12 research outputs found

    A Robust Solver for a Second Order Mixed Finite Element Method for the Cahn-Hilliard Equation

    Get PDF
    We develop a robust solver for a second order mixed finite element splitting scheme for the Cahn-Hilliard equation. This work is an extension of our previous work in which we developed a robust solver for a first order mixed finite element splitting scheme for the Cahn-Hilliard equaion. The key ingredient of the solver is a preconditioned minimal residual algorithm (with a multigrid preconditioner) whose performance is independent of the spacial mesh size and the time step size for a given interfacial width parameter. The dependence on the interfacial width parameter is also mild.Comment: 17 pages, 3 figures, 4 tables. arXiv admin note: substantial text overlap with arXiv:1709.0400

    High order finite element calculations for the deterministic Cahn-Hilliard equation

    Full text link
    In this work, we propose a numerical method based on high degree continuous nodal elements for the Cahn-Hilliard evolution. The use of the p-version of the finite element method proves to be very efficient and favorably compares with other existing strategies (C^1 elements, adaptive mesh refinement, multigrid resolution, etc). Beyond the classical benchmarks, a numerical study has been carried out to investigate the influence of a polynomial approximation of the logarithmic free energy and the bifurcations near the first eigenvalue of the Laplace operator

    Fast solution of Cahn-Hilliard variational inequalities using implicit time discretization and finite elements

    Get PDF
    We consider the e�cient solution of the Cahn-Hilliard variational inequality using an implicit time discretization, which is formulated as an optimal control problem with pointwise constraints on the control. By applying a semi-smooth Newton method combined with a Moreau-Yosida regularization technique for handling the control constraints we show superlinear convergence in function space. At the heart of this method lies the solution of large and sparse linear systems for which we propose the use of preconditioned Krylov subspace solvers using an e�ective Schur complement approximation. Numerical results illustrate the competitiveness of this approach

    A Second Order BDF Numerical Scheme with Variable Steps for the Cahn-Hilliard Equation

    Get PDF
    We present and analyze a second order in time variable step BDF2 numerical scheme for the Cahn-Hilliard equation. the construction relies on a second order backward difference, convex-splitting technique and viscous regularizing at the discrete level. We show that the scheme is unconditionally stable and uniquely solvable. in addition, under mild restriction on the ratio of adjacent time-steps, an optimal second order in time convergence rate is established. the proof involves a novel generalized discrete Gronwall-type inequality. as far as we know, this is the first rigorous proof of second order convergence for a variable step BDF2 scheme, even in the linear case, without severe restriction on the ratio of adjacent time-steps. Results of our numerical experiments corroborate our theoretical analysis

    Adaptive Discontinuous Galerkin Finite Element Methods for a Diffuse Interface Model of Biological Growth

    Get PDF
    This PhD dissertation concentrates on the development and application of adaptive Discontinuous Galerkin Finite Element (DG-FE) methods for the numerical solution of a Cahn-Hilliard-type diffuse interface model for biological growth. Models of this type have become popular for studying cancerous tumor progression in vivo. The work in this dissertation advances the state-of-the-art in the following ways: To our knowledge the work here contains the first primitive-variable, completely discontinuous numerical implementations of a 2D scheme for the Cahn-Hilliard equation as well as a diffuse interface model of cancer growth. We provide numerical evidence that the schemes above are convergent, with the optimal order. The efficiency of the numerical algorithms depends largely on the implementation of fast solvers for the systems of equations resulting from the DG-FE discretizations. We have developed such capabilities based on multigrid and sparse direct solver techniques. We demonstrate proof-of-concept regarding the implementation of a practical spatially adaptive meshing algorithm for the numerical schemes just mentioned and th1 effective use of a very simple, but powerful, marking strategy based on an inverse estimate. We demonstrate proof-of-concept for a novel simplified diffuse interface model of tumor growth. This model is essentially the Cahn-Hilliard equation with an added source term that is specialized for the context of cancerous tumor progression. We devise and analyze a mixed DG-FE scheme of convex splitting (CS) type for the Cahn-Hilliard equation in any space dimension. Specifically, we prove that our scheme is unconditionally energy stable and unconditionally uniquely solvable. Likewise, we devise and analyze a CS, mixed DG-FE scheme for our diffuse interface cancer model. This scheme is energy stable for any (positive) time step size and for any (positive) space step size that is sufficiently small
    corecore