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A SECOND ORDER BDF NUMERICAL SCHEME WITH VARIABLE
STEPS FOR THE CAHN-HILLIARD EQUATION*

WENBIN CHENT, XIAOMING WANG!, YUE YAN$, AND ZHUYING ZHANGY

Abstract. We present and analyze a second order in time variable step BDF2 numerical scheme
for the Cahn—Hilliard equation. The construction relies on a second order backward difference,
convex-splitting technique and viscous regularizing at the discrete level. We show that the scheme
is unconditionally stable and uniquely solvable. In addition, under mild restriction on the ratio of
adjacent time-steps, an optimal second order in time convergence rate is established. The proof
involves a novel generalized discrete Gronwall-type inequality. As far as we know, this is the first
rigorous proof of second order convergence for a variable step BDF2 scheme, even in the linear case,
without severe restriction on the ratio of adjacent time-steps. Results of our numerical experiments
corroborate our theoretical analysis.
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1. Introduction. Efficiency and accuracy are of central importance in numer-
ical analysis and scientific computing. For a physical/biological/engineering process
modeled by a time-dependent PDE, a well-known heuristic method to improve effi-
ciency without sacrificing accuracy is the so-called time adaptive method, where one
employs small time-steps when the system is evolving quickly while large time-steps
are utilized when the time-evolution is slow [42, 49, 68]. Another approach is to utilize
high order in time methods so that relatively large time-steps can be employed for
the same error tolerance.

The rigorous numerical analysis of such adaptive methods is relatively easy for
one-step methods; see, for instance, [15]. However, the analysis of multistep methods
(two or more steps that involve three or more levels) is completely different. For
example, in the classical second order backward difference scheme (BDF2), known for
its strong stability, the analysis of its variable step version applied to linear parabolic
equations is already highly nontrivial and incomplete so far as documented in Chapter
10 of Thomée’s classical book [55]. Indeed, the best known result on the variable step
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496 W. CHEN, X. WANG, Y. YAN, AND Z. ZHANG

BDF2 applied to linear parabolic equations only establishes a second order in time
convergence rate with a prefactor that blows up at vanishing step sizes for certain
choices of time-steps [7, 55]. See Remark 4.1 for more details. See also [11, 26, 27, 37|
for relevant work.

For systems whose evolution occurs over a very long time such as the coarsening
process associated with the Cahn—Hilliard equation, the long time accuracy or stability
is obviously of great importance as well. If the system has an energy law such as the
Cahn—Hilliard equation, it is natural to design numerical schemes that inherit the
energy law, perhaps in some modified form [28, 50]. This is an example of the so-
called memetic methods which usually leads to better results in terms of accuracy and
stability. Other examples include a sympletic integrator for Hamiltonian systems [29],
a TVD method for hyperbolic conservation laws [17, 53], DRP (dispersion relation
preserving) methods for dispersive equations [54], asymptotic preserving methods for
kinetic problems [36], and energy/Hamiltonian preserving methods for conservative
systems among others. Indeed, it is known that numerical methods that preserve the
dissipativity of the underlying dissipative system in some appropriate sense would
be able to capture the long-time statistical properties of the dissipative model under
approximation [59, 60].

In this paper, we focus on a prototype nonlinear parabolic equation, the Cahn—
Hilliard equation, which is a gradient flow (in the H~! norm) whose temporal evolu-
tion involves both slow and fast stages, and the coarsening process occurs over a very
long time. Therefore, it is highly desirable to develop a variable step BDF2 scheme
that is unconditionally stable (and uniquely solvable). We achieve this goal by com-
bining three ideas: variable-step BDF2 for the linear term, convex splitting for the
nonlinear term, and a viscous regularization at the discrete level for added stability.
The optimal second order in time convergence is established by appropriate combi-
nation of energy estimates and a novel generalized discrete Gronwall-type inequality.
As far as we know, this is the first time such a second order in time error estimate
is proved for variable step BDF2 without severe constraints on the ratio of adjacent
time-steps, even for the linear case.

Recall that the classical Ginzburg-Landau energy functional, defined for any u €
H(Q), is given by (see [10] for a detailed derivation)

Ly 1, ¢ 2
(1.1) E(u) = ; ¥ U —|—E|Vu| dx,

where € > 0 is a parameter that is proportional to the interface width. The Cahn-—
Hilliard equation is the H~! (conserved) gradient flow of the energy functional (1.1):

uy=Aw in Qx(0,7),
wi=0yE =u® —u—e*Au in Qx(0,T),
Opu=0,w=0 on 90 x(0,T),

u(-,0) =ug in £,

(1.2)

where T > 0 is the final time, which may be infinite; 0,,u = n- Vu and 0,,w = n- Vw,
where n is the unit outward normal vector on the boundary. Due to the gradient
structure of (1.2), one can easily derive the following energy dissipation law:

(1.3) %E(u(t)) :f/Q\Vw|2dx.
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In integral form, the energy decay may be expressed as
t1
(1.4) E(u(t1)) + / / |Vw(t)|?dxdt = E(u(ty)).
to Q

Furthermore, the equation is mass conservative, i.e., % fQudx = 0, which follows
from the conservative structure of the equation together with the homogeneous Neu-
mann boundary conditions for w. This property can be recast as (u(-,t),1) = (ug, 1)
for all t > 0, where (-, -) represents the L? inner product.

The Cahn—Hilliard equation, which models spinodal decomposition in a binary
alloy, is one of the most important models in mathematical physics. The coarsening
process associated with the Cahn—Hilliard equation takes a long time (on the order of
some positive power of 1/¢). It could also couple with other physical /biological pro-
cesses leading to complex systems such as the Cahn—Hilliard—Navier—Stokes (CHNS)
equation (for two-phase flow), the Cahn-Hilliard-Hele-Shaw (CHHS) equation (bi-
nary fluid in a Hele-Shaw cell), etc.

Due to the importance of the Cahn—Hilliard model, there is long list of works on
the numerical analysis of Cahn—Hilliard. See, for instance, [2, 4, 22, 23, 24, 25, 30, 31,
35, 42, 45, 46, 47, 48, 62] and the references therein for works on first order in time
schemes, and [3, 8, 21, 32, 33, 35, 40, 52, 65] and the references therein for related
works on second order in time schemes. Second order in time schemes are desirable
since one could increase efficiency without sacrificing accuracy by taking larger time-
steps with the same error tolerance. However, the analysis of second order schemes is
usually more difficult than those for the first order schemes.

The convex splitting scheme, popularized by David Eyre’s work [28], is a well-
known approach to constructing numerical schemes that inherit the energy law. This
framework treats the convex part of the chemical potential implicitly and the concave
part explicitly. This results in schemes that are uniquely solvable and unconditionally
energy stable, unconditionally with respect to the time and space step sizes. The
convex splitting methodology has been applied to a wide class of gradient flows in
recent years, and both first and second order accurate in time algorithms have been
developed. For the phase field crystal (PFC) equation and the modified phase field
crystal (MPFC) equation see the related works [5, 6, 43, 57, 58, 63, 66]; for epitaxial
thin film growth models see [12, 14, 51, 56]; for nonlocal Cahn—Hilliard-type models
see [38, 39], and for the CHHS and related models see [13, 18, 19, 34, 61]. It is observed
that the splitting could lead to significant numerical errors, especially in the first order
case [16]. Therefore, second order energy stable methods are more desirable to reduce
error. The interested reader is referred to [3, 8, 20, 21, 35, 40, 41, 44, 52, 64, 65, 67
for some of the recent progress in terms of second order schemes for the Cahn—Hilliard
equation. In particular, [67] contains a rigorous second order convergence analysis of
a convex splitting scheme together with a viscous regularizing term.

The scheme that we propose in this paper is a variable step version of the one

proposed in [67]. For n > 1, given uZ_l,uZ € Sy, find uﬁ“,wﬁ“ € Sy, such that

(1.5)

2
1427, n+1 n Yn+1 n—1 n+1
i (B - e u + e o) = (Tup, V) e s,
(Wi ¢n) == (E2Vup ™, Ven) + (1 +vne1) upy — g, ', én)

= () 60) = A (9 (057 = uk) Vin) ¥ on € S

where S}, is some appropriate finite element space, 7,11 = tn,+1 — ¢y is the time step

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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size, and Y41 = TTL% is the ratio of the adjacent time-steps. The last term is a second

g

order viscous regularization term at the discrete level.

Our main result is the following discrete energy law and second order error esti-
mates under mild constraint on =, : there exists an Ay such that for any A > Ag, the
numerical scheme (2.6) has the energy-decay property,

& (uzﬂ,uﬁ,fnﬂ) + (A— A))Tht1|V (uz+1 — uZ) H2 <€ (uz,uzfl,rn) ,

where & (UZ+1, uZ,Tn_H) is the discrete energy, which is defined in (3.3). Moreover,

for any given final time T = ET]Y:TU Tn+1 > 0, the following second order convergence
under some additional moderate constraints on ~, and 7 holds:

len 1 = ut —up ) < OR,

where C' is a generic positive constant and

(1.6) R=R"+ ]«b2(q+1)”un+1”%,qu17
and
n 3 tret1 ) tht1 )
R — ZTkJrl (Tk+1 + 7k) / |Opu]|*ds +/ |0ypul|?ds
k=1 th—1 tr—1

t1 t1
10, A (s) |*ds + 73 / 1 (s) 2ds + 3 / 10, Aul?ds

to to

n A try1
+ E Tk+1 /
k=1 tx
n

n th+1
+p2latD) ZTk-H (||wk+1”§{q+1 n ||uk+1||%ﬂ+1) + p2a+D) Z/ ||(9tUH?qq+1d8.
k=0 k=17tk-1

An earlier convergence result on linear parabolic problems derived by Becker [7]
contains a prefactor of the form exp(CT},), where I',, = 2223[%71 — Vkt1)4- It is
easy to construct variable steps so that I, — oo as the step size approaches zero.
See section 4 for more details. Even in the case of finite I',,, this prefactor could be
huge—effectively infinity—for moderate values of C' and I';, due to the nature of the
exponential function. Such an undesirable prefactor has been completely removed in
this work, with the help of a novel generalized discrete Gronwall-type inequality, even
in the nonlinear case that we are working on. We also remark that the method here
deviates significantly from the constant time-step case [67], where the authors relied
on the G-norm in an essential manner. We also point out that the G-norm method
fails in our variable step setting unless we have a sequence of monotonically decreasing
time-steps, a case of little interest in applications.

The rest of the article is organized as follows. In section 2 we outline the fully
discrete scheme. The energy stability analysis is established in section 3. In section 4
we present the £°°(0,T; L?) N ¢2(0,T; H') convergence analysis for the scheme. The
optimal convergence analysis is contained in section 5. Numerical results corroborat-
ing our theoretical analysis are presented in section 6. Concluding remarks are offered
at the end.

2. The fully discrete numerical scheme. We use standard notation for the
norms on their respective function spaces. In particular, we denote the standard
norms for the Sobolev spaces WP(Q) by | - ||m,p (see [1]). We replace || - |lo, by
I llps 11 llo2 = [+ [l2 by [ - I, and || - llg.2 by || - || e

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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The mixed weak formulation of Cahn-Hilliard equation (1.2) is to find u,w €
L2(0,T; HY(Q)), with u, € L*(0,T; H~1(Q2)), satisfying

(2.1) { (u0) + (Y, Vo) =0 Vve H(®),

(w,) = (u® —u, ) +*(Vu, VoY) Vo e HY(Q),

for almost every t € (0,7T], where H~! is the dual space of H!(notice that the H~!

space we defined here is different from the standard one which is specified as the dual

of H}), and (-, -) represents the L? inner product or the duality pairing, as appropriate.
Let 7, = {K} be a quasi-uniform triangulation on Q. For ¢ € Z*, S}, := {v €

CY(Q) | v|x € Py(K)V K € T} € HY(Q) is a piecewise polynomial subspace of C°.

We recall the classical Ritz projection operator Ry, : HY(Q)) — Sy, satisfying

(2.2) (V(Rre —¢),VX) =0 VX ESh,  (Rrp—,1)=0.
The following estimates hold for Ritz projection [9]:

(2.3) [Brelhpy < Clielhy V1 <p< oo,
(2.4) le = Rrellp + hlle = Rrllipy < ChT  ollgsrp V1 <p < oo

The second order variable time-step scheme is based on the classical variable time-
step second order BDF2 [55] and the following regularized convex-splitting uniform
step size second order accurate scheme [67]: for n > 1, given uZ_l,uZ € Sy, find
uptt witt € Sy, such that

3uz+1 —dup + uz_l
2T
(wp ™ n) = (Vg Vain) + (™) = 20+ g )
+ AT(V(uf ™ =), Vop) Y 4y, € Sh,

,vh> + (VIUZ-H, Vvh) =0 Y vy € Sh,
(2.5)

where uj stands for the numerical solution at time ¢,. Our variable time step size
version of scheme (2.5) takes the following form: for n > 1, given uZ_l,uZ € Sp,
find u) ™!, wyt! € Sy, such that

(2.6)

2
i 42941, n+l n ("/n+1) n—1 _ n+1
Tott \ T9vme1 Uk (1 + Ynt1) up + THvnir Ch VR | = (vwh ,V’Uh) Vo € Sh,

(Wit on) = = (2Vup ™, Vén) + (1 + yns1) uft — Yngrup ' én)
— ((uz+1)3,¢h) — ATnt1 (V (UZ_H — UZ) ,qu)h) Y ¢n € Sh,

where 7,41 = t4+1—ty is the time-step and 7,11 = T’;ﬂ is the ratio of the two adjacent
time-steps. Moreover, we assume that {7,} is a uniformly bounded sequence with an
upper bound v*, i.e.,

(2.7) Yn <v° Vn.

We assume that v* > 1 without loss of generality. The unique solvability of the
scheme (2.6) could be easily obtained since it is the Euler—Lagrange equation for a
strictly convex variational problem; see [67] for the uniform step case.

The scheme requires two initialization steps u9 and uj. We choose u) = Rpug
and use a standard first order convex splitting method to obtain u}b, wj}, € Sp. More

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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specifically, the initialization step is as follows: given ul) € Sy, find uj,w} € S, such
that

1,0
<uh7_uh,vh> + (Vw,I”Vvh) =0 Y v, € Sh,
1

(why ¥n) = € (Vuy, Vibn) + ((up)® — up, ¥n) YV ¢y € Sh.

(2.8)

3. Energy stability and a uniform-in-time H?! stability. To facilitate the
analysis below, we define the discrete Laplacian operator and the discrete H ! norm.
We will make use of the notation L3(Q) := {u € L*(Q) | (u,1) =0}, and more gen-

erally, V := L2 NV for any space V C L2(9).

DEFINITION 3.1. The discreteﬂLaplacian operator Ay : S, — é’h is defined as
follows: for any vy, € Sy, Apvy € S denotes the unique solution to the problem

(Apvn, x) = —(Von, V) vV x € Sh.

It is straightforward to show that by restricting the domain, Ay, : S'h — S’h is
invertible, and for any vy € Sy, we have

(V(=Ap) "o, VX) = (vh,x) YV X € Sh.

We also introduce discrete H~! norm.

DEFINITION 3.2. The discrete H=* norm, || - || -1, is defined as follows:

onll—1.p := v/ (vn, (An)"Lon) Yoy, € S
The following generalized Holder inequality holds: for any v, € So'h,
(3.1) ol < Vol llon]l-1,n-
It is known that the discrete Laplacian operator defined above on the Ritz projection
enjoys the following stability property [67]: let u € H%(Q) := {u € H?*(Q) | dyu =
0 on 092}; then
(32) [An(Rru)| < [|Au].

In order to present energy stability in a numerical sense, we introduce the following
discrete modified energy.

DEFINITION 3.3. For n > 1, the discrete energy is defined as follows:

+1 +1 v U?H — Uy ’ ol +1 2
Eur ul, The1) = E (u) + T, t + | = u}
( h » Yhoy In+ ) ( h ) 2(1+,Y*) n+1 Tn+1 C1h 2 || h h” )
where
n+1 Long1y4 Loomt1y2 e? n+12
E(uptt) = 2luen s = Sl 17 + S IV

is the original energy of the discrete solution.

The following energy stability estimate is available.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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THEOREM 3.1. There exists an Ag, such that for any A > Ag, the numerical
scheme (2.6) enjoys the following energy-decay property:

€ (™ ufs 1) + (A = Ao |V (i — ) I < € (et~ )
where Ag is a constant defined by

0 ifo<y* <3

(1+v) (v -3)°

A = 22+
1) (v -3%)

2(243y*—(v*)?)

if%<'y*<2;
if2 <~y < 347

Proof. In (2.6), by taking v, = (—=Ap) " (up ™ — u}) and ¥, = up ™ —ul, the
two terms including wy, cancel each other out by the definition of Aj. Therefore,

1 1+ 2v,11 +1 (’7n+1)2 -1 +1
0= uy 1+, T (A upyt —uy
Tn+1 < 1+ Tn+1 h ( 7 +1) 1+ Tn+1 h ( h) ( h h)

( ZAhunH UZH UZ) - ((1+'7n+1)uh Ynt1Uy ' UZH U;zl)
()t = ) A (V (0 = )V (7 o)
=1+ Jo+Js+ Iy + Js.

For the time difference term J;, we have

Jy = 1 142y, un (1 + +1)un + (7n+1)2 un ! (_Ah)_ (un—i-l _ un)
Tn+1 1+ Tn+1 h " h 1+ Yn+1 ho h h

+1
_ 2+ 4vp41 — (’Yn+1)2 Hun - UZ”%UL B Yrn+1 HUZ - uh ||71 h
2 (L +9nt1) Tn+1 2(1 4 Ynt1) Tn
2
(’7n+1) ||UZ+1 _ 2uh + u H2

2 (1 + 'Yn-&-l) Tn+1

For the highest order diffusion term J3, we have
Ty == (2 Anup T up — ) = (IIVU"HII2 IVup | + Vg ot = Vg |?) .

For the backwards diffusive term Js, we have

Js = —((1+7n+1)uh YogrtH ur T — )
R =) s (4 20 =) el —

L Yot Tnt1 -
=5 2 = ) + (5 = 252 ) Do = = 25 g - o

_|_’YTL+1 || n+1

n n—1(2
2U'h + uh || .
For the nonlinear term Jy, we have

o n+1 n+1 n

Jo = ((uh ) Up, Uh)

1
3 0 g = Rl + 1 (i) = ) P + o™ (™ = ) I

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Finally, for the stabilizing term J5, we have
Js = ATy (V (UZH - uZ) ,VUZ+1 — uﬁ) = A7, 11|V (UZ+1 - uﬁ) ||2

Combining the above estimates, and ignoring some of the positive terms on the left-
hand side, we have

(3.3)

1 1 52 un+1 _ un 3
L ST E N T e LAY o Sl 1
4 2 2 Tn+1

1
(5 ) I =+ Arn IV (= )

Yrn+1 llup *UZ“H?L;I n

Tn+1 H n 'n—1||2
(L4 n+1) n 2 ’

Up — Uy,

< Djagite = Lpap + Spvane +
— 4 2 2 2

where g1(z) = 23‘&1‘52. By the definition of the discrete energy &, and the fact that

~v* is a uniform upper bound of all ~,,, the following estimate holds:

A up ™ = apl?
2(1+9%)

€ () Tust) + <gl(%+l> -
Tn+1

1
B+ (5= ) I =l AraIV (5 = ) P < € ().
In the case 0 < v* < %, note that ¢g1(z) > 1 as 0 < z < 2. The energy-decay property
naturally holds for any A > 0. In the case v* > %, by (3.1), for any « > 0, we have

g ¥t = il = IV (up = i) Ml = il 1n

1 2

n+ n
Up Uy

Tn+41 +1 2 QATp+1
(3.5) S S IV (@™ —ai) P+ —5

Tn+1 —1,h

Now we need to split the case according to different ranges of v*. If % < y* <2, and

. _ 2+,\/*
setting o = T =D then

(3.6) 91(Yn+1) — 2(177_:7*) - % ('y* — ;) > 0.

* *_1)2
The energy-decay property holds for A > Ay = %

& (uz+l7u2,7'n+1) + (A —Ag) ||V (UZJrl - uj)) <& (u}f,uzfl,Tn) .

If2 < 4" < “#m, we set a = % It is straightforward to check
that inequality (3.6) (thus the energy-decay pioperty) still holds for A > Ay =
(1+v) (v -1)
2(243v*—(v*)?)"

Remark 3.1. In the convergence analysis, we will assume that 1 < ~v* < 2. As a
result, a mild requirement that A > 1 is sufficient to ensure energy stability.

For the initial step, we have the following well-known stability for the initialization
scheme (2.8):

(3.7) Bul) + 7 = E(u}) + 7 ||Vuwp|[* < B(ul).

—1,h
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Now we are able to obtain a uniform-in-time H'® estimate of the numerical solution
similar to the constant step case (see [67]).

THEOREM 3.2. Suppose that the initial datum is bounded in the following sense:

¥* 0112 Co
3.8 E 0 _ <
(33) (W) + eI < T

for some Cy that is independent of h. Define k4 := A — Ag. Then, there exists a
constant Cy, which depends on Cy, 2, v*, and € but is independent of h and T, such
that for any m > 1

uy —uy i
b b "‘“AZTVLHU’ZH < (.
h

n=1

(3.9) lf? |2 + 54 D T

n=1

Tn

4

4. Convergence analysis and error estimate. We denote by (u,w) the exact
solution to the original Cahn—Hilliard equation (1.2). We say that the solution pair
is of regularity of class C if and only if

u € W30, T; L) nWh(0,T; H**') and w € L*>(0,T; HT).

Such a regularity assumption on the exact solution is standard in numerical analysis.
Let us denote u" 1 := u (t, 1), w" ™! := w (t,41); then we have

(Dumt vy) = (V™ Vo) + (Ry ) Yop, € S,

(4.1) (w1 6n) = = (VU Von) + (T 6n) = ()" 1)
— A1 (V (@™ — ™), Vn)
+ (RS ¢n) + (RET ¢n)  Voy, € Sh,

where
1 142941, nt+1l n oy (me)?® n-1
Du™t! = { Tn41 ( I4+yn41 u (1 + /7”+1)u + 1+"/n+1u , n21
1 n+l _ ., n _
Tn41 (u U ) ) n =20,

—1
Tlrfu =1+ ynt1) u” — Yppru",
R’il-‘rl — DunJrl _ u?-}—l

Rn+1 — un+1 o (1 + ’7n+1) u" — ’Vn+1un717 n > 17
2 u07 n = 07

Rl _ — ATy A (ut =), n>1,
3 0, n=0.

R; corresponds to the truncation error associated with the variable step BDF2 time
derivative, R? is associated with the linear extrapolation, and Rs3 is determined by
the discrete viscous regularization term.

It is straightforward to verify the following bounds for the truncation errors
Ry Ry Ry

LEMMA 4.1 (truncation errors). If 0 < v,41 < ~*, there exists a constant C,
depending on v*, such that

3 t’!L
(4.2) (e < LG )" O, nz 1,
: = 71 [t _
' =[5 uru (s) | 2ds, n =0,
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3 ftn
(4.3) RHL2 C(tn1+m)" [, 1Owul?ds, n>1,
: H 2 || S th 9 B
71 Jy, [10¢ul*ds, n =0,
é 2%
(4.4) |REHY|2 < A2 (1 40)° L 10k Au(s) |Pds, no> 1,
’ L0, n = 0.

Let us introduce the standard error functions:
= " — wZ, anrl = unJrl o Rhun+1,

n+l ,__ n+1 n+1
o, = Ryu —uy .

n._ ,.n n
ey =u"—uy, e

pZ,}Jrl = wn+1 _ Rhwn+1

n
w

3

Then we get elt! = p"+1 4+ o7 By definition (2.2) of Ritz projection, it holds
that (Vptt, Vx) = 0 for all x € S;,. Together with the definition of the discrete

Laplacian Ay, we have (see, for instance, [67])

(45) (V@Z,Jrl, V’Uh) = (€Z+1, —Ahvh) — (w"“ — Rhw"H, —Ahvh) Yoy, € Sh.

Taking the difference of the scheme (2.5) and (4.1), setting ¢p, = —Ap v, and adding
the two equations, we deduce the following error equation:

(Do, op) + (2Vop ™, V (= Apop)) + Tog1 (VIR V(=Apuy))
(46) = (T{fg, —Ah’()h) — ((u"+1)3 - (’U,ZJrl)?’ s —Ah’l)h> + R”+1(vh),
where

Rn+1(vh) - (R;H_l,l}h) + (R;L—H, *Ahvh) + (Rg+1, 7Ahvh)
+ (Rhw”+1 — w”+1, *Ahvh) — (Danrl,Uh) + (Tﬁp, 7Ahvh) R

and

n (1+’7n+1)0}?_’7n+10'2717 TLZ ]-7
Tl,o -

0, n =0,
g Q4+ 7m1) P = " n 21,
Le = p° n=0,

el _ { A(JZJrl —U,’f), n>1,
2 0, n=0.

The following lemmas will provide estimates for all the terms on the right-hand
side of the error equation.

LEMMA 4.2 (estimate for the term R"1(vy,)). There exists C > 0 which depends
on € and v*, such that

N 1 g2
(4.7) R (vp) < CRYT + 3 lonl* + v [AwoRl* ¥n>1,
1 1 g2
' 1 < 1, L 2, 1 2, & 2
(438) R (0n) < ORY+ o onll + 15 llonl + T 1Anenl?,
where

| 3 tn+1 tn+1
R = (141 + ) / [[Opreul|*ds +/ [Breuds

tn—1 tn—1
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5 (2 ) h2(a+1)  pinga )
arto [ N (s) Pds+ T [ o

Tn+1

tn tn—1

+R2OD (™ T 4 [0 s + 10" )
2(q+1)

t t
1 1 h
R :Tf/ ||(’“)ttu(s)|\2ds+7'12/ 19, Au2ds +

t() tO

t1
| loualyds
to

T1
AP (oo [Faen + [0 Frasn)-

Proof. If n > 1, by the Cauchy-Schwarz inequality, R"*!(v;) could be bounded
by

(4.9) R* () <4 ([|[REF + D))
5 (1R P+ 1R |+ Rt — w2+ 1 |
1 2
+3 lvnl|* + % [PANEEA
For the term involving w™*!, by the property of Ritz projection, we have

(4.10) [Rpw™ — w2 < CR2OHD || g

The estimates for the differential term Dp"*! and the concave term 17, could be
obtained analogously:

(410) D" = || (I — Ry) D™ | < O Dut P

tn 1
< Lhz(qm/ 19l Byasa ds,
T”L+1 th—1
and
(4.12) 1217 = 10+ s1)p™ = g™

< CRPOD (L 437 [ [ Frasn + 7 0" | Fasa)

< CRPID ([u"|[Fasn + [[u" " [Fasa)-
If n = 0, by the Cauchy—Schwarz inequality, the R'(v;) could be bounded by
(4.13) R (on) < dry |RY + 4| Do'|| + (R, —Anvn)

4 2 2 n o112
+5 (1817 + | Ruw’ = '[* + |77, |)

Ey
16

1 2 1 2 2
— — A .
e ol + g ol + 55

For the term (R}, —Apvy,), we have (see [67])

4C p2(a+1)
2

t1 1 t1
/ 19l 2asr ds + \|vh\|2+4ﬁ2/ 10 A ?ds.
167‘1

to to

[ Anonl® +

2
(R3, —Apvn) < %6

n+l||2

Following the same process for estimating || Dp , we have

t1
(4.14) 1Dp2 = 111 — B D2 < s / 10rul30s ds.
1 to

Combining all the inequalities above, we obtain the desired estimate for R"*(v,). O
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We now deal with the nonlinear convex term.

LEMMA 4.3 (estimate for the nonlinear term). If we take vy, = o™ in the error
equation, then there exists C' > 0, such that

C 2
() = () dnop ™) < SR B+ o 2+ 5w P,

And if we take vy, = UZ'H — oy, then there exists C' > 0, such that
C C
(@) = () An (ot = 7)) < h2D a3 + ol s
g2

*IIAh(”Jrl ) I+ IIAhff”*lH2

166
for any 6 > 0.

Proof. First we notice that
n 3 n n 3 n 3 n n
()’ = () = (@) = (R ) o (R )* = (),

which separates the nonlinear term into two parts.
For the first part, the regularity assumption yields

H (un+1)3 _ (Rhun+1>3 ”2 — ||pn+1[(un+1)2 + un+1Rhun+1 + (Rhun+1)2]||2

2 2
< 4Hpn+1H2” (unJrl) + (RhunJrl) ||2
<8 1P ([ 2a + [[Ruu" | 74)

(4.15) < CRHTHD 12,
If we take v, = O'Z+1, according to (4.15) and the Cauchy—Schwarz inequality, we
have
(@) = (Bt Apoptt) < (@) = (Ryur+)? IIH i
(4.16) < SR A

Similarly, if we take vj, = o} !

— oy, we have
(@) = (Ruam)” A (o7 = oh) ) < (@)’ = (Rwum ) 2 (o7 —ah) |

(4.17)

C n n
< 6—2h2(q+1)“u +1HH<1+1 + HAh ( - Uh) ”2

For the discussion of the second part of the nonlinear term, we define ug =
IQ\ (uo,1). Then (Rpu™ — to,1) = (u} — G, 1) = 0. In particular, for all 0 < n < N,

observe that (o™, 1) = 0. Applying the embedding theorem H'(Q) < L5(9), we
have

(Rt = (i) A
= (((Rhu”+1)2 + (UZH)Q + Rhu"+1uz+l) optt, Ahvh)

2
< (R + (™) + R s oo | Anon
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IN

2C (||Rhu"+1||L g 2e) 190 Anva
1. _
< 4C (R = s + it — o3 + 21920 [10[?) [Vl v

4C (VR )2 + Vg2 + 2100 o) Vo7 | Anvll

If we take vy, = UZ+1, according to the H' bound of the discrete solution u!, we have
(4.18)
(R’ = ()’ o)
< Oy 1 nop | < Clo 1A 1 < S 2 + S Anop

where we have utilized Young’s inequality in the last step.
If we take vy, = ahH — o}, it follows in an analogous way that

(R = () 2 (o — o))
< C|IVor 1Ak (o3 = o) |

< CIIUZ”II? IIAhUZ“H 2 An (ot - UZ) I

@19) < Solop I Ao+ S (o o)

As a result, if we take v, = 0!, a combination of (4.16) and (4.18) yields

3 3 C g2
(R R e RN e e

If we take vy, = 0! — 07!, a combination of (4.17) and (4.19) yields
: C C
(@) = () Ay (o —az)) S Sl

I\Ah( o) P+ ||A o I

169

Therefore, the desired estimate for the nonlinear term has been established. 0
In addition, by the Cauchy—Schwarz inequality, the concave (extrapolation) term

could be bounded by

(420) (Tiﬂ,o'? —Ahvh)

2 2 n—112 2
BT + 5 1Al < G (lorl® + o 1°) + 5 IAwenll®, n>1,
— 10, n = 0.
Here the constant C' depends on v*.

Together with Lemmas 4.2 and 4.3, we could get the error bounds for the right-
hand side of the error equation (4.6), as is stated in the following lemma.

LEMMA 4.4 (estimate for the right-hand side of the error equation). There exist
a constant C > 0 which depends on € and ~v*, and Cy > 0 which depends on v*, such
that

(Tﬁa’ _Ahvh) _ ((un+1)3 _ (uz+l)3 7 —Ahvh) + Rn+1(vh)
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C _
< CRn-H ” n+1||2 + 72 (HUnH2 +llom 1“2>
e 5 o anﬂu fonmspinz
H ZJFI - UhH + 16 n+1 - ah)H + 65 HAhUnHH if vy, = UZJrl —op,Vn > 1,

(T —Apvp) — ((“ ) - (uh) »—Ahvh> + R (vp)

Cy 1 1 32
< CR;+ 6*6||vflb||2 + 8y loall® + 6 lonll® + 5 [Anval®,

where
1 3 tnt1 ) tnt1 )
Rn+ (Tn+1 + Tn) / ||6tttuH dS +/ ||8ttu|| dS
trn—1 tn—1
3 tnt1 h2(q+1) n+t1 )
prt [ Iau @ Pas+ 2 [ foulas
tn TL+1 tn—l

FRPEED ([l g+ ™ e + 0™ oo + 0" e

t1 ty h2(a+1)  rta
Ry=72 [ ouu(s)Pas + 77 [ adulds + | oralnnds
to

to to

+h2(lI+1)(

1 Zras + Nt [Fasn + 1170 0)-

Now we focus our attention on the left-hand side of the error equation (4.6).

LEMMA 4.5 (estimate for the left-hand side of the error equation). Denote

2
’Yn-‘rl

A1 = ————.
T 1+ )

We have, corresponding to the case of n =1 in the error equation (4.6),

(DO’;IL, Uh) + (€2VCT;1L, \Y (7Ah’l)h)) + 71 (VT;, V(*Ah’uh))
1

=5 (lonll* = llonl* + llow = onll?) + e[ Anop >

Forn > 1, if we take v, = o,:“"l the following estimate holds for the left-hand side
of the error equation:

(DO';LH_I,’U}L) + (SQVJZ'H, \v4 (—Ahvh)) + Tt (VTQ"'H, V(—Ahvh))

1 +’7”7‘+1 n n n—
> () (ot 2 o2 = A (12 = ok 17))
1+ n n n n—
(L) 241) (1= D) 7 = o ® = om0~ )
n
1 n "
(4.21) + <§A7'n+1 +52) |Aro HH - 7A7‘n+1HAhO'h|| + A7n+1|\Ah( - (J’h)HQ.

And if we take vy, = JZ“ — oy, the following estimate holds for the left-hand side of
the error equation:

(Da,’f“,v ) ( 2V0"+1 V(—Ahvh)) + Tnt1 (VTQ"H,V(—A;LU;L))

(1 + 'Yn+1) ((

>
2Tn+1

2 =3\ )llop ™ = ohl® = Ansallon — o)
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4.99 i A n+112 _ < A 2 i A A n+1 ny|12
(422)  +5llApoy™ | || noill” + {5 + At ) [An(o™ = ap)ll

for any 6 > 0.

n+1 n+l

Proof. First, we take v, = oy, If n > 1, according to the inequality |o}
o 2 < 2||c7”+1 oltl|2+2|jop — o |2, the term (Do, o7 t!) could be bounded
below

1 2
(Do o) =~ () (031 = o) = {258 (o1 o 1) )
n+1 Tn+1

(14 Yng1) o2
e A

. (1 + ’YnJrl)
2Tn—i—l

( +7n+1) o
> () (e

— Nl + lloy = op )
Mt (lo 112 = Moy =M 12 + llop ™ — o ~H1%)

— N1 = Ansr (o ™2 = lloi =M %))

1+ _
A1) (4 g, ) ot - o2~ 20nnlof - of ).
Tn+1

If n =0, we have

1 1
(Do, 01) = = (o, — op,03) = o (ol = lloRl* + llow —onll?) -

1 1

If we take v, = a,’f“ — oy, then

(Dop* o — o)

N (L4 Yns1) (244911 — (1) ni1 2 (Ynt1)? n o n—1y2
> lop™ —opll® = m———=zlloy —ap |l
27n+1 (1 + ’VnJrl) (1 + ’7’ﬂ+1)

14+ _
= 8] (0= sana)lof ™ = of1? — Al - 71 P).
n

For the second term, we have
( 2Ah0_n+1 Ah0n+1) _ EQHA 0_n+1||2

and

2

n n n € n n
(2203 ™ A (o™ = o)) = 5 (18wo ™ 1P = Aok ]1* + |1 An(o3 ™ = o))
For the last term, we have

ATy n n n
(AT, Ahgm):{ et o e R e At SRS
) n = ’

and
(ARTEHY A (074 — ) = Ar i | AR (o7 — o) |12

After summing up all these terms, we could obtain the estimate for the left-hand side

of the error equation for v, = (TLH_l and vy, = ah'H —op. O

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/17/23 to 131.151.26.204 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

510 W. CHEN, X. WANG, Y. YAN, AND Z. ZHANG

A combination of the previous lemmas gives rise to the following estimate.

LEMMA 4.6. Let us take vy, = O'Z+1—|—(S(O'Z+1—0'2) in the error equation. Ifn > 1,
then there exists a constant C3 > 0 which depends on € and v*, such that

1)2 2 12 —1)2
om0 = lloh 1 = Aasr (lon ™ 1% = llon =" 11%)

H 426~ (24 3 Ans)llop ! = oR I~ Ansa (5 + 2)llok — o7

1 n 1 n
+5 (£°(1+6) + ATns1) pns1Tns1 || Aoy 12 = 5(625 + ATn i) fint1¥ns1Ta | Ao ||
1 82 n+1 ny| 2
3 §5+A7n+1(1+25) pni1Tnia[|An(oy ™ — op)]]

< Co(1+ O)ptnsrrass (o717 + R 12 + o7 P) + CR™! va > 1,
(4.23)
lo]1? + | Anail? < Camlloil® + CRY,

(4.24)
where pn41 = ﬁ and
5 tni1 tny
R = (Tnt1 + )" Tnt1 / ||8tttuH2dS +/ ||3ttu||2dS
trn—1 tn—1
4 tn+1 9 9 1 tn+1 9
sria [ 10w s+ 120D [T 0l 0nds
tn tn—1
Ry (e B+ s + 0 B+ 1 aen)
tl tl
R = 7'13/ |0 () ||2ds +Tf/ ||8tAu||2ds
to to
ty
+h2la+D) (/ HatUH?{quS +7n (||w1||§1q+1 + ||UO||§1q+1 + ||u1||§“+1)> :
to

Following the idea of Becker [7], a crude L? error estimate for uj, with an expo-
nential growth factor could be obtained in a straightforward manner. We leave the
details to the interested reader.

THEOREM 4.7. For any given final time T = Zgio Tn+1 > 0, assume that the
exact solution pair (u,w) is in the reqularity class C, and define

(4.25) r,= Z[%q = Vt1]4-
k=3

If the maximum time step size T satisfies

T 0 T S 100, 1+ 0)

then there exists vy € (1,2), such that if v, < 75, we have the following error
estimate:

len )2 = lu™t* —up ™2 < C (T,e,7v*, E(u))),T) R,

where R is as defined in (1.6), and C (T, e, v, E(u)), Fn) may depend on T, e,v*, E(uY),
and exp(CT4,).
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Remark 4.1. The exponential prefactor exp(CT',,) appears in all existing work,
even in the linear case [7, 55]. This prefactor could blow up for certain time-step
series at vanishing time-steps. A specific example is the following. Fix a constant
¢ > 1; for a choice of the initial step size 71, the first four items of the time-step series
are set to be 71,¢7,¢7,71. The rest of this time series 7, is obtained by repeating
the first four items for 2= times. Therefore, for T = & (¢ + 1)1,

Nt 1
1—‘NT = Z[’anl - '7n+1]+ = Nr <§ — () — 0

n=3

when 7 tends to zero. Even for a moderate value of T'y,., exp(CT n,.) could be
huge—effectively infinity—due to the nature of the exponential function.

5. Optimal convergence analysis. In this section, we derive a second order in
time error estimate without the undesirable exponential factor exp(CT',). A common
tool for error estimates for the evolution equation is the discrete Gronwall inequality.
Unfortunately, the classical discrete Gronwall inequality such as that presented in [55]
is not directly applicable to the error inequality (4.23) since it involves the difference
of positive terms. A key ingredient in overcoming this difficulty is the following novel
technical lemma. It can be viewed as a new generalized discrete Gronwall inequality
that is able to deal with the current situation.

LEMMA 5.1 (generalized discrete Gronwall inequality). Assume that ay, by, ¢, Op,
Tn, R™, and v, are nonnegative sequences satisfying % <A*and 0 <wv, <V <1
If there exists a constant 0 < n <1 such that

Ap+1 — Ap + bn+l + 9n+17-n+lcn+l S Vn+1 (a'n — Qp—1 + bn + enTncn) + 77(1 - D)enTncn
+C4Tn+1(an+1 +a, + anfl) + Rn+1 Vn > 1,

then
n n—1
an+1 + Z bm+1 + 9n+17—n+1cn+1 + (]- - 77) Z 0m+17-m+1cm+1
m=1 m=1
n+1
Cil+7" + (1)) © ;
(5.1) < T > mak + R,
k=1
where

C v 1 v v 1
R/n = 1 T2 + — | ag+ —a1+(nt+t-—— 01101+ b1+——— ZRk+1,
1—v 1—7v v v

1-v 1-v -7 " 1-p &
Moreover, if we have the time-step restriction T,11 < m, we then have
2051+ + (7)) ¢ :
Gn+1 < 2€xp ( T2 ’;Tk> R,

Proof. The following inequality follows from recursion and can be verified via
induction:

am+1 — m + bnz+1 + 9m+17—m+1cm+1
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m+1 m m+1
< H (a1 —ag+ b1 + i) +n(l—o Z H V0T C
j=2 k=1 j=k+2
m m+1 m m+l1
+Cy Z H VTt (Qrg1 + ap + ap—1) + Z H v RFTL
k=1j=k+2 k=1j=k+2

Here we have adopted the convention that a product with empty indices is one.

m+1 —-m m+1 —m—k
Since 0 < vpp1 <7 < 1, H 5 v; <™ and Hj:k+2”j§’/ . Hence

Um41 = G+ bmg1 + O 1T 1Cm1
m
< ﬁm|a1 —ap+b + 917‘161| + 7](1 — 17) Z ﬁm’kﬁkmck
k=1

m

+Cy Z 7 Tk+1 ak+1 + ak + ag—1) Z g REHL
k=1

Summing up m from 1 to n and exchanging summation orders, we have

n n
Ap4+1 — a7 + E bm+1 + § 9m+17—m+lcm+1

m=1 m=1

AN

Ms

<|a1—a0—|—b1+917'1c1|zy +77 1—1/ Z

m=1 m=1

+Cy Z Z i (arrn +ar +ap1) +

ol
Il

1

m
E Dm_kRk+1
k=1

= |a1 —ag + b1 +91T101|Zﬁm+?7(1 717)20}67766]@ ( ﬂmk>

k=1 k=1 =k

NE

—

m=

n

n n n
+Cy Z Tr+1(ar+1 + ag + ag—1) <Z Vm_k) + Z RFH1 ( Vm_k) .
m—k k=1 2

k=1

Since < ~*, we have

Tn+1
Tn

n n
Gni1 — a1+ E bmi1 + E Om4+1Tm+1Cm+1

m=1 m=1
n C (1+ + n+1
(a0+a1+bl+917'101)+7729k7'kck+ il ZTkak+
k=1

< v
~1l-v

1 =kt
+—1_ﬁ;7z .

7'2 ao

After moving n 22;11 Ok +17Tk+1Ck+1 to the left side of the inequality, moving a; to the
right side of the inequality, and absorbing the miscellaneous terms into R),, we obtain
(5.1):

n—1
An 41 + Z bm+1 + 9n+17-n+1cn+1 + 1 - Z 077L+1Tm+lcm+l
m=1 m=1
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n+1

Cy(14+~*+(
< 17 ZTkak+R

C4(1+7 +(7 %)

Tnt+10nt+1 to the left of the inequality, and utilizing the addi-
_ Cal+y"+(v)?)
1-o

Moving

tlonal time-step constraint on 7,41 which makes 1 Tn+1 larger than

2, we obtain, after multiplying by 2,

n n—1
(py1+ 2 Z bmt1 + 20541 Tnt16n41 +2(1 — 1) Z Or+1Tm+1Cm+1
m=1 m=1
204(1 + ’}/ + (
< 11— ZTkak —+ QR

The classical discrete Gronwall’s inequality [55] then yields

n—1
Qp41 + 2 Z bm+1 + 20n+17_n+1cn+1 + 2 1- Z 9m+17—m+1cm+1
m=1 m=1
2C4(1 " + ( -
<2
<on (TN S
This ends the proof of the lemma. 0

Our plan now is to recast the error inequality (4.23) into the form of (5.1) so that
the novel generalized discrete Gronwall inequality is applicable.

For this purpose, we recall the following simple useful facts. They will be utilized
in our final theorem, Theorem 5.2: For 0 < { < 1, let us define

_2V13 1 _2¢ 8 2
(5.2) Q) = 3 cos(garccos( %6713 13\/ﬁ>> 3

It is easy to check that £(¢) is one of the roots of the equation

(5.3) 23+ 222 — 32— (2-¢) =0,

and the other two roots of the equation (5.3) are less than zero. Thus we can conclude
that for all 0 < z < ¢(¢), we have

(5.4) 2422 -32-(2-¢) <0.
Moreover, the function ¢(¢) monotonically decreases in (. So we have

£(¢) < £(0) = 2\éﬁ cos (; arccos <—13\8/§>) - § ~1.343 <1+ V2.

Now we turn to establishing the optimal convergence result.

THEOREM 5.2. For any given final time T = Efyio Tnt1 > 0 and 0 < ¢ < 1,
suppose that the exact solution pair (u,w) is in the regularity class C. Assume 1 <
~v* < (), and the time step size is bounded by

(5.5)
{ X (1+29* = (v)*)* }
24777 8C5(1+ 277 ) (L + 7 + (7)) (A +9)2

0<7= max T7p41 <min
0<n<Nr
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Then, the following error estimate holds:

(5.6) len™* = Jlu™* —upH* < OR,

where R is as defined in (1.6), and C = C(T,e,~*,¢, E(u))) may depend on T, e,v*,(,
and initial energy E(u).

Proof. In order to apply our generalized discrete Gronwall inequality (Lemma
5.1), we recall and introduce some notation:

2
Tn+1 2 ’YnJrl
Tnt+1 = s Ml =, Al = .
i Tn nt T+ Y11 m (14 Yny1)?

It is easy to see, from the definition of ¢(¢), that
AL <A < 0(0) < 14+ V2.

Hence, for all 1 <n < Np,

)\n n 2 *\2
I=Ant1 142941 = 14 29*
*\ 2
Now, for a fixed 7*, we define § = 6* £ % > (. This implies
1 An
(5.8) ( (1 +26%) —2—35*) _ondl > 542,
)\n+1 1- )\n+1

*

since A1 < (175+)% and

1 >\n+l
14+26")—2-30" ) ——— — (6" +2
<)‘n+1 ( ) ) 1- )‘n+1 ( )

1 1 7 \?
=— (1 -2\ 41)0" —-1) > ——— 1-2 0F—1]=0.
(=20 >1_An+1<< (lﬂ*)) ) 0

2
Now for 0 < 7,41 < zfxﬁc’ and v,+1 < 2, we have

A
o + ?Tn-i-l o*

<7 [ —
T+ 0m+ A7 " S T e T T

(5.9)
where 7 = 7, or T, 1.

Let us introduce the following auxiliary variables corresponding to the variables
in our generalized discrete Gronwall inequality:

* A
2 . Lint1 0" + STt
214 6%) + Arpyy) Pl g = O Tl
( ( ) H) T e+ EAzTnH

1 — /\n+1 9 ’YnJrla

1
9n+1 = 5
An+1

and Un4l = 77—~ -
1- )\n+1

We then deduce, after utilizing (5.7),

A (7*)2

(5.10) 0<vp41 < 1+ 27

<1,
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and by (5.9),
(5.11) En1 <1,
since v,+1 < v* < £(¢), and by (5.4), we have
L ¢ () +2(v)? =37* = (2-¢)
-1 —1= <0.
St LS T T 1+ 0 =0

Here we remark that the choice of ¢ and v* < ¢({) stems from the constraint (5.11).
We claim that the following important inequality holds:

9n+1 (7*)2 _
(512) 0< fn—i—l 9n — VUn+1 <(1- W n= (1 — l/)'r],

— ()
where 0 = g (e +
Here we first check that 0 < 1 < 1 before we prove (5.12). Since 0 < v < * <

0¢), (7))} +2(v*)? —3y* —2< —Cand 0 < 1+ 29* — (y*)? < 2. Hence, we have

¢

: o) ((7*)3 +2(7)? =37 — 24 S (14 27" — (7*)2)) <.

2(1+2y* — (v

n—1=
Next, we consider the term

¢ 19n+1 Dyt = (6" + 527'n+1)’Yn+1 14+vp41 142y, B %21+1
" On " 1+406* + 2 Tn 142741 1+ 1+ 279,41

First, we notice that 27'” < % < % Therefore,

—_ > _

4 LT 1429 4" 5 0 2) -804

Henceforth, we obtain the lower bound of (5.12):

Ont1 Yrt1(L 4+ Yng1) [ 0° + E%Tn+1 1+ 29, Vn+1
fnJrl —VUn41 = A - > 0.
0” 1 + 2771-‘1-1 1 + 5* + ?Tn 1 + Tn 1 + Tn+1

As for the upper bound, we utilize (5.9) and 0 < 7, < +* to deduce

5 . 9n+1 - < 1 + 2’}/* (5* §77L+1)7n+1 1 + Yn+1 _ ’%21+1
e on nH = 1+ ’7* 1+ (5* zTn 1+ 2’}/”_;,_1 1+ 2’}/”+1
< 1+ 2v* <5 Tntl ¢ > L+9n41 Vo1
o 1+’Y* 1+6* 2(1+6*> 1+2’7n+1 1+27n+1

R S

1
(5:13) STre "ot o) 12

. .. . . . 1427* | 6% ¢ -
where, in the third inequality, we utlized the monotonicity of 1+,;f* (1+6* + 2T ) £
2 2
_ 1121’ which itself follows from the monotonicity of 1+2ac and — 2(141-2x) (1429 —
(7)?) +2(1 +7%)? > 0 for ¢ <1, and
Lty (6% ¢ 1+ a?
T4+ \1+0* 2(1+06%)/ 142z 1+2z
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_(1+7*_1> 2 A2y - ()P F20 497 1
o 2 1+ 2z 4(1 4 *) 2(1 + 2z)
Loy - (v)?) +2(1 ++%)°

8(1+7%) '

After substituting 6* into the upper bound (5.13), we obtain the upper bound of
(5.12):

On+1 ()P +" A 429" —(1)?) (r)?
Sn+1—p— — Vnt1 < " ” =|1- — .
0 2(1 4 2v*) 4(1 4 2v*) 1+ 2y
We are now in the position to prove our main theorem. Following Lemma 4.6,
after throwing away the term ||Aj, (o' —o7)||? and multiplying — /\ > 0 by both
sides of the inequality (4.23), we have

n n 1 n+1 n n
o = o+ (e (1420) 22 38) {25 fop+t — o

MnJrl

n+1 H2
1- )\n+1

1
5 (€21 +0) + Arp) Tnt1[Anoy

)‘n-‘rl n n— n n—
< = (lonl* = lon = 1% + (@ + 2)lloy = o371 |1*)

—1- )\nJrl
1 5 Hont1 n 2
+5(e%0 + ATpy1) ————Yn+17nl|Anoy||
2 1- )\nJrl
n — C n
+C5 (14 ) 75—y (log 1P + g + llog ! IP) + 75— R
)\n+1 1- /\n+1
(5.14)
Substituting (5.8) into (5.14), we deduce
oA 2 = R + 5"+ 2)07 " = ORI + b Sacf
< Unga (llon ]l = llop 12+ (6* + 2)llop — op IP) + Ens1Onsanll Anop|®
* n n n n— C n
+C5 (14 07) 5y (o + gl + o~ IP) + T——R".
Ant1 1= A1

(5.15)

Since 0 < fipt1 < 2, 1_/\1L+1 < (}i;ﬁ)z =1+7,and 0, > 0, and by (5.12), we obtain

o ¥ 112 = ol + (6 + 2)llop ™ = o 12 + Onsrmnra | Anoy 12

<vni1 (I97 12 = lop M2 + (6% +2)loF = o7 12 + Onru|ARoRI?)

(7] _
+ (snﬂ ol _ l/n+1> Onmall AnaRI? + 205 (1 + %) msr (lof 12 + llopl12 + 1oy~ |12) + CR™ !
n

<vnst (IR = o7 M2 + (6" + Dllofs = op M2 + Ol Anoft12) + 0L = 2)6nmall Anoh]|?
(5.16)
+2C3(1+ 6")(1+ P)rasr (lof 12 + ol + o~ |12) + CR™HL.

This is exactly (5.1) if we make the identification a,, = |o%||?, b, = (0% + 2)|jo] —
o7V 2,0 = | Ana} |2, Cy = 205(1+ A7) (1 +).
In order to verify the remaining conditions of Lemma 5.1, we notice that

o 1%, (6% + 2)llop ™ = o 12, 1 Aney 1%, Onr, T d R™TH > 0.
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In addition, by the time-step restriction (5.5), we have

< 15 (12— ()2
Tn - = ’
T ACA+ )1+ )1+ + (7)) 8C(1+ 2y )1+ + (7))L +77)?
For the initial step [|o}||? = 0 and ||} — oP||? = ||o}||?; then by Lemma 5.1 we have
(5.17) o 1% + 2(8* +2) Z okt = o1 + 20n 11701 [ Anoy TP
k=1
n—1
+2(1=n0) > Oeramia | Aoy P
k=1
4C3(1 4 0")(1+ )1+ 7"+ (19)?) « /
Sexp( Cs(1+07)(L+9)(1+9" + (") )ZTk> R
1-v
k=1
where
b 24 0(246%) 20 20 &
Rn = ﬁ” h”2 +2 (77 + 1) alTlHAhO'th + 7y ;Rk+1.

Here we use the fact that 0; = % (52(1 +0*) + Aﬁ) Ty e2(1+6*) + Am < Ce2,

S0
R, < ClIoAIR + el Ao ) + = SR < o(rt+ ZR*) —cr,
k=1 k=1
which is derived from the estimate of initial term (4.24). So we have
i+ < CR.
Combining the estimate for p"*1,

" < CRTFH[u | pras,

we finally obtain the optimal convergence analysis. Moreover, carefully checking the
proof reveals that C in (5.6) depends on T',&,v*, ¢, and E(u?). o

Remark 5.1. We remark that the allowable value on gamma* can be easily im-
proved. Due to the continuity of the function ¢(¢), the upper bound of v* can be

close to
2v13 1 8 2
£(0) = cos | = arccos [ ————— — — ~1.343
0= <3 ' < 13\/13» 3

by choosing ¢ small enough. For example, we may take v* = 1.34 < £(0). There
are other means to increase the allowable value of v*. In fact, we notice that the
terms % |Aho,7f+1H2 and 1666||Ah0h+1||2 in Lemma 4.4 come from the Cauchy—

Schwarz inequality and Young S 1nequahty We can adjust the coefficients so that
+1|| +1||2

where s is a constant

166'
small enough. In turn, the term ( (1+9)+ A’Tn+1) /Ln+1Tn+1‘|AhO'Z+1H2

(e2(x +6) + ATpy1) ,un+17_n+1HAh0h+1”2 (4.23), where x is one constant smaller

these terms become s |Ah0h and s |Apoy

becomes
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than 2 but close to 2. As a result, analogously to the derivation of (5.3), we may
obtain a new equation z3 4 322 — 52 — 3 = 0. This new equation admits a root

%COS 1arccos —% —1~1.53
V3 3 8v/2 o

which could be a modified upper bound for ~*.

6. Numerical results. In this section we report numerical results based on the
fully discrete second order BDF scheme (2.6).

To check for accuracy, we consider a two-dimensional computational domain £ =
(0,1)% with the following exact solution:

(6.1) ue(z,y,t) = cos(mx) cos(my)e "

This implies that u, satisfies the Cahn—Hilliard equation (1.2) with an artificial, time-
dependent forcing term added on the right-hand side:

(6.2) e = A(u —ue — 2 Au,) + g, (z,y,t) € Q x (0,T].

The final time is set to be T" = 1, and the physical parameter and the artificial
constant are given by €2 = 0.05, A = 1. The nonlinear equations are solved by
Newton’s method. In the iteration process, the initial guess is chosen to be a second
order extrapolation of the previous two steps, i.e., u;‘“’o = (1 + yog)ull —up™,
which usually leads to one iteration stage fewer than the one with an initial guess

as uZH’O = uj. Therefore, this methodology reduces the computation cost. The

stopping criterion for the nonlinear iteration is given by HuZH’(m) —uZH’(m*l) | < h3.
We compute numerical solutions with grid sizes N, = 16,32, 64, 128,256, 512, with

the L? errors reported at the final time T = 1.

6.1. Grid refinement strategy 1. For the initial time step size, we set 7y = h.
For the coarsest grid, we first generate a series of time nodes {t,} with uniform step
sizes. Then we add a 10% perturbation onto {t,}, obtaining new time-step series
{7n}. The grid refinement strategy is as follows: Denote by {t<°¥s¢} and {tfn¢} the
time node series of the coarse grid and the fine grid, respectively. For each odd k,
take tg“e = %tfgjff‘; /2 For each even k, t‘;me is set to be the average of ti‘fl and t}i”jel,
with 10% perturbation. Such a random approach easily leads to large I'y. Figure 6.1
shows this refinement strategy.

Figure 6.2 shows the L? errors and the corresponding convergence orders be-
tween the numerical and exact solutions. A clear second order accuracy, for both the
temporal and spatial approximations, is observed in the convergence test.

6.2. Grid refinement strategy 2. Define the time-step ratio v = 1.3. The
initial time-step is determined by ™ = m For the coarsest grid, we divide the
time step size series {7,} into two halves: 7y,7s,... ATNp /2, and Tg 2415 TNp /242

.., TNy In the first half, time step size 73, is chosen to be 7 times the previous time
step size, i.e., To = YT1,73 = Y72, ..., TNy /2 = YTNy/2—1- In the second half, 73 is cho-
sen to be 1/v times the previous time step size, i.e., Ty, /212 = %TNT/2+1, ce y TNp =
%TNT_l. Additionally, we set Ty, /241 = 77Ny /2. The grid refinement strategy is that
we first divide by 2 the time step size series of the coarse grid and then put it in the
first half of the time-step series of the fine grid. Finally, we duplicate the first half of
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FiG. 6.1. The curves from top to bottom represent the variable time-step with grid size N = 16,
Nj, = 32, Nj, = 64, Nj, = 128, Nj, = 256, and Nj, = 512.

o N ve Llerror Ny ve error order
l T 2 T T
0 184 b
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- 2
" 188 1
1 1
18 b
1 L 175 L I L L I
‘IEI‘ ‘IEIZ ‘IEIB 0 100 200 300 400 500 BO0
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FiG. 6.2. L? numerical errors at T = 1.0 and the corresponding convergence orders versus
Ny, (log-log plot) for the second order BDF scheme (2.6). The surface diffusion parameter is taken
to be €2 = 0.05.

the time-step series of the fine grid to its second half in order to make the fine grid
time-step series complete. Figure 6.3 shows this refinement strategy.

Figure 6.4 shows the L? errors and the corresponding convergence orders be-
tween the numerical and exact solutions. A clear second order accuracy, for both the
temporal and spatial approximations, is observed in the convergence test.

In order to observe the dependence of the convergence rate on v, we vary v from
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Fic. 6.3. The lines from top to bottom represent the variable time-step with grid size N = 16,
Nj, = 32, Nj, = 64, Nj, = 128, Nj, = 256, and Nj, = 512.
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FIG. 6.4. L? numerical errors at T = 1.0 plotted versus Ny, (log-log plot) for the second order
BDF scheme (2.6). The surface diffusion parameter is taken to be €2 = 0.05.

1.3 to 2.0 and introduce the following convergence orders:

L2error(i)

lOg L2error(i+1)
Ny (i+1) 7

log ]}Vh(i)

order(i) = 1<i<5.

Table 6.1 shows convergence orders under different choices of v, with grid refinement
strategy 2. It demonstrates the insensitive dependence on + for the range considered.

6.3. Energy decay. Here we report numerical results on the decay of energy.
Recall that when the interface width is much smaller than the domain size, the energy
is expected to decay at the rate of t~1/3 with a rigorous lower bound available in the
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TABLE 6.1
Convergence order.

v  order(l) order(2) order(3) order(4) order(5)
1.3 1.49848 1.72519 1.88947 1.9627 1.98763
1.4 1.41375 1.63429 1.8333 1.93577 1.97566
1.5 1.35521 1.55709 1.77916 1.90735 1.96236
1.6 1.3163 1.49276 1.72895 1.87884 1.94846
1.7 1.29022 1.43892 1.68309 1.851 1.93437
1.8 1.27158 1.39324 1.64145 1.82422 1.92037
1.9 1.25625 1.35388 1.60368 1.79871 1.90667
2.0 1.24077 1.31939 1.56936 1.77456 1.89336

5 logtj e loié)
10 : : : : :
vatiable step |]
———ﬂ 4
g i
+
[x]
oo
40t —_
I ]
& ]
il i
Ik
0
‘10 Lol Lol Ll Lol Ll A RET
10 10" 10° 10" 0 10° 10t

o)

F1G. 6.5. Log-log plot of the temporal evolution of the energy E for €2 = 0.005. The energy

decreases like t~ 3 wuntil saturation. The blue line represents the energy plot obtained by the simu-
lation, while the red line is obtained by least squares approximations to the energy data. The least
squares fit is only taken for the linear part of the calculated data, only up to about time t = 100.
The fitted line has the form at®, with a = 19.96, b = —0.3192. (Color available online.)

literature. We compare the numerical simulation result with the predicted energy
decay rate, using the proposed second order BDF scheme (2.5) for the Cahn—Hilliard
flow (1.2). The surface diffusion coefficient parameter is taken to be £ = 0.005,
and the computational domain is taken to be Q = (0,12.8)2, with a resolution of
Np, = 128 for spatial discretization. As for the time grid, the strategy is to put a 10%
perturbation to the previous step.

In order to make energy nonnegative all the time, we introduce the following
modified energy by adding a constant to the original energy:

1 ¢

7 _ 1 4_1 2 - j 2 _ 1
(6.3) E(u)—/ﬂ(zlu S0+ + SV ) dx = B(u) + 710

Figure 6.5 presents the log-log plot for the energy versus time, with the given physical

parameter €2 = 0.005. The detailed scaling “exponent” is obtained using least squares
fits of the computed data up to time ¢ = 100. A clear observation of the at® scaling
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law can be made, with a = 19.96, b = —0.3192. Therefore, we have verified in our
numerical simulation the energy dissipation law and the coarsening rate.

7. Concluding remarks. In this paper we have presented a second order vari-
able time-step BDF scheme for the Cahn—Hilliard equation (1.2) in conjunction with a
mixed finite element approximation in space. The scheme is uniquely solvable and un-
conditionally energy stable with mild assumptions on the time step size and the ratio
of adjacent time-steps. Moreover, rigorous error estimates in the form of O(72 + h?)
in the ¢°°(0,T; L?) norm have been established without any undesirable exponential
prefactor in I';, which is related to the number of transitions in the variable time-
stepping. Such a rigorous result is new even in the linear case to the best of our
knowledge. The proof relies on a novel generalized discrete Gronwall-type inequality
that is able to deal with differences of nonnegative terms. In addition, the numerical
experiment shows that the proposed second order BDF scheme is able to produce
accurate long time numerical results with a reasonable computational cost. In par-
ticular, the energy dissipation rate given by the numerical simulation indicates an
almost perfect match with the theoretical t—/3 prediction. Analysis of a truly adap-
tive strategy based on the variable stepping method as well as higher order methods
is underway.
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