1,588 research outputs found

    QoS multicast tree construction in IP/DWDM optical internet by bio-inspired algorithms

    Get PDF
    Copyright @ Elsevier Ltd. All rights reserved.In this paper, two bio-inspired Quality of Service (QoS) multicast algorithms are proposed in IP over dense wavelength division multiplexing (DWDM) optical Internet. Given a QoS multicast request and the delay interval required by the application, both algorithms are able to find a flexible QoS-based cost suboptimal routing tree. They first construct the multicast trees based on ant colony optimization and artificial immune algorithm, respectively. Then a dedicated wavelength assignment algorithm is proposed to assign wavelengths to the trees aiming to minimize the delay of the wavelength conversion. In both algorithms, multicast routing and wavelength assignment are integrated into a single process. Therefore, they can find the multicast trees on which the least wavelength conversion delay is achieved. Load balance is also considered in both algorithms. Simulation results show that these two bio-inspired algorithms can construct high performance QoS routing trees for multicast applications in IP/DWDM optical Internet.This work was supported in part ny the Program for New Century Excellent Talents in University, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1, the National Natural Science Foundation of China under Grant no. 60673159 and 70671020, the National High-Tech Reasearch and Development Plan of China under Grant no. 2007AA041201, and the Specialized Research Fund for the Doctoral Program of Higher Education under Grant no. 20070145017

    A green intelligent routing algorithm supporting flexible QoS for many-to-many multicast

    Get PDF
    The tremendous energy consumption attributed to the Information and Communication Technology (ICT) field has become a persistent concern during the last few years, attracting significant academic and industrial efforts. Networks have begun to be improved towards being “green”. Considering Quality of Service (QoS) and power consumption for green Internet, a Green Intelligent flexible QoS many-to-many Multicast routing algorithm (GIQM) is presented in this paper. In the proposed algorithm, a Rendezvous Point Confirming Stage (RPCS) is first carried out to obtain a rendezvous point and the candidate Many-to-many Multicast Sharing Tree (M2ST); then an Optimal Solution Identifying Stage (OSIS) is performed to generate a modified M2ST rooted at the rendezvous point, and an optimal M2ST is obtained by comparing the original M2ST and the modified M2ST. The network topology of Cernet2, GĂ©ANT and Internet2 were considered for the simulation of GIQM. The results from a series of experiments demonstrate the good performance and outstanding power-saving potential of the proposed GIQM with QoS satisfied

    Alignment based Network Coding for Two-Unicast-Z Networks

    Full text link
    In this paper, we study the wireline two-unicast-Z communication network over directed acyclic graphs. The two-unicast-Z network is a two-unicast network where the destination intending to decode the second message has apriori side information of the first message. We make three contributions in this paper: 1. We describe a new linear network coding algorithm for two-unicast-Z networks over directed acyclic graphs. Our approach includes the idea of interference alignment as one of its key ingredients. For graphs of a bounded degree, our algorithm has linear complexity in terms of the number of vertices, and polynomial complexity in terms of the number of edges. 2. We prove that our algorithm achieves the rate-pair (1, 1) whenever it is feasible in the network. Our proof serves as an alternative, albeit restricted to two-unicast-Z networks over directed acyclic graphs, to an earlier result of Wang et al. which studied necessary and sufficient conditions for feasibility of the rate pair (1, 1) in two-unicast networks. 3. We provide a new proof of the classical max-flow min-cut theorem for directed acyclic graphs.Comment: The paper is an extended version of our earlier paper at ITW 201

    A Distributed Routing Algorithm for Internet-wide Geocast

    Get PDF
    Geocast is the concept of sending data packets to nodes in a specified geographical area instead of nodes with a specific address. To route geocast messages to their destination we need a geographic routing algorithm that can route packets efficiently to the devices inside the destination area. Our goal is to design an algorithm that can deliver shortest path tree like forwarding while relying purely on distributed data without central knowledge. In this paper, we present two algorithms for geographic routing. One based purely on distance vector data, and one more complicated algorithm based on path data. In our evaluation, we show that our purely distance vector based algorithm can come close to shortest path tree performance when a small number of routers are present in the destination area. We also show that our path based algorithm can come close to the performance of a shortest path tree in almost all geocast situations

    Congestion Managed Multicast Routing in Wireless Mesh Network

    Get PDF
    To provide broad band connectivity to the mobile users and to build a self-structured network, where it is not possible to have wired network, “Wireless Mesh Networks” are the most vital suitable technology. Routing in Wireless Mesh Networks is a multi-objective nonlinear optimization problem with some constraints. We explore multicast routing for least-cost, delay-sensitive and congestion-sensitive in optimizing the routing in Wireless mesh networks (WMNs). In this work different parameters are associated like edge cost, edge delay and edge congestion. The aim is to create a tree traversing which the set of target nodes are spanned, so as to make the cost and congestion to be minimum with a bounded delay over the path between every pair of source and destination. Since searching optimal routing satisfying multi constraints concurrently is an NP complete problem, we have presented a competent estimated algorithm certified with experimental results, which shows that the performance of presented algorithm is nearly optimum

    On minimizing coding operations in network coding based multicast: an evolutionary algorithm

    Get PDF
    In telecommunications networks, to enable a valid data transmission based on network coding, any intermediate node within a given network is allowed, if necessary, to perform coding operations. The more coding operations needed, the more coding resources consumed and thus the more computational overhead and transmission delay incurred. This paper investigates an efficient evolutionary algorithm to minimize the amount of coding operations required in network coding based multicast. Based on genetic algorithms, we adapt two extensions in the proposed evolutionary algorithm, namely a new crossover operator and a neighbourhood search operator, to effectively solve the highly complex problem being concerned. The new crossover is based on logic OR operations to each pair of selected parent individuals, and the resulting offspring are more likely to become feasible. The aim of this operator is to intensify the search in regions with plenty of feasible individuals. The neighbourhood search consists of two moves which are based on greedy link removal and path reconstruction, respectively. Due to the specific problem feature, it is possible that each feasible individual corresponds to a number of, rather than a single, valid network coding based routing subgraphs. The neighbourhood search is applied to each feasible individual to find a better routing subgraph that consumes less coding resource. This operator not only improves solution quality but also accelerates the convergence. Experiments have been carried out on a number of fixed and randomly generated benchmark networks. The results demonstrate that with the two extensions, our evolutionary algorithm is effective and outperforms a number of state-of-the-art algorithms in terms of the ability of finding optimal solutions

    A Novel Network Coded Parallel Transmission Framework for High-Speed Ethernet

    Get PDF
    Parallel transmission, as defined in high-speed Ethernet standards, enables to use less expensive optoelectronics and offers backwards compatibility with legacy Optical Transport Network (OTN) infrastructure. However, optimal parallel transmission does not scale to large networks, as it requires computationally expensive multipath routing algorithms to minimize differential delay, and thus the required buffer size, optimize traffic splitting ratio, and ensure frame synchronization. In this paper, we propose a novel framework for high-speed Ethernet, which we refer to as network coded parallel transmission, capable of effective buffer management and frame synchronization without the need for complex multipath algorithms in the OTN layer. We show that using network coding can reduce the delay caused by packet reordering at the receiver, thus requiring a smaller overall buffer size, while improving the network throughput. We design the framework in full compliance with high-speed Ethernet standards specified in IEEE802.3ba and present solutions for network encoding, data structure of coded parallel transmission, buffer management and decoding at the receiver side. The proposed network coded parallel transmission framework is simple to implement and represents a potential major breakthrough in the system design of future high-speed Ethernet.Comment: 6 pages, 8 figures, Submitted to Globecom201
    • 

    corecore