for the following mod-

els: ARMSC in Table 3 (no volume flow constraints, no
clique variables); ARMSC-C in Table 4 (similar to the
previous one but with clique variables W instead of edge
variables w); ARMSCV-C in Table 5 (with volume flow
constraints and clique variables); and ARMSCV-C with
constraints (12) replacing constraints (12′) in Table 6.
The test problems were solved with CPLEX 9.0 (ILOG

2003) as both linear and integer programming solver.
The branch-and-bound algorithm was allowed to run for
two hours at most. CPLEX default parameters were used
throughout. Computations were done on a desktop com-
puter with an Intel Pentium M-1.6 GHz processor and with
512 MB RAM.
The quality of the integer solutions for each problem

instance was measured using the deviation (in percentage)
of its value (vis) from the best upper bound found (bup)
by the branch-and-bound algorithm: gap = �bup − vis�/
vis×100. The values of bup and gap are given by CPLEX.
To further assess the strength of a formulation, we com-
pared the objective function values of the integer solution
(vis) and of its linear relaxation (vlrs): gapL= �vlrs− vis�/
vis×100. Observe that these gaps are upper bounds on the
true gaps, �opt−vis�/opt×100 and �vlrs−opt�/opt×100,
respectively, where opt is the optimal value of the instance.
The algorithm was able to solve the ARMSC for all

problem instances except for El Dorado, G40x14_7_4, and
G60x10_7_4, where a solution within 1% of the opti-
mum was obtained at an early node (Table 3). The for-
mulation ARMSC-C was effective in two of these three
cases, which is not surprising because the corresponding
linear relaxation is tighter than the linear relaxation of the
ARMSC (Tables 3 and 4). Naturally, the linear relaxations
of the ARMSC and the ARMSC-C produced the same
results for instances F because the maximal cliques used in
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Table 2. Size of the ARMSCV-C before and after the variable/constraint reduction.

No. variables No. constraints

Instance T Amax (ha) Before After Reduction (%) Before After Reduction (%)

Leiria_6_52 6 52 4�525�416 87�210 98�1 10�691�756 192�386 98�2
El Dorado_12_40 12 40 55�675�824 457�332 99�2 154�508�297 1�056�149 99�3
F10x10_7_3 7 3 196�000 15�701 92�0 450�072 32�641 92�7
F10x10_7_4 7 4 196�000 25�361 87�1 450�072 53�473 88�1
F15x15_7_3 7 3 1�015�875 38�171 96�2 2�343�627 79�316 96�6
F15x15_7_4 7 4 1�015�875 63�511 93�7 2�343�627 133�818 94�3
F20x20_7_3 7 3 3�248�000 70�441 97�8 7�512�532 146�341 98�1
F20x20_7_4 7 4 3�248�000 118�811 96�3 7�512�532 250�263 96�7
F25x25_7_3 7 3 7�984�375 112�511 98�6 18�497�787 233�716 98�7
F25x25_7_4 7 4 7�984�375 191�261 97�6 18�497�787 402�808 97�8
F25x25_7_5 7 5 7�984�375 288�057 96�4 18�497�787 614�894 96�7
F25x25_7_6 7 6 7�984�375 400�995 95�0 18�497�787 865�522 95�3
G15x7_7_3 7 3 183�750 18�298 90�0 458�302 40�458 91�2
G15x7_7_4 7 4 183�750 30�002 83�7 458�302 68�297 85�1
G40x10_7_3 7 3 2�788�800 80�577 97�1 7�007�384 177�428 97�5
G40x10_7_4 7 4 2�788�800 140�714 95�0 7�007�384 319�332 95�4
G40x14_7_3 7 3 5�503�680 115�129 97�9 13�855�840 253�608 98�2
G40x14_7_4 7 4 5�503�680 202�370 96�3 13�855�840 459�492 96�7
G60x10_7_3 7 3 6�316�800 123�445 98�0 15�887�140 271�596 98�3
G60x10_7_4 7 4 6�316�800 217�490 96�6 15�887�140 493�244 96�9
G60x10_7_5 7 5 6�316�800 336�084 94�7 15�887�140 774�714 95�1
G60x10_7_6 7 6 6�316�800 473�438 92�5 15�887�140 1�109�503 93�0
Bloedel_3_4 3 4 11�070 2�712 75�5 28�645 6�562 77�1
WLC_7_40 7 40 69�496 4�606 93�4 145�650 9�304 93�6

ARMSC-C are the edges used in ARMSC. In some of the
other instances, the linear relaxations of the ARMSC-C are
tighter than the linear relaxations of the ARMSC.
In the case of the ARMSCV-C, the algorithm was able to

find a solution within 1% of the optimum for all instances
tested before (Table 5). The optimum linear relaxation solu-
tion is very close to the best integer solution obtained for
all instances except for Bloedel. Branch and bound hardly

Table 3. Computational results to the ARMSC and its linear relaxation.

Final Sol. time 1st sol. with gap � Best sol.
Instance gap (%) (sec.) 1%/time (sec.) time (sec.) GapL (%)

Leiria_6_52 0 149 0�86/8 138 0�37
El Dorado_12_40 0�02 7�200 0�23/405 4�711 0�06
F10x10_7_3 0 <1 0�54/<1 <1 0�49
F10x10_7_4 0 <1 0�64/<1 <1 0�08
F15x15_7_3 0 1 0�07/1 1 0�04
F15x15_7_4 0 16 0�91/2 16 0�23
F20x20_7_3 0 2 0/2 2 0�64
F20x20_7_4 0 26 0�07/14 24 0�3
F25x25_7_3 0 28 0�98/4 20 0�55
F25x25_7_4 0 191 0�43/46 132 0�4
G15x7_7_3 0 2 0�27/1 2 0�53
G15x7_7_4 0 7 0�9/4 7 0�77
G40x10_7_3 0 152 0�29/31 104 0�46
G40x10_7_4 0 5�829 0�64/132 2�825 0�55
G40x14_7_3 0 198 0�43/27 131 0�46
G40x14_7_4 0�05 7�200 0�43/130 2�389 0�6
G60x10_7_3 0 131 0�24/40 107 0�56
G60x10_7_4 0�29 7�200 0�66/171 1�559 0�85
Bloedel_3_4 0 18 0�7/17 18 5�47
WLC_7_40 0 <1 40/<14 <1 0

improved the upper bounds provided by the linear relax-
ations. For some problem instances where the value of Amax
was increased, the algorithm was able to find a solution
within or slightly above 1% of the optimum.
Replacing constraints (12′) by constraints (12) in the

ARMSCV-C formulation slightly decreased, on average,
the quality of the best integer solution (Table 6). The algo-
rithm was able to find a solution within 1% of the optimum
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Table 4. Computational results to the ARMSC-C and its linear relaxation.

Final Sol. time 1st sol. with gap � Best sol.
Instance gap (%) (sec.) 1%/time (sec.) time (sec.) GapL (%)

Leiria_6_52 0 174 0�73/21 165 0�34
El Dorado_12_40 0 4�989 0�15/328 4�980 0�03
F10x10_7_3 0 <1 0�54/<1 <1 0�49
F10x10_7_4 0 1 0�64/1 1 0�08
F15x15_7_3 0 1 0�07/1 1 0�04
F15x15_7_4 0 9 0�81/3 9 0�23
F20x20_7_3 0 2 0�82/2 1 0�64
F20x20_7_4 0 17 0�92/4 17 0�3
F25x25_7_3 0 28 0�16/18 26 0�55
F25x25_7_4 0 261 0�43/52 223 0�4
G15x7_7_3 0 <1 0/<1 <1 0�49
G15x7_7_4 0 7 0�96/5 7 0�77
G40x10_7_3 0 58 0�12/27 48 0�33
G40x10_7_4 0�03 7�200 0�6/111 2�418 0�55
G40x14_7_3 0 208 0�3/28 141 0�38
G40x14_7_4 0�03 7�200 0�53/139 4�728 0�59
G60x10_7_3 0 48 0�82/8 46 0�53
G60x10_7_4 0�27 7�200 0�71/155 5�167 0�83
Bloedel_3_4 0 14 1/14 8 3�79
WLC_7_40 0 <1 0/<1 <1 0

for all instances except for F 25x25. Probably, it does not
matter whether one uses constraints (12′) or (12).
The time taken for the preprocessing is very short, a few

seconds only in the larger instances.

4. Conclusions
The ARM may be used to effectively address landscape
design objectives. It includes constraints on opening sizes

Table 5. Computational results to the ARMSCV-C and its linear relaxation.

Final Sol. time 1st sol. with gap � Best sol.
Instance gap (%) (1) (sec.) 1%/time (sec.) time (sec.) GapL (%)

Leiria_6_52 0 1�004 0�08/47 846 0�15
El Dorado_12_40 0�15 7�200 0�15/2�371 2�371 0�16
F10x10_7_3 0�2 7�200 0�78/1�798 5�646 0�24
F10x10_7_4 0�1 7�200 0�11/554 1�218 0�22
F15x15_7_3 0�78 7�200 0�97/325 4�331 0�89
F15x15_7_4 0�78 7�200 0�79/3�053 7�086 0�79
F20x20_7_3 0�29 7�200 0�86/817 6�922 0�48
F20x20_7_4 0�24 7�200 0�97/24 6�804 0�24
F25x25_7_3 0�44 7�200 0�88/546 4�414 0�65
F25x25_7_4 0�36 7�200 0�57/1�072 3�935 0�36
F25x25_7_5 1�22 7�200 — 4�105 1�22
F25x25_7_6 1�1 7�200 — 6�219 1�1
G15x7_7_3 0�52 7�200 0�71/3�750 6�903 0�71
G15x7_7_4 0�7 7�200 0�83/3�250 5�889 0�73
G40x10_7_3 0�85 7�200 0�85/2�515 2�515 0�88
G40x10_7_4 0�88 7�200 0�88/4�401 4�401 0�88
G40x14_7_3 0�24 7�200 0�74/2�875 6�659 0�25
G40x14_7_4 0�6 7�200 0�64/1�617 3�321 0�6
G60x10_7_3 0�26 7�200 0�7/30 6�917 0�27
G60x10_7_4 1 7�200 1/398 398 1
G60x10_7_5 0�5 7�200 0�5/7�136 7�136 0�5
G60x10_7_6 1�13 7�200 — 333 1�13
Bloedel_3_4 0 178 1/132 161 3�32
WLC_7_40 0�04 7�200 0�0/<1 2�186 0�1

and yet it lets the model itself suggest stand aggregation
(design) when their combined area does not violate those
constraints. It thus provides a framework for expanding
the concept of adjacency to address forest ecosystem man-
agement spatial objectives. However, computational con-
straints have been an obstacle to effective use of exact
methods rather than heuristics to solve complex ARM prob-
lems. Current models to address the forest management
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Table 6. Computational results to the ARMSCV-C with constraints (12) replacing constraints (12′)
and its linear relaxation.

Final gap (%) Sol. time 1st sol. with gap � Best sol.
Instance (2) (sec.) 1%/time (sec.) time (sec.) GapL (%) (2)− (1)
Leiria_6_52 0 4�035 0�13/37 1�079 0�20 0
El Dorado_12_40 0�2 7�200 0�2/1�676 1�676 0�22 0�05
F10x10_7_3 0�32 7�200 0�7/4�806 5�948 0�39 0�12
F10x10_7_4 1�18 7�200 — 6�093 1�31 1�17
F15x15_7_3 0�95 7�200 0�97/1�895 1�898 1�06 0�17
F15x15_7_4 0�76 7�200 0�89/1�328 6�851 0�77 −0�02
F20x20_7_3 0�57 7�200 0�92/601 4�819 0�86 0�28
F20x20_7_4 0�67 7�200 0�93/19 5�127 0�67 0�43
F25x25_7_3 0�26 7�200 0�94/410 6�691 0�56 −0�18
F25x25_7_4 1�02 7�200 — 6�668 1�02 0�66
F25x25_7_5 1�42 7�200 — 98 1�42 0�2
F25x25_7_6 2�12 7�200 — 147 2�12 1�02
G15x7_7_3 0�5 7�200 0�85/91 824 0�77 −0�02
G15x7_7_4 0�63 7�200 0�63/3�364 3�364 0�66 −0�07
G40x10_7_3 0�35 7�200 0�91/794 5�910 0�39 −0�5
G40x10_7_4 0�92 7�200 0�92/4�960 4�960 0�93 0�04
G40x14_7_3 0�18 7�200 0�89/866 6�613 0�19 −0�06
G40x14_7_4 0�83 7�200 0�83/3�395 3�395 0�83 0�23
G60x10_7_3 0�22 7�200 0�33/983 6�661 0�22 −0�04
G60x10_7_4 0�83 7�200 0�83/95 95 0�84 −0�17
G60x10_7_5 0�65 7�200 1/105 6�336 0�65 0�15
G60x10_7_6 0�89 7�200 0�89/430 430 0�89 −0�24
Bloedel_3_4 0 160 0�52/113 124 7�07 0
WLC_7_40 0�04 7�200 0�74/7 6�919 0�1 0

Average 0�13

Note. The last column is the difference between the final gaps of the ARMSCV-C with constraints (12) and the
ARMSCV-C with constraints (12′).

scheduling adjacency problem encompass either an expo-
nential number of variables or an exponential number of
constraints.
This paper presents an approach for model building to

increase the efficiency of the solution to harvest schedul-
ing problems with maximum clear-cut size constraints. The
proposed new formulation to the ARM—area restriction
with stand-clear-cut variables (ARMSC)—has a polyno-
mial number of variables and constraints and may thus
contribute to overcome current computational obstacles to
effective use of exact methods to support forest ecosys-
tem management. The model was tested with both real
and hypothetical forests ranging from 45 to 1,363 stand-
polygons. The results show that the proposed model found
solutions within 1% of the optimal solution in less than two
hours in all cases where the average number of stands per
clear-cut ranges in the interval '3�4(. These results did not
change significantly when this value was increased in some
of the problem instances.
Addressing successfully the computational complexity

of the ARM may contribute for a better representation of
current forest ecosystem management problems. Further
research will focus on modeling other spatial conditions
and outcomes of interest.
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