158 research outputs found

    MUSICNTWRK: data tools for music theory, analysis and composition

    Get PDF
    International audienceWe present the API for MUSICNTWRK, a python library for pitch class set and rhythmic sequences classification and manipulation, the generation of networks in generalized music and sound spaces, deep learning algorithms for timbre recognition, and the sonification of arbitrary data. The software is freely available under GPL 3.0 and can be downloaded at www.musicntwrk.com

    Automatic music transcription: challenges and future directions

    Get PDF
    Automatic music transcription is considered by many to be a key enabling technology in music signal processing. However, the performance of transcription systems is still significantly below that of a human expert, and accuracies reported in recent years seem to have reached a limit, although the field is still very active. In this paper we analyse limitations of current methods and identify promising directions for future research. Current transcription methods use general purpose models which are unable to capture the rich diversity found in music signals. One way to overcome the limited performance of transcription systems is to tailor algorithms to specific use-cases. Semi-automatic approaches are another way of achieving a more reliable transcription. Also, the wealth of musical scores and corresponding audio data now available are a rich potential source of training data, via forced alignment of audio to scores, but large scale utilisation of such data has yet to be attempted. Other promising approaches include the integration of information from multiple algorithms and different musical aspects

    A Survey of AI Music Generation Tools and Models

    Full text link
    In this work, we provide a comprehensive survey of AI music generation tools, including both research projects and commercialized applications. To conduct our analysis, we classified music generation approaches into three categories: parameter-based, text-based, and visual-based classes. Our survey highlights the diverse possibilities and functional features of these tools, which cater to a wide range of users, from regular listeners to professional musicians. We observed that each tool has its own set of advantages and limitations. As a result, we have compiled a comprehensive list of these factors that should be considered during the tool selection process. Moreover, our survey offers critical insights into the underlying mechanisms and challenges of AI music generation

    Feature extraction of musical content for automatic music transcription

    Get PDF
    The purpose of this thesis is to develop new methods for automatic transcription of melody and harmonic parts of real-life music signal. Music transcription is here defined as an act of analyzing a piece of music signal and writing down the parameter representations, which indicate the pitch, onset time and duration of each pitch, loudness and instrument applied in the analyzed music signal. The proposed algorithms and methods aim at resolving two key sub-problems in automatic music transcription: music onset detection and polyphonic pitch estimation. There are three original contributions in this thesis. The first is an original frequency-dependent time-frequency analysis tool called the Resonator Time-Frequency Image (RTFI). By simply defining a parameterized function mapping frequency to the exponent decay factor of the complex resonator filter bank, the RTFI can easily and flexibly implement the time-frequency analysis with different time-frequency resolutions such as ear-like (similar to human ear frequency analyzer), constant-Q or uniform (evenly-spaced) time-frequency resolutions. The corresponding multi-resolution fast implementation of RTFI has also been developed. The second original contribution consists of two new music onset detection algorithms: Energy-based detection algorithm and Pitch-based detection algorithm. The Energy-based detection algorithm performs well on the detection of hard onsets. The Pitch-based detection algorithm is the first one, which successfully exploits the pitch change clue for the onset detection in real polyphonic music, and achieves a much better performance than the other existing detection algorithms for the detection of soft onsets. The third contribution is the development of two new polyphonic pitch estimation methods. They are based on the RTFI analysis. The first proposed estimation method mainly makes best of the harmonic relation and spectral smoothing principle, consequently achieves an excellent performance on the real polyphonic music signals. The second proposed polyphonic pitch estimation method is based on the combination of signal processing and machine learning. The basic idea behind this method is to transform the polyphonic pitch estimation as a pattern recognition problem. The proposed estimation method is mainly composed by a signal processing block followed by a learning machine. Multi-resolution fast RTFI analysis is used as a signal processing component, and support vector machine (SVM) is selected as learning machine. The experimental result of the first approach show clear improvement versus the other state of the art methods

    16th Sound and Music Computing Conference SMC 2019 (28–31 May 2019, Malaga, Spain)

    Get PDF
    The 16th Sound and Music Computing Conference (SMC 2019) took place in Malaga, Spain, 28-31 May 2019 and it was organized by the Application of Information and Communication Technologies Research group (ATIC) of the University of Malaga (UMA). The SMC 2019 associated Summer School took place 25-28 May 2019. The First International Day of Women in Inclusive Engineering, Sound and Music Computing Research (WiSMC 2019) took place on 28 May 2019. The SMC 2019 TOPICS OF INTEREST included a wide selection of topics related to acoustics, psychoacoustics, music, technology for music, audio analysis, musicology, sonification, music games, machine learning, serious games, immersive audio, sound synthesis, etc
    • …
    corecore