344 research outputs found

    A robust solver for a second order mixed finite element method for the Cahn–Hilliard equation

    Get PDF
    We develop a robust solver for a second order mixed finite element splitting scheme for the Cahn–Hilliard equation. This work is an extension of our previous work in which we developed a robust solver for a first order mixed finite element splitting scheme for the Cahn–Hilliard equation. The key ingredient of the solver is a preconditioned minimal residual algorithm (with a multigrid preconditioner) whose performance is independent of the spatial mesh size and the time step size for a given interfacial width parameter. The dependence on the interfacial width parameter is also mild

    A Robust Solver for a Second Order Mixed Finite Element Method for the Cahn-Hilliard Equation

    Get PDF
    We develop a robust solver for a second order mixed finite element splitting scheme for the Cahn-Hilliard equation. This work is an extension of our previous work in which we developed a robust solver for a first order mixed finite element splitting scheme for the Cahn-Hilliard equaion. The key ingredient of the solver is a preconditioned minimal residual algorithm (with a multigrid preconditioner) whose performance is independent of the spacial mesh size and the time step size for a given interfacial width parameter. The dependence on the interfacial width parameter is also mild.Comment: 17 pages, 3 figures, 4 tables. arXiv admin note: substantial text overlap with arXiv:1709.0400

    Analysis of a Darcy-Cahn-Hilliard Diffuse Interface Model for the Hele-Shaw Flow and its Fully Discrete Finite Element Approximation

    Full text link
    In this paper we present PDE and finite element analyses for a system of partial differential equations (PDEs) consisting of the Darcy equation and the Cahn-Hilliard equation, which arises as a diffuse interface model for the two phase Hele-Shaw flow. We propose a fully discrete implicit finite element method for approximating the PDE system, which consists of the implicit Euler method combined with a convex splitting energy strategy for the temporal discretization, the standard finite element discretization for the pressure and a split (or mixed) finite element discretization for the fourth order Cahn-Hilliard equation. It is shown that the proposed numerical method satisfies a mass conservation law in addition to a discrete energy law that mimics the basic energy law for the Darcy-Cahn-Hilliard phase field model and holds uniformly in the phase field parameter ϵ\epsilon. With help of the discrete energy law, we first prove that the fully discrete finite method is unconditionally energy stable and uniquely solvable at each time step. We then show that, using the compactness method, the finite element solution has an accumulation point that is a weak solution of the PDE system. As a result, the convergence result also provides a constructive proof of the existence of global-in-time weak solutions to the Darcy-Cahn-Hilliard phase field model in both two and three dimensions. Finally, we propose a nonlinear multigrid iterative algorithm to solve the finite element equations at each time step. Numerical experiments based on the overall solution method of combining the proposed finite element discretization and the nonlinear multigrid solver are presented to validate the theoretical results and to show the effectiveness of the proposed fully discrete finite element method for approximating the Darcy-Cahn-Hilliard phase field model.Comment: 30 pages, 4 tables, 2 figure

    Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential

    Get PDF
    We present and analyze finite difference numerical schemes for the Allen Cahn/Cahn-Hilliard equation with a logarithmic Flory Huggins energy potential. Both the first order and second order accurate temporal algorithms are considered. In the first order scheme, we treat the nonlinear logarithmic terms and the surface diffusion term implicitly, and update the linear expansive term and the mobility explicitly. We provide a theoretical justification that, this numerical algorithm has a unique solution such that the positivity is always preserved for the logarithmic arguments. In particular, our analysis reveals a subtle fact: the singular nature of the logarithmic term around the values of −1-1 and 1 prevents the numerical solution reaching these singular values, so that the numerical scheme is always well-defined as long as the numerical solution stays similarly bounded at the previous time step. Furthermore, an unconditional energy stability of the numerical scheme is derived, without any restriction for the time step size. The unique solvability and the positivity-preserving property for the second order scheme are proved using similar ideas, in which the singular nature of the logarithmic term plays an essential role. For both the first and second order accurate schemes, we are able to derive an optimal rate convergence analysis, which gives the full order error estimate. The case with a non-constant mobility is analyzed as well. We also describe a practical and efficient multigrid solver for the proposed numerical schemes, and present some numerical results, which demonstrate the robustness of the numerical schemes

    Fast solution of Cahn-Hilliard variational inequalities using implicit time discretization and finite elements

    Get PDF
    We consider the e�cient solution of the Cahn-Hilliard variational inequality using an implicit time discretization, which is formulated as an optimal control problem with pointwise constraints on the control. By applying a semi-smooth Newton method combined with a Moreau-Yosida regularization technique for handling the control constraints we show superlinear convergence in function space. At the heart of this method lies the solution of large and sparse linear systems for which we propose the use of preconditioned Krylov subspace solvers using an e�ective Schur complement approximation. Numerical results illustrate the competitiveness of this approach
    • …
    corecore