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ABSTRACT 

The purpose of this thesis is to develop new methods for automatic transcription of melody and 

harmonic parts of real-life music signal. Music transcription is here defined as an act of 

analyzing a piece of music signal and writing down the parameter representations, which indicate 

the pitch, onset time and duration of each pitch, loudness and instrument applied in the analyzed 

music signal.The proposed algorithms and methods aim at resolving two key sub-problems in 

automatic music transcription: music onset detection and polyphonic pitch estimation. There are 

three original contributions in this thesis. 

The first is an original frequency-dependent time-frequency analysis tool called the Resonator 

Time-Frequency Image (RTFI). By simply defining a parameterized function mapping frequency 

to the exponent decay factor of the complex resonator filter bank, the RTFI can easily and 

flexibly implement the time-frequency analysis with different time-frequency resolutions such as 

ear-like (similar to human ear frequency analyzer), constant-Q or uniform (evenly-spaced) time-

frequency resolutions. The corresponding multi-resolution fast implementation of RTFI has also 

been developed. 

The second original contribution consists of two new music onset detection algorithms: Energy-

based detection algorithm and Pitch-based detection algorithm. The Energy-based detection 

algorithm performs well on the detection of hard onsets. The Pitch-based detection algorithm is 

the first one, which successfully exploits the pitch change clue for the onset detection in real 

polyphonic music, and achieves a much better performance than the other existing detection 

algorithms for the detection of soft onsets. 

The third contribution is the development of two new polyphonic pitch estimation methods. 

They are based on the RTFI analysis. The first proposed estimation method mainly makes best of 

the harmonic relation and spectral smoothing principle, consequently achieves an excellent 

performance on the real polyphonic music signals. The second proposed polyphonic pitch 

estimation method is based on the combination of signal processing and machine learning. The 

basic idea behind this method is to transform the polyphonic pitch estimation as a pattern 

recognition problem. The proposed estimation method is mainly composed by a signal 

processing block followed by a learning machine. Multi-resolution fast RTFI analysis is used as 

a signal processing component, and support vector machine (SVM) is selected as learning 
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machine. The experimental result of the first approach show clear improvement versus the other 

state of the art methods. 

Keywords: Signal processing, music transcription, onset detection, polyphonic pitch estimation  
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RESUME  

Cette thèse aborde le sujet de la transcription musicale, que l'on définit ici comme le fait 

d'analyser le signal d'un morceau de musique, et d'en tirer une représentation paramétrique qui 

indique le ton, l'instant de l'attaque, la durée de la note, sa force et l'instrument utilisé dans le 

signal musical analysé. 

 

De nouvelles méthodes de transcription de la mélodie et des parties harmoniques d'un signal 

musical, tel qu'on en trouve dans la vie réelle, en résultent. Les algorithmes et les méthodes 

proposées sont axées sur la résolution de deux sous-problèmes clés dans la transcription de la 

musique: la détection de l'attaque et l'estimation des tons polyphoniques. Il y a trois apports 

inédits dans cette thèse: 

 

Le premier est un outil d'analyse temps-fréquence: le RTFI (pour Resonator Time-Frequency 

Image). En définissant simplement une fonction paramétrée faisant correspondre une fréquence 

au facteur exponnentiel de declin du groupe de filtres complexes du résonnateur, le RTFI peut 

servir à implémenter facilement l'analyse temps-fréquence, avec différentes résolutions du 

domaine temps-fréquence, telles que celle de l'oreille humaine, avec un facteur Q constant, ou 

encore uniforme (espacée régulièrement). Une implémentation rapide avec plusieurs résolutions 

simultanées a également été développée. 

 

Deux nouveaux algorithmes de détection de l'attaque constituent le deuxième apport: l'un basé 

sur l'énergie et l'autre sur le ton. Celui basé sur l'énergie se comporte bien sur de fortes attaques. 

Celui basé sur le ton est le premier à exploiter correctement le changement de ton dans la 

détection d'attaque d'une musique polyphonique réelle, et offre de bien meilleurs résultats que 

les autres algorithmes existants, quant il s'agit de détecter des attaques douces. 

 

Enfin, deux nouvelles méthodes d'estimation des tons polyphoniques sont proposées: la 

première, basée sur l'analyse RTF, exploite au mieux la relation harmonique et le principe du 

lissage spectral. Elle fournit par conséquent d'excellentes performances quand elle est appliquée 

à des signaux de musiques polyphoniques réelles. La seconde est basée sur une combinaison de 

traitement de signal et d'apprentissage de la machine. L'idée fondamentale de cette méthode est 

de transformer l'estimation de tons polyphoniques en un problème de reconnaissance de 
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modèles. L'analyse RTFI rapide avec plusieurs résolutions simultanées sert au traitement du 

signal et l'apprentissage de la machine est géré par SVM (Support Vector Machine). Les 

résultats des essais effectués avec cette méthode montrent de claires améliorations de l’état de 

l’art. 

 

Liste des mots-clefs : 

Traitement du signal, transcription de la musique, détection de notes, estimation de hauteur 

polyphonique  
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C h a p t e r  1  

INTRODUCTION 

1.1 Definition of  Automatic Music Transcription 
Music transcription is here defined as an act of analyzing a piece of music signal and writing down 

the parameter representations, which indicate the pitch, onset time and duration of each pitch, 

loudness and instrument applied in the analyzed music signal. Automatic music transcription is a 

process to convert an acoustical waveform into a musical notation (such as the traditional western 

music notation) by computer programming. In most cases automatic transcription of common 

monophonic music can be considered as a matured filed, however the computational transcription of 

polyphonic music has less relative success. Transcription of polyphonic music is a very difficult task 

for the average human without training, however human can improve their transcription ability by 

learning. Skilled musicians are able to transcribe polyphonies with much better performance than 

computational transcription system can achieve in current research phases. The automatic music 

transcription is a critical step for some higher level music analysis tasks such as melody extraction, 

rhythm tracking, and harmony analysis.  

1.2 Objectives  
The purpose of this thesis is to develop new methods for automatic transcription of melody and 

harmonic parts of real-life music signal. The proposed algorithms and methods aim at resolving two 

key sub-problems in automatic music transcription: music onset detection and polyphonic pitch 

estimation. The music signal is often considered as the succession of the discrete acoustic events. 

The term music onset detection refers to the detection of the instant when a discrete event begins in 

acoustic signal. The term polyphonic pitch estimation refers to the estimation of possible pitches in 

the polyphonic music signal that several music notes may occur simultaneously.  

1.3 Motivations  
The music consists of some basic elements. These are rhythm, melody, harmony, and timbre. The 

aim of this thesis is to extract two important parameters: note onset time and polyphonic pitch. As 

shown in Figure 1.1, the extraction of the both parameters plays an essential role in a music analysis. 
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The extracted onset time of music notes can be used to chiefly determine rhythm. The extracted 

multiple pitches of music notes can be primarily employed for the detection of melody and harmony. 

Melodic lines are sequences of notes over time, and harmony is determined by the relationship 

between the multiple simultaneously occurring pitches of music notes.  

 

 

Because the extraction of note onset time and polyphonic pitch is a fundamental stage of analyzing 

the basic elements of music signals, it can be utilized to support broad music applications. As shown 

in the Figure 1.1, except the automatic music transcription itself, the possible applications include 

content-based music retrieval, automatic music summarization, interactive music system, low-bitrate 

compression coding for music signal and so on. Multimedia music applications are nowadays 

rapidly moving from simple content related scenarios to more complex and sophisticated domains 

including content, interaction, related descriptions and annotations, item identification. The creation 

of huge databases coming from both restoration of existing analog content and new digital content is 

Figure 1.1 Essential Role of the extracted parameters: Onset 
Time and Polyphonic Pitch in Music Analysis 



 3

requiring more and more reliable and fast tools for content analysis and description, to be used for 

searches, content queries and interactive access. In the case of content-based music retrieval, 

automatic onset and harmonic information extraction is crucial. Not only it is interesting to build 

measures of harmonic similarity between musical excerpts, but it can further help some other kind of 

analysis such as rhythm or instrument detection by finding onset time points where such events or 

instrument note starts are more likely to be observed. . Another interesting point that is gaining 

importance in the domain is the automatic control of signal processing parameters according to 

content features and builds some music interactive systems. Another possible application of the 

extraction of polyphonic pitch is to assist for the low-bitrate coding for music signal. The MPEG-4 

Structured Audio coding provides new methods for low-bitrate storage. In a framework of 

Structured Audio coding, automatic music transcription and music synthesis play chief role. 

1.4 Main Results of  the Thesis 
The main three original contributions of this thesis can be summarized as follows: 

1) An original frequency-dependent time-frequency analysis tool has been proposed and 

formalized: the Resonator Time-Frequency Image (RTFI).  

Music signal is time-varying, and most of the music related tasks need a joint time-frequency 

analysis. An important time-frequency representation (TFR) is the Wigner-Ville Distribution (WD) 

which satisfies a number of desirable mathematical properties and provides high time-frequency 

resolution. However, the serious cross term interference in the WD prevents it from the practical 

application. A number of existing TFRs can be considered as the smooth version of WD to reduce 

the cross term interference. According to their covariance property, these existing TFRs can be 

categorized into several main classes such as the Cohen’s class of time-frequency distributions, the 

Affine class of time-frequency distributions. For example, in the commonly-used TFRs for music 

analysis, the spectrogram (STFT analysis) is a particular example of the Cohen’s class of time-

frequency distribution, and the scalogram (wavelet analysis) belongs to the Affine class of time-

frequency distribution.  

The Cohen’s class of time-frequency distributions perform the time-frequency analysis with a 

uniform time-frequency resolution in the time-frequency plane (“uniform analysis”), on the other 

hand the Affine class of time-frequency distributions have the “constant-Q” time-frequency 

resolution (“constant-Q analysis”). Most of the current existing TFRs show similar limitations, and 

their time-frequency resolutions are either uniform or “constant-Q”. However, it is well known that 
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time-frequency resolution of human ear frequency analyzer is neither uniform nor “constant-Q”. 

This motives me to develop a more general and flexible class of TFRs whose time-frequency 

resolutions are not limited in the uniform or “constant-Q” analysis. I extend the spectrogram into a 

broader class of TFRs and make the window function dependent on analysis frequency. Base on this 

idea, I propose and formulate a particular time-frequency representation: the Resonator Time-

Frequency Image (RTFI) for music signal analysis. The RTFI is implemented by the one-order 

complex IIR-filter bank, so it is computation-efficient. By simply defining a parameterized function 

mapping frequency to the exponent decay factor of the complex resonator filter bank, the RTFI can 

easily and flexibly implement the time-frequency analysis with different time-frequency resolutions 

such as ear-like (similar to human ear frequency analyzer), constant-Q or uniform (evenly-spaced) 

time-frequency resolutions. The corresponding multi-resolution fast implementation of RTFI has 

also been developed. The practical application examples of RTFI analysis are the proposed music 

onset detection algorithms and polyphonic pitch estimation methods. In all these algorithms and 

methods, the RTFI become the common time-frequency analysis tool.  

2) Two music onset detection algorithms have been proposed and developed: Energy-based 

detection algorithm and Pitch-based detection algorithm.  

The note onsets may be classified into “soft” or “hard” onsets according to slow or fast transitions 

between the two successive notes in the analyzed music signal. The note transition with hard onset is 

accompanied with the sharp change in energy, and the note transition with soft onset shows a 

gradual change. Based on the RTFI analysis, I propose an energy-based onset detection algorithm 

which is simple and performs very well on the detection of hard onsets. However, the detection of 

soft onset has been proved to be very difficult task, because the real-life music signal often contains 

the noise and vibration associated with frequency and amplitude modulation. The energy-change in 

the vibration probably surpasses the energy-change of soft onset, and this makes it very hard to 

distinguish the true onsets from the vibration only based on the energy-change clue.  

Pitch change is the most salient clue for note onset detection of the music signal with soft onset. On 

the one hand, there exist many onset detection systems that use energy change and/or phase change 

as the source of information, on the other hand, only few pitch-based onset detection systems exist. 

One important reason for this is that pitch-tracking itself is an challenging task.  

The proposed Pitch-based detection algorithm uses RTFI analysis and produces a pitch energy 

spectrum that makes the pitch change more obvious; and then makes best use of pitch change clues 
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to separate the music signal into transient and stable part, and finally searches the possible note 

onsets only in the transient part. This method greatly reduced the false positives that caused by the 

salient energy-change in the stable part of the music note, and greatly improve the detection 

performance on the music signal with many soft onsets or vibration.  

Both of the energy-based and pitch-based detection algorithms have been tested on broad real-life 

music excerpts and the test results are encouraging. Especially, for the detection of the soft onsets, 

the proposed Pitch-based detection algorithm achieves a much better performance compared to the 

other existing onset detection algorithms. 

3) Two polyphonic pitch estimation methods have been proposed and developed: polyphonic 

pitch estimation method I and polyphonic pitch estimation method II. Polyphonic pitch estimation is 

a very challenging task because of the wide pitch range, much variety of the spectral structures of 

the different instrument sound and the coinciding harmonic components frequently occurring in the 

polyphonic sound. 

The proposed polyphonic pitch estimation method I mainly makes best of the harmonic relation and 

spectral smoothing principle. The harmonic relation means that the ratio between frequency 

components of a real monophonic music note and its fundamental frequency is integer or nearly 

integer. The spectral smoothing principle refers to the fact that the corresponding harmonic spectral 

envelop of a real monophonic music note often is gradually change. The proposed method I first 

produces the energy spectrum by RTFI analysis, and then uses the harmonic grouping principle to  

transform the RTFI energy spectrum into the pitch energy spectrum. The preliminary pitch 

candidates are estimated by picking the peaks in the pitch energy spectrum. The extraneous 

estimations in the pitch candidates are to be cancelled by the spectral smoothing principle. The detail 

description of the proposed estimation method I can be found in the Chapter 5.  

The proposed polyphonic pitch estimation method II is based on the combination of signal 

processing and machine learning. The basic idea behind this method is to transform the polyphonic 

pitch estimation as a pattern recognition problem. The proposed estimation method is mainly 

composed by a signal processing block followed by a learning machine. Compared to the human 

listening system, the signal processing stage is a time-frequency signal analysis tool similar to 

cochlear filters, whereas the learning machine plays a role similar to human brain.  Multi-

resolution fast RTFI analysis is used as a signal processing component, and support vector machine 
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(SVM) is selected as learning machine. The detail description of the proposed estimation method II 

also can be found in the Chapter 5. 

Additionally, with the combination of the proposed onset detection algorithms and polyphonic pitch 

estimation methods, the real automatic music transcription prototype systems have also been 

proposed and developed. 

The both proposed polyphonic pitch estimation methods have been tested on the real music excerpts 

from the music CDs, clean polyphonic mixtures and the polyphonic mixtures with different level 

pink noise. The polyphonic mixtures is produced by the mixing the monophonic samples of 23 

different music instrument types. The test results of the both proposed methods are competitive and 

encouraging, compared to the existing methods.  On the one hand, the proposed method I presents 

better overall performance than the proposed method II (SVM). On the other hand, the method II 

(SVM) can produce time-pitch probability output, which is useful for some real applications.  
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1.5 Organization of  the Thesis 
This thesis is organized as follows. Chapter 2 summarizes the existing time-frequency analysis 

methods and presents their specific advantages and problems in their usages. Chapter 3 has an 

introduction of support vector machines. The original work is introduced in the Chapter 4-9. Chapter 

4 presents and formalizes an original time-frequency analysis method: the Resonator Time-

Frequency Image (RTFI), which is especially designed for music signal analysis. The corresponding 

multi-resolution fast implementation and application examples of RTFI are also introduced. As a 

basic time-frequency analysis tool, the RTFI is exploited in the later proposed music onset detection 

algorithms (introduced in Chapter 5) and polyphonic estimation methods (introduced in Chapter 6-

9).Chapter 5 presents two proposed music onset detection algorithms: Energy-based detection 

algorithm and Pitch-based detection algorithm, and both algorithms employ the RTFI as the time-

frequency analysis tool. Chapter 6-9 proposes two polyphonic pitch estimation methods, Polyphonic 

pitch method I and Polyphonic pitch method II. The method I also uses the RTFI as the time-

frequency analysis tool, and time-frequency analysis of method II uses the RTFI multi-resolution 

fast implementation (introduced in Chapter 4). Additionally, Chapter 9 presents two real music 

transcription systems which combine the proposed polyphonic pitch methods and the music onset 

detection algorithms (introduced in Chapter 5). Chapter 10 presents the main conclusions and 

discusses the future work. 
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C h a p t e r  2  

TIME-FREQUENCY ANALYSIS FOR MUSIC SIGNAL: STATE 

OF THE ART 

2.1 Introduction 
The classic Fourier Transform is a very useful tool for frequency analysis of a stationary signal that 

maintains the same period over an infinite duration time. The Fourier Transform can show if a 

frequency component exists, but not tell when the frequency component occurs. The music signal is 

time-varying and non-stationary, its frequency components change with time, so music signal 

frequency analysis should better be a joint time-frequency analysis, which shows how the signal’s 

frequency content evolves in time.  

Because of the uncertainty principle, it is impossible for a time-frequency analysis to have both the 

best time and frequency resolution at the same time: there is a tradeoff between time and frequency 

resolution. To select a suitable time-frequency resolution for a joint time-frequency analysis of the 

music signal, there are two different approaches.  The first one is to learn  more about how human 

ear makes a time-frequency analysis by research in audio physiology and psychology, because the 

ear has very excellent performance as a  music signal processing component (in fact, the auditory 

filter bank can be seen as a time-frequency analysis tool that simulates the cochlear function.). 

Another one is to learn more about the time-frequency energy density distribution of the most 

typical music signals. In the end, both approaches should be considered together to select a suitable 

time-frequency analysis.  

One commonly-used time-frequency analysis tool is Short Time Fourier Transform (STFT), which 

cuts the signal into different slices and calculates the Fourier Transform on each slice to obtain a 

local time-frequency analysis. A different approach to get the local time-frequency analysis is the 

Wigner distribution, but its non-linearity causes cross interference, and at the same time the 

computation cost is very expensive; the above two reasons make Wigner distribution rarely used in 

practical applications. Wavelets are of course another alternative way to joint time-frequency 

analysis, and moreover they have a constant-Q frequency resolution that  is similar to cochlear 

frequency resolution distribution at high frequencies, so the wavelet analysis is more adaptable to 
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music signal processing  than the STFT, which has  the same time-frequency resolution in all the 

time-frequency domain; but the wavelet analysis still shows a similar limitation as STFT, as it 

always keeps the constant-Q frequency resolution: it can not flexibly set the time-frequency 

resolution in the time-frequency domain. On the other hand, the known cochlear filter only has 

similar constant-Q frequency resolution at high frequency, and it has a nearly equal frequency 

resolution at low frequency. The next sections will review the above mentioned tools in more detail 

and present their actual and possible uses in the context of music sound analysis. 

2.2 STFT and Spectrogram 
Fourier Transform and its inverse can transform signals between the time and  frequency domains, 

and it becomes a very useful tool for stationary signal processing. It can make it possible to view the 

signal characteristics either in time or frequency domain, but not to combine both domains. In order 

to obtain a joint time-frequency analysis for non-stationary signals, STFT cuts the time signal into 

different frames and then perform a Fourier Transform in each frame. The STFT and its power 

spectrum named spectrogram, can be defined like in equations (2.1) and (2.2) 

∫
∞

∞−

−−= τττω ωτdetwftSTFT j)()(),(        (2.1) 

2),(),( ωω tSTFTtPower =       (2.2) 

The STFT at time t is the Fourier Transform of a local signal, which is obtained by multiplication of 

a signal )(tf   and a short window function )( tw −τ  centered at time t. When moving the window 

along the signal time axis, we can calculate the STFT at different time instants and obtain a joint 

time-frequency analysis. Since STFT can be easily and efficiently implemented by fast algorithms 

of Fast Fourier Transform (FFT), it and the spectrogram have been early used in speech and music 

signal analysis.  To construct a STFT, the effective length and shape of the window function is a key 

factor to determine the STFT characteristics. The shape of the window function is the first important 

factor; the default window is the rectangle widow, which causes the well-known frequency leakage 

problem because the signal’s phase discontinuity at the edge of the window. To reduce the 

frequency leakage, some other windows are often selected such as the Hanning window. The other 

very important factor is the length of the window; the longer the window, the better frequency 

resolution the STFT has, but unfortunately at the price of poorer temporal resolution according to 

the uncertainty principle. Given a window function )(tw  and its Fourier Transform  )(ωW , the 
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commonly used measure of the time and frequency resolution is the window’s effective length t∆  

and  bandwidth ω∆ , defined as in the following formulas: 

∫
∫ −

=∆
dttw

dttwtt
t 2

22'
2

)(

)()(         (2.3) 

∫
∫ −

=∆
ωω

ωωωω
ω

dW

dW
2

22'
2

)(

)()(         (2.4) 

 where  

∫
∫=

dttw

dttwt
t 2

2

'

)(

)(          (2.5) 

∫
∫=

dtW

dtWt
2

2

'

)(

)(

ω

ω
ω       (2.6) 

According to the time-bandwidth uncertainty principle, t∆ and ω∆  must meet the following 

inequality: 

2
1' ≥∆•∆ tω     (2.7) 

According to this inequality, the STFT time and frequency resolutions can not be optimal at the 

same time, and there is a trade-off to be found between them. To make the (2.7) be an equality the 

window must be the Gaussian window.  

One can simply transform the definition (2.1) into another equivalent definition as follows [Hlaw92]: 

tjtj eettftSTFT ωωγω −−= )))((*)((),(        (2.8)   or  

))(*))((),( tetftSTFT tj γω ω−•=        (2.9) 

where )()( twt −=γ        (2.10) 
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From the formulas (2.8) and (2.9), there exist two different filter bank interpretations for the STFT 

as illustrated in the Figure 2.1.  

 

)(tγf(t)

tje ω−

tjet ωγ )(f(t) 

tje ω−
 

 

 

The left part of Figure 2.1 shows the STFT implementation by the band pass filter bank; at any angle 

frequencyω , first the signal passes through the band pass filter centered at ω  and then it is 
demodulated to zero frequency. The right part of  the Figure 2.1 shows the STFT implementation by 

a low pass filter; at any angle frequency, first the signal is demodulated to zero frequency and then 

passes through the low pass filter.  

As described in the definition of STFT at (2.1), the window function is independent from the 

frequency ω , so the time-frequency resolution of STFT is the same in all the time frequency plane. 

This makes STFT able to have limited application in music signal processing, because the real 

music signal processing often needs to provide better time resolution at high frequencies and better 

frequency resolution at low frequencies.  

2.3 Wavelet Analysis  
Differently from the case of STFT, the Wavelet Analysis (WT) provides a varying time-frequency 

resolution in the time frequency plane. During the last twenty years, the WT has been developed and 

explored in many different research fields. The Wavelet Transform (WT) can be defined as the 

following formula: 

   ∫
∞

∞−

−
= ττφτ d

s
t

s
ftsWT )(1)(),( *        (2.11) 

Figure 2.1 Filter bank interpretation of STFT
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In the equation the Ф* is the conjugate of theФ. As shown by this definition, WT can be described 

in terms of the signal’s decomposition over the wavelet )(, τφ ts , which is defined as the dilation and 

translation of the mother wavelet )(τφ : 

   )(1)(, s
t

sts
−

=
τφτφ        (2.12) 

In (2.12), t is the translation factor; s is the scale factor and s/1  is used to normalize the wavelets. 

In (2.11), t, s, and τ are continuous variables; this wavelet transform is commonly named the 

Continuous Wavelet Transform (CWT). Differently from other transforms such as FT, the wavelet 

basis function is not specified. To make the reverse transform possible, the wavelet function must 

meet the so-called admission condition: 

   ∫
+∞

∞−

Φ +∞<= ωω
ω

φ dC
2)(        (2.13) 

Where )(ωΦ is the Fourier Transform of the wavelet function )(τφ : 

∫
+∞

∞−

−=Φ ττφω ωτ de j)()(        (2.14) 

 With the condition (2.13), the signal )(τf  can be reconstructed by the inverse transform of CWT 

[Cohen96]: 

   tdstWT
s
dsf st∫∫

+∞

∞−

+∞
= )(),()( ,0 2 τφτ        (2.15) 

The condition (2.13) also implies the following property of wavelet exists: 

0)0()( =Φ=∫
+∞

∞−
ττφ d       (2.16) 

Φ(0) is 0, so the wavelet )(τφ  should be oscillating. Sometimes another additional requirement, the 

so-called regularity condition, is also imposed for some application that need better detect the 

singularity of the analyzed signal. The regularity condition of wavelets can be described as follows: 
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0)( =∫
+∞

∞−
ττφτ dp     Np L2,1,0=   (2.17) 

Under the regularity condition, the values of ),( stWT are influenced by the regularity of the 

analyzed signal )(τf  and can be used to detect the signal’s local singularity [Cohen96, Mallat98]. 

Another equal frequency definition of (2.11) is as following: 

∫
∞

∞−
Φ= ωω

π
ω ω dessFstWT tj)(

2
)(),( *

       (2.18) 

In the (2.18) )(ωF and )(ωΦ  are the Fourier Transform of the signal )(τf  and the wavelet 

function )(τφ  respectively, and the ),( stWT can be considered as the filtering result of the signal 

by the band pass filter bank.  The filter bandwidth in the filter bank increases as the frequency 

increases (the scale factor s decreases), but the ratio between bandwidth and centre frequency keeps 

constant.. 

The CWT decomposes the signal into a time-frequency domain according to a continuously varying 

scale and translation and represents the signal with high redundancy, so it is reasonable to calculate 

the wavelet coefficient at discrete scale and time grids for a more efficient representation. Such a 

discrete sampling wavelet transform can been described as follows:  

∫
∞

∞−
= ττφτ dfkjWT st )()(),( ,

*     (2.19) 

where  )(1)(
0

00

0

, j

j

jkj s
sk

s
ττφτφ −

=  (2.20) 

It is common use to select 20 =s and make a dyadic sampling on the frequency axis. The wavelet 

transform decompose the one-dimension signal into the 2 dimensions discrete wavelet coefficients. 

At this point it is important to consider if such wavelet coefficients give a complete and stable signal 

representation.  
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The frame theory is an important mathematics tool to resolve a problem of this kind. A sequence 

{ } znn ∈φ  in a Hilbert space H is called a frame if and only if there exists two constants 0>≥ AB  

such that for all Hf ∈ ,   

( ) 222 , fBffA
zn

n ≤≤∑
∈

φ  (2.21) 

When AB = , the frame is said to be tight (Mallat98). A frame is invertible and defines a complete 

and stable signal representation. If one wants to make the wavelet coefficients an efficient and 

invertible representation, a wavelet function sequence need to be a frame. Daubechies derives the 

admission and sufficient condition to construct a wavelet frame (Daub92). When a wavelet function 

sequence is a tight frame, it is an orthonormal base.  

A new multi-resolution theory was formulated in 1989 and this provided also new view for wavelets 

[Mallat89]. The main concept is that wavelet analysis can be considered to approximate the 

analyzed signal from a coarse approximation to a more detailed approximation.  

 

According to this multi-resolution theory wavelets can be formulated as a sequence of 

approximation subspaces { }
zjjV

∈
of )(2 RL [ Mallat98]: 

j
j

j VktfVtfZkj ∈−⇔∈∈∀ )2()(,),( 2   (2.22) 

,1, jj VVZj ⊂∈∀ +  (2.23) 

1)2/()( +∈⇔∈ jj VtfVtf   (2.24) 

},0{lim ==
+∞

−∞=+∞→ j
j

jj
VV I  (2.25) 

),()(lim 2 RLClosureV
j

jj
==

∞

−∞=−∞→
U  (2.26) 
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and there exists a { } znnt ∈− )(ϕ which is a Riesz basis of  0V  

One can define that the  function  nj ,ϕ as follows: 

{ } zn
jj

nj ntt ∈
−− −= )2(2)( 2/

, ϕϕ  

 From the definition it has been proved that  nj ,ϕ is also the Riesz basis of the subspace jV  and all 

nj ,ϕ  are collectively called scaling function, which needs to meet the following so-called scaling 

equation: 

)2()(2)( ntnht −= ∑ ϕϕ  (2.27) 

Because nj ,ϕ is the Riesz basis of the subspace Vj, so the  nj ,ϕ  can be an orthonormal or 

biorthormal basis of the subspace jV .  One can define an approximation operator  Aj that 

approximates a )(2 RL  function f by the basis of subspace Vj. In the case that nj ,ϕ is an orthonormal 

function, Aj is expressed as follows: 

nj
zn

njj ffA ,,, ϕϕ∑
∈

=  (2.28)  

In case that )2( ntj −ϕ is biorthormal basis of the subspace Vj, Aj is expressed as follows: 

nj
zn

njj ffA ,,, ϕϕ∑
∈

=  (2.29) 

where nj ,ϕ is a dual scaling function: nmnjmj −= ,0,, , δϕϕ . The dual scaling function also needs 

to meet the scaling equation: 

)2()(2)( ntnht −= ∑ ϕϕ  (2.30) 
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One can derive a wavelet function from the scaling function as follows: 

)2()(2)( ntngt −= ∑ ϕφ , )2()(2)( ntngt −= ∑ ϕφ  (2.31) 

where 

)1()1()( nhng n −−= , )1()1()( nhng n −−=    (2.32) 

such that : 

nj
zn

njjjj ffAfAf ,,1 , φφ∑
∈

− =−=∆   (2.33) 

As shown in (2.32) wavelet functions can be use to demonstrate the detail information according to 

the corresponding scale. The wavelets { }
znnj ∈,φ  with fixed scale j constitutes a Reisz basis of the 

subspace Wj and the wavelets at all the scales { }
znjnj ∈,,φ  together constitute a Reisz basis of 

)(2 RL :  nmjinjmi −−= ,,, , δϕϕ . Here it is preferred to explain the wavelet multi-resolution 

interpretation by signal processing terminology rather than introducing too much mathematics in 

detail. In the multi-resolution analysis, the scaling function is the low pass filter; the subspace jV  

corresponds to a different frequency band. More specifically, for example there is a band-limited 

real signal f with frequency bandwidth range [ ]00 ωω− , in the case that the scaling function of the 

subspace 0V covers all the signal frequency [ ]00 ωω−  band, then A0f is  a complete approximation 

of f ; the scaling function of the subspace Vj has a compressed frequency band [ ]jj 2/2/ 00 ωω− , so 

fAj  has lost the high frequency information [ ] [ ]0000 2/2/ ωωωω jj U−− . From fAj 1− to fAj , 

the frequency information [ ] [ ]1
000

1
0 2/2/2/2/ −− −− jjjj ωωωω U  has been lost; the wavelets of 

the subspace jW  are the band pass filer with frequency band exactly in 

[ ] [ ]1
000

1
0 2/2/2/2/ −− −− jjjj ωωωω U  , and used to detect the lost detail information jf∆  from 

fAj 1− to fAj ; from the scaling equation (2.27) and equation (2.31), the scaling function and 
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wavelet function at scale j can be calculated from the scaling function at scale 12 −j ; it is obvious 

that  h(n) should be a low pass filter and g(n)should be a high pass filter.  

If nj ,ϕ  and nj ,φ constitute an orthonormal base of subspaces Vj and Wj, fAj  and jf∆  are 

characterized by njj fa ,,ϕ=  and njj fd ,,φ= . It has been proved that [Mallat98]: 

)2()()2(][1 phanapnhpa j
zn

jj −∗=−= ∑
∈

+  (2.34) 

)2()()2(][1 pganapngpd j
zn

jj −∗=−= ∑
∈

+  (2.35) 

and the corresponding reconstruction : 

][)(][ 11 pgdphapa jjj ∗+∗= ++

((  (2.36) 

with the definition :   





+=
=

=
120

2)2(
)(

pnif
pnifpy

ny(  (2.37) 

One can first get a discrete series a0 that characterized the approximation of signal at the subspace V0, 

then 0a is first decomposed into two channels by low and high pass filters and then dyadic 

subsampling at each channel to get  the wavelet coefficient 1d  for the high pass channel and 1a  for 

the low pass channel. This process can be iterated again and again and get ja and jd  step by step. 

A corresponding fast reverse wavelet transform can be used to reconstruct the approximation series 

a0 from the aj and { }11 ,,, ddd kk L−  

In practical applications the analyzed signal is often a discrete series, and the discrete series  b(n)  

can be considered as an approximation of f(t) in the subspace Vj; the above fast algorithm can then 

be used to calculate the wavelet transform. One one hand it is natural to derive the low pass filter h(n) 

and high pass filter g(n) from the scaling function ϕ , and then use h(n) and g(n) to perform fast 

wavelet transform; on the other hand in practical cases h(n) and g(n) are often designed first, and 
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then the scaling function and wavelet function may be derived if necessary. One basic unit in the fast 

wavelet transform is the 2-channel muli-rate filter bank that decompose the signal into high and low 

frequency component following by the dyadic subsampling in each channel, and a corresponding 

multi-rate filter bank perform the reverse wavelet transform to reconstruct the original input. Such a 

reconstructive analysis-synthesis filter bank is a perfect reconstruction filter bank. The commonly 

used perfect reconstruction filter banks are a quadrature mirror filter (QMR) and a conjugate mirror 

filter (CMF). The perfect reconstruction condition (PR condition) for a 2-channel filter bank can be 

described in the z domain as follows: 

 0)(ˆ)()(ˆ)( =−+− zGzGzHzH  (2.38) 

kzzGzGzHzH −=+ 2)(ˆ)()(ˆ)(  (2.39) 

Since in the 2-channel multi-rate filter bank the dyadic subsampling may cause frequency aliasing, 

(2.38) is intended to clear the aliasing in the reconstructed output. And (2.39) makes sure that the 

reconstructed output equals the input delayed by k . For fast wavelet transform there are many 

different 2-channel filter bank implementations that have been explored under the PR condition and 

some other additional requirements. But such a dyadic sampling wavelet analysis shows a fixed 

limitation for some practical applications, because it always selects the scaling factor as 2 and the 

frequency band width of the high frequency channel is twice the frequency band of the neighboring 

low frequency channel. The wavelet packet analysis provides a much more flexible and detailed 

time-frequency resolution in the time-frequency plane. In many case it is much better if one 

performs an adaptive time-frequency analysis according to the signal content. The wavelet packet 

analysis provides an adaptive analysis according to the frequency axis, and makes it possible to 

flexibly select a time-frequency resolution for difference frequency bands. And the local cosine 

packet analysis can flexibly select a time-frequency resolution in the time axis. 

2.4 Wigner Distribution 
As mentioned in previous sections, the STFT-based time-frequency analysis is closely dependent on 

a window function, and the wavelet analysis depends on the wavelet function. Differently from them, 

the Wigner Distribution (WD) characterizes the time-frequency information by the autocorrelation 

of the analyzed signal and provides a better time-frequency energy concentration than STFT and 

WT. The WD can be described as follows: 
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Given a signal )(ts ,  

τττω τωdetststWD j)
2
1()

2
1(),( * +−= ∫

+∞

∞−

 (2.40) 

or given the spectrum )(ωS , that is frequency transform  of signal )(ts  

      θθωθωω θdeSStWD jt)
2
1()

2
1(),( * +−= ∫

+∞

∞−

 (2.41) 

The WD shows many attractive mathematics properties as an appropriate time-frequency 

representation [Hlaw92]:  

1) WD preserves the frequency and time shift: 
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2) WD is a real distribution: 

),(),(* ωω tWDtWD ss =  

3) WD preserves the signal energy. The integration of WD over the time-frequency domain 

equals the total energy of the signal: 

ωωωω dSdttsdtdtWDs

22
)()(),( ∫∫∫∫ ==  

4) WD has the marginal property. Integration of WD over time equals the energy spectrum, 

while integration of WD over frequency equals the instantaneous energy: 

∫∫ == 22 )(),()(),( tsdtWDSdttWD ss ωωωω  

5) WD is also a finite support if the signal is a finite support in the time domain or in the 

frequency domain. If the signal is zero out of a given time interval, correspondingly the WD 

is also zero, and the same if the signal is zero out of a given frequency interval, the 

corresponding the WD is zero: 
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6) For a monocomponent analytical signal, the group delay GD of the signal can be 

achieved by calculating the first moment in time of WD, while the instantaneous frequency 

IF of the signal can be obtained by calculating the first moment in frequency of WD 
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The WD reveals then many desirable mathematics properties as a time-frequency representation, 

but WD has been seriously limited in the practical application by the presence of cross terms 

inference. 
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As shown in the above equations, the WD of the sum of two signals does not equal the sum of the 

two signal’s WD, but has an additional term 
yxWD ,
 that represents the so-called cross term. The 

cross term lies in the center of the two auto-components and oscillates; the frequency of its 

oscillation increases as the distance between the two auto-component increases. If the signal has N 

components, then the signal’s WD contains 2/)1( +NN  cross interference terms. These 

interferences make the WD much more complex and very difficult for the analysis of an actual 

signal that often is multi-component. Because the cross interference terms oscillate, it is a natural 

idea to remove the cross interference of the WD by low pass filtering it. The pseudo Wigner-

Distribution (PWD) is defined as: 

ττττω τωdehtststPWD j)()
2
1()

2
1(),( * +−= ∫

+∞

∞−

 (2.42) 

where the h is a finite length window function. In terms of WD, the PWD is the frequency smooth of 

the WD by the h that introduces a frequency convolution [Doug92]: 
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ηηηωω dtWDHtPWD ∫
+∞

∞−

−= ),()(),(   (2.43) 

The PWD smooth the WD in the frequency axis, while the Cohen’s class  smooth the WD in both 

time and frequency direction by 2-D low pass filter. The Cohen’s class  reduces the cross term 

inferences in the time-frequency plane. Cohen’s class  can be defined as follows in term of WD: 

τηηωττηφω ddtWDtC ∫
+∞

∞−

−−= ),(),(),(  (2.44) 

2.5 Auditory Filter Bank 
There are many music analysis tasks that are closely related to human perception. Understanding 

how the auditory system works is especially useful to the music analysis, as it is the best existing 

example of analysis “tool”.  

The human ear consists of outer ear, middle ear and inner ear. Sounds go through the outer ear, 

middle ear, inner ear, nervous fibers and finally into the brain. The sound wave is picked up in outer 

ear, and then transformed into a mechanical vibration in the middle ear. In the inner ear, the cochlear 

transforms the mechanical vibration into neural impulse by a complex process. Cochlear plays an 

important role, similar to a frequency analyzer. The auditory frequency analyzer is often modeled by 

a band pass filter bank, which is the so-called auditory filter bank. The masking experiment is 

commonly used to detect the bandwidth and shape of the auditory filter. Masking refers to a 

psychoacoustics phenomena: a sound becomes inaudible when another louder sound is present 

within certain time-frequency intervals. Another important notion relative to the auditory filter bank 

is the ‘critical band’ introduced by Fletcher in 1940. As illustrated in Figure 2.2, one sinusoid signal, 

with power Ps at frequency F, is masked by the wideband noise that is centered at F and has equal 

power spectrum density in band △F; and the threshold of hearing of the sinusoid signal increases 

when the noise band △F is increased; however, when the noise band △F is up to a certain value 

△B, the threshold is not increased significantly even if the noise band △F is further enlarged. This 

value △B is called critical band centered at F.  This detection of the band width is based on the 

assumption that the audio filter’s shape is approximately rectangle and the signal is detectable if the 

signal-noise-ratio (SNR) is equal or greater than 1.   
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Another generalized critical band concept for the auditory filter is the Equivalent Rectangular 

Bandwidth (ERB) defined as follows: 

dffHBEB ∫
∞

=
0

2)(  (2.45) 

Figure 2.2 Critical Bandwidth

Figure 2.3 Notched Noise Experiment



 24

where H(f) is the frequency response  of a auditory filter and the value of |H(f)| is normalized at 1. 

The real power response shape of the auditory filter is not a rectangle and it can be measured with 

some special assumptions. The notched-noise experiment is commonly used to define the possible 

shape of auditory filter power response. Illustrated in Figure 2.3, a sinusoid signal is masked by the 

wideband noise with the spectral notch centered at the signal frequency. The threshold of hearing of 

the sinusoid signal can be measured in function of the notch width, 2△F, and the measured 

threshold is proportional to the noise power leaking into the auditory filter, so the power response 

shape of the auditor filter can be deduced by the function relation between the measured threshold 

and the notch width. The easiest way is to approximate the auditory filter power response by some 

parameterized function family. The rounded-exponential function is introduced to approximate the 

shape of auditory filter power response. The rounded-exponential auditor filter power response can 

be defined as follows: 

pgepgfH −+= )1()( 2
 (2.46) 

  where  

 
c

c

f
ffg −

=  (2.47) 

There is only one parameter p in the definition (2.46). To measure the shape of the power response 

of the auditory filter, it is necessary to make an assumption that the threshold to hear the signal is 

proportional to the noise power leaking into the auditory filter.  If the measured power threshold of 

hearing the signal is PS, the noise power is PN, the noise spectrum density is N0 and K is a constant, 

the following equations apply (Hart97): 
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0 )()(2)(  (2.48) 

)()( gKPgP NS ∆=∆  (2.49) 

In the two equations there are 2 parameters that need to be calculated, so two measurements are 

enough for the calculation. However in practical experiments there are many measurements and it is 
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possible to select the parameters that make the parameterized function the best approximation of the 

power response of the filter.  

Another commonly used auditory bank is the gammatone filter bank that can be defined by its 

impulse response. A gammatone filter’s impulse response is described as follows: 

0)2cos()2exp()( 1 >+= − ttfbtatth c
n φππ  (2.50) 

The impulse response is the product of a cosine carrier and a gamma envelope; the parameter fc is 

the center frequency of the filter, b determines the frequency bandwidth, n is the filter order. 

Compared to the other auditory filter bank, the gammatone filter bank has some advantages. First, as 

shown in the definition, it is expressed as a casual impulse response, so it is realizable and 

computation-efficient implementations are available. Secondly it is reported that the magnitude 

response of the gammatone filter bank matches very well with many results from psychoacoustic 

research. It is well known in fact that the human ear filter seems symmetric at low level input, 

asymmetric with increasing frequency, and behaves like a level-dependent nonlinear filter.  

Recently it was reported [Irino97] that gammachirp auditory filter bank is a better candidate for an 

asymmetric, level-dependent auditory filter bank, and matches very well with many notched-noised 

masking data. The gammachirp auditor filter may be defined according to its impulse response as 

follows: 

0)ln2cos()2exp()( 1 >++= − ttctfbtatth c
n φππ  (2.51) 

Compared to gammatone filter, the gammachirp impulse response adds a new log-time phase term 

clnt.  The additional phase term controls the filter’s asymmetry.  

 

2.6 Review of  Joint Time-Frequency Analysis for 

Music Signals 
Music signal analysis is closely related to most of modern music research tasks such as timbre 

analysis, sound compression, auditory modelling and automatic music transcription. Helmholtz 

analyzed the timbre of instruments by Fourier analysis based on limited spectral analysis tools, 
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including acoustic resonators, tuning forks, and reeds; but Fourier analysis only can provide some 

information about the amplitudes of the harmonic components without any time-varying character 

information; this is probably the reason why Helmholtz believed that the fundamental frequency 

of the harmonic series determined the pitch and the pattern of magnitudes of the remaining 

components determined the timbre [Will96]. In fact it is well known now that both things are not 

completely true. The timbre perception is also relative to the time-varying character of the 

harmonic components, and most of the music related tasks need a joint time-frequency analysis, 

though the autocorrelation analysis may be enough to detect a fundamental frequency of simple 

monophonic music [Mont00].  

As a traditional and convenient time-frequency analysis tool, STFT is still broadly exploited for 

music analysis; for example, Pertusa recently used the STFT as the front-end processing for his 

polyphonic transcription tool [Pert03, Pert04]. But as mentioned STFT only provides the same time-

frequency resolution in all the time-frequency plane, this conflicts with the requirement that music 

signal analysis need a better time resolution at high frequency and better frequency resolution at low 

frequency. STFT is then commonly combined with some other frequency analysis tool to reduce its 

main disadvantage. In his signal analysis system, Peeters first use a Mel filter bank to separate the 

input signal into different frequency bands and then STFT is used to extract detailed frequency 

information for every frequency band; the STFT window-size can be flexibly set according to signal 

analysis requirements [Peet02]. In another polyphonic transcription system, Klapuri first calculates 

the STFT of the input signal and gets the frequency information, then directly in the frequency 

domain he separates the signal into 18 different frequency bands, each of which comprises a 2/3-

octave region of the spectrum; and then local regions of the spectrum are further processed 

separately [Klapuri04]. Hainsworth introduces the Time-Frequency Reassignment technology, 

which is considered as a refinement of STFT and makes best use of the phase information of 

STFT to reduce the smearing of the energy of the standard STFT [Hains01-1]; he tries to use this 

technology in real-word examples and shows some advantages over the standard STFT [Hains01-

2]. Keren proposes Multiresolution Fourier Transform (MFT) as a computation-efficient time-

frequency analysis tool for polyphonic music transcription; the basic idea behind the MFT almost is 

to separate the signal into different frequency bands by subsampling, then perform the different 

window-size STFT in every frequency band, and achieve different time-frequency resolution in the 

time-frequency plane with high improved computation efficiency [Keren98]. Jang introduces a 

multiresolution time-frequency analysis for sinusoid models; in his analysis-synthesis processing, 

the signal is first separated into different octave-spaced subbands by dyadic sampling multirate filter 

bank, and then in every subband an optimal analysis-synthesis frame size is chosen adapting to its 
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time-frequency character, then sinusoid component is extracted in every frame by matching pursuit 

algorithm.  

Another multiresolution time-frequency analysis, wavelet analysis, can provide a constant-Q 

frequency resolution that almost matches the requirement of music signal analysis. But the 

commonly used dyadic sampling DWT can only provide very coarse frequency resolution that is far 

from the frequency resolution requirement of music signal analysis. The wavelet packet analysis 

provides a more flexible and detailed resolution in the time-frequency plane and also provides an 

orthonormal or biorthonormal base, so it shows strong attraction in music applications especially for 

feature extraction and compression. Srinivasan incorporates the psychoacoustic models with an 

adaptive wavelet packet scheme and achieve high-quality compression in audio signal [Srin98]. 

Jones tries to summarize a general relation between the number of vanishing moments of the 

wavelet and sparseness of the DWT coefficient for application in the music signals compression 

[Jone04]. Grimaldi applies the Discrete Wavelet Packet Transform (DWPT) to extract time and 

frequency features from music signal for music genre classification [Grim02]. Tzanetakis developes 

a system to track the music beat by the DWT [Tzane01]. Dörfler tries to provide a mathematical tool 

for time-frequency analysis of music signal by introducing the Gabor analysis, which is 

mathematically well-defined and can help understanding many issues in the time-frequency 

processing of audio signals [Dorf01].  

As mentioned before, the Wigner-Distribution has a good time-frequency energy concentration, but 

it is the cross-term interference and high computation cost that prevents Wigner-Distribution from 

applying as a general time-frequency analysis tool in practical music analysis. Cohen’s class has 

been explored for music signal analysis by several researchers. Donovan develops a perceptual joint 

time-frequency tool in the framework of Cohen’s class  that combines a smooth kernel and Wigner-

Distribution to incorporate a joint model of both temporal and spectral mask [Dono05]. Modal 

distribution is a member of Cohen’s class specifically designed for music signal analysis.  Steran 

designs an automatic transcription system, which uses the modal distribution as time-frequency 

analysis front end [Ster96].  And Mellody applies the modal distribution as time-frequency analysis 

tool in exploring the characteristics of violin vibratos [Mell00].   

As mentioned in the previous sections, the auditory filter bank is commonly used to model the 

human ear as a frequency analyzer, so the auditory filter bank is often designed to match as far as 

possible with the human ear’s frequency analysis function based on the existing data from the 

psychoacoustics and physiology research; for a perception-relative music processing, the auditory 
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filter bank can be considered as one phase of the time-frequency analysis. If a practical music 

processing task (such as polyphonic transcription) needs relatively high frequency resolution, the 

audio-model-based time-frequency analysis often includes two phases; first the input signal is 

separated into the different frequency bands by auditory filter bank, and then more detail frequency 

information need to be obtained in every frequency band in some other ways. In polyphonic 

transcription systems, Marolt combines the gammatone filter bank and an adaptive oscillator to 

perform the frequency analysis; first the music signal is separated into different frequency bands by 

a gammatone filter bank, and then an adaptive oscillator is used to track partials [Maro04]. 
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C h a p t e r  3  

LEARING THEORY: STATE OF THE ART 

There are many common and practical tasks such as feature recognition and classification, that are 

very difficult to be resolved by traditional computational means, but that are usually not difficult for 

the human being once educated by learning and experience; it is then a natural idea to mimic the 

natural behavior by implementing some kind of learning machine to deal with similar problems. In 

this section, a two-class classifier is discussed in the context of machine learning associated to signal 

processing for the solution of classification tasks related to music. With this, a short introduction to 

Support Vector Machines will be given. 

 

3.1 Empirical Risk Minimization and Structure Risk 

Minimization Inductive Principle 
Considering a two-class classifier, a machine learning process may be described as follows: 

There exist m samples with n dimensional input vector x and known output label y,  
n

m Rx ∈ , { }1,1−∈my    (3.1) 

 and the decision function set, 

{ }1,1:},:),({ −→Λ∈= nRfxfS αα  

where Λ is a set of the parameters. 

 

From the above decision function set, one wants to find a specific function f(x,α*), which can be 

used to estimate the output values for the new input samples with minimal real errors; in other words, 

a machine learning processing consists of adjusting the parameterα  for minimizing expected risk 

R(α) on bad classification of new unknown samples. If a function L is selected as loss function, 

P(x,y) is the probability distribution, and assumed the example data is independently and identically 

distributed (i.i.d.) , it can be written that:  

),()),(,()( yxdPxfyLR ∫= αα         (3.2) 

Usually the P(x,y) is unknown, R(α) can not be directly computed, and only the limited number of 

m samples following the P(x, y) is known; consequently the empirical risk Remp(α) is usually used 
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to train the learning machine (in place of R(α)) by the empirical risk minimization (ERM) inductive 

principle, which plays an important role in the learning theory. 

 Remp(α) can be calculated according to the following definition: 
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The least-squares method is often chosen as the loss function; in this case the empirical risk is 

therefore: 
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The goal of the learning process is to minimize the expected risk (real risk) instead of empirical risk, 

so if a learning processing is based on the empirical risk minimization inductive principle, it must be 

considered when such a learning process can also achieve a small expected risk (real risk) and when 

it cannot; in other words, it must be explored if the minimization of the empirical risk is consistent 

with the minimization of real risk. Vapnik  [[Vapnik99] uses the uniform convergence framework to 

resolve such an issue.  It is claimed that expected risk Remp(α) uniformly converge to real risk R(α) 

if the following equation is valid : 
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with the condition BRA ≤≤ )(α  

The equation (3.5) is also a sufficient and necessary condition for the ERM principle to be consistent. 

The theory of uniform convergence can provide some bounds on the deviation of empirical risk 

from expected risk. As an example, one commonly-used bound, with the probability 1-η, can be 

described as follows: 
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+≤  (3.6) 

where h is the Vapnik-Chervonenkis (VC) dimension of the decision function set S. The above 

inequality can also be rewritten in general as: 

)()()(
h
lRR emp φαα +≤   (3.7) 

where the )/( hlφ  is so-called  confidence interval.  

For a certain training set, the bound in (3.6) provides a way to estimate the real risk on future data 

based only on the empirical risk and the VC dimension. The VC dimension represents a crucial 

concept in the statistic learning theory and can be used to estimate the capacity of a learning 
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machine. The VC dimension of a set of indicator functions ( the function with only two values) 

f(x,α) can be defined as  the maximum number h of vectors x1, x2… xh, that can be separated into 

two classes in all 2h possible ways using functions of the set [Vapnik99]. The VC dimension is 

independent from the sample distribution and only depends on the set of the decision function.  

For example, a two-dimension two-class linear classifier has the decision function  like, 
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zf   (3.8) 

 in the two-dimension coordinate space Z=(z1,z2), the VC dimension of this classifier equals 3 (as 

illustrated in Figure 3.1).  

 

 
 

As shown in sub-image (a-h), given 3 input samples z1
, z2 z3

,  and the corresponding output label 

y1, y2, y3  can be arranged at most in eight different ways, in each of which the samples (z1
, y1), (z2, 

y2), (z3, y3) can be always correct classified into two classes by 2-dimension linear decision 

function (in equation 3.8) with selection of 3 approximate parameters; given 4 input samples 

with the output labels as shown in sub-image (i) , the linear decision function can not correctly 

classify the 4 samples anymore, so the VC dimension of this classifier equals 3.  

 

Figure 3.1 VC dimension
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From the bound (3.6), it is also evident that the deviation of empirical risk from expected risk is 

negligible if the ratio between the sample size and the VC dimension l/h is large enough. For the 

case with a small sample size (e.g. l/h<20), the second term in the right side of (3.6) is not 

negligible anymore and the learning process should consider both the empirical risk and capacity 

of the decision function set; such a learning process is commonly based on the Structural Risk 

Minimization (SRM) inductive principle, which is proposed and developed by Vapnik.  To 

implement the SRM inductive principle, an important issue is how to construct the decision 

function set with controllable capacity; in other words, the VC dimension h of the decision 

function set is a controllable variable. With the assumption that the capacity of the decision 

function set is controllable, the learning process of a classifier may be described as follows: 

First, one nested structure of the decision function sets need be designed like:  

Nk SSSS ⊂⊂⊂ K21   (3.9) 

where hk<hk+1 and hk is the corresponding VC dimension of the decision function  subset Sk. And 

then for a given l samples, the decision function fk(x,α*) is obtained with the minimal empirical 

risk Rk(α*) in each decision function subset Sk; at the same time another term confidence interval 

)/( khlφ  can also be calculated for the subset Sk. With the subset index increasing, usually the 

empirical risk Rk(α* ) decreases and the confidence interval increases. As illustrated in Figure 3.2, 

the subset Sn is finally considered as the best decision function subset for learning if n=k 

minimizes the sum of empirical risk Rk(α*) and confidence interval )/( khlφ ; correspondingly, the 

specified decision function fn(x,α*) is considered as the optimal solution and has a minimum 

expected risk on the future unknown input samples. 
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In summary, based on the same training data set, sometimes one low-capacity learning machine with 

more training error may perform better than another high-capacity with small training error on the 

future data. This is the so-called overfitting problem relative to the generalization ability of a 

learning machine. To control the generalization ability of machine learning, Vapnik provides the 

structure risk minimization (SRM) inductive principle, which minimizes the expected risk function 

in term of both empirical risk and capacity of machine learning. According to SRM, to minimize the 

expected risk both empirical risk and machine capacity need to be considered.  Although SRM 

inductive principle has been founded well in theory, its practical implementation still is very 

challenging, because it is not clear how to compute the VC dimension for most of the practical 

implementations of learning machines; only a few of these machines have a known computation 

method for VC dimension, and secondly it is not easy to control the capacity of the learning 

machine in the training phase. The support vector machine (SVM) provides an excellent 

implementation of learning machine based on the SRM inductive principle, and can minimize the 

empirical risk and control the capacity of a learning machine at the same time.  SVM are introduced 

in the next section.   

 

 

 

Figure 3.2  Implementation of Structure Risk Minimization
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3.2 Maximum-Margin Support Vector Machine  
Given the samples listed in (3.1), one can separate them into two classes by a linear hyperplane 

0=−⋅ bxw   (3.10) 

 If the samples are linearly separable, there are many hyperplanes that can separate the data without 

error, and the separating hyperplane with maximum margin is considered as the optimal hyperplane 

or maximum-margin hyperplane. The margin means the distance between hyperplane to the closest 

vector as shown in Figure 3.3.  

 

 
The classifier with the maximum-margin separating hyperplane may be described in the following 

way: 

1:1 ≥+= bwxify ii  and  1:1 −≤+−= bwxify ii  (3.11) 

and the (3.11) can be expressed more simply by one inequality as follows: 

1)( ≥+ bwxy ii   (3.12) 

where w is the weight vector and b is the bias. 

Figure 3.3 Maximum-margin Classifier
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Once the classifier expressed according to (3.12), the corresponding margin γ can be calculated as 

follows (Figure 3.3): 

w
1

=γ   (3.13) 

There exists a bound for the VC dimension h of the n-dimension linear classifier with a certain 

margin γ: 
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where R is minimal radius of the sphere that includes all the input vectors x. According to (3.14), the 

classifier with the maximum-margin hyperplane has the smallest VC dimension bound, that is to say, 

has the best generalization ability. As mentioned in the previous section, a learning process based on 

SRM inductive principle considers both the empirical risk and capacity of the learning machine. In 

the linearly separable case, the support vector machine keeps the empirical risk is not changed 

(always equal to zero), and select the maximum-margin hyperplane as the separating hyperplane, 

which is considered to have the lowest capacity.  

 

As shown in equation (3.13), maximizing the margin corresponds to minimizing the ||w||, so the 

process to search the maximum-margin hyperplane can be described as follows: 

Minimizingw,b  >⋅< ww    (3.15) 

subjecting to 1)( ≥+bwxy ii   mi ...3,2,1= ; 

The above problem can be solved according to the standard Quadratic Programming optimization 

techniques. Using these techniques, a Lagrange functional has to be calculated: 

}1]){[()(
2
1),,(

1
−−⋅−⋅= ∑

=
ii

m

i
i ybwxwwbwL αα    (3.16) 

And then the Lagrange functional is minimized with respect to w and b with the w, b meeting the 

following constraints: 

;0),,(
1

=−=
∂

∂ ∑
=

i

m

i
ii xyw

w
bwL αα  (3.17) 

;0),,(
1

==
∂

∂ ∑
=

m

i
iiy

b
bwL αα   (3.18) 

The equation (3.16) is commonly called the primal representation of Lagrange functional, and 

substituting the equation (3.17) and (3.18) into (3.16), one can get the dual representation, 
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According to the Quadratic Programming optimization theory, the solution of the problem in (3.15) 

can be achieved by resolve the following problem: 
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subjecting to ;0=∑ i
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Suppose that α* is the solution of the problem in (3.20), the solution w* of the problem in (3.15) can 

be calculated according to relation equation (3.17): 
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According to the Karush-Kuhn-Tucker complementary condition, the solution α* and (w*,b*) meet 

the following relationship: 

0}1])[({ 0
** =−−⋅ bxwy iiiα (3.22) 

From equation (3.22), only the support vector can have nonzero *
iα  in the w* expansion. Support 

vectors are the input vectors satisfying the equality condition 

1])[( 00 =−⋅ bxwy ii    (3.23) 

The equation (3.21) can be rewritten as: 
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and the decision function of the classifier with maximum-margin separating hyperplane is therefore: 
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where x*(-1) is any support vector with the target label –1, and  x*(1) is any support vector with 

target value 1. 
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3.3 Soft Margin Support Vector Machine  
On one hand, and as an important concept, the maximal margin classifier is a good starting point to 

construct a more complex Support Vector Machine; on the other hand it only can be used in the 

linearly separable case; however, practical data often contain noise, and it is not linearly separable. 

For this reason, the optimization problem is replaced by a so-called soft margin optimization that 

may be described as follows: 
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 0≥iξ   mi ...3,2,1= ; 

In the above optimization problem, the introduced new variable ξi is the slack variable to allow the 

margin constraints to be violated, and the parameters C and k define the cost of the constraint 

violation. As mentioned before, for a linearly separable case the support vector machine always 

makes the empirical risk equal to zero, and then select the classifier with the lowest capacity; this is 

a special case for the implementation of the SRM inductive principle. But if the sample data are not 

linearly separable, a linear SVM can not separate the sample data without error, then minimizing the 

second term of the objective function of the optimization problem in (3.27) is relative to control the 

empirical risk, and minimizing the first term is used for minimization of the VC dimension of the 

learning machine, so this approach is a typical implementation of SRM inductive principle. 

 

For an example, to solve the problem in (3.27) with parameter k=1 (1-Norm Soft Margin), the 

primal representation of the constructed Lagrange functional can be expressed as follows: 
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where αi≥0 and  ri≥0 . And then the Lagrange functional is minimized with respect to w and b with 

the w, b meeting the following constraints: 
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Substituting the above equations into the primal Lagrange functional, one can get the dual 

representation as follows: 
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And resolving a 1-norm soft margin problem is equivalent to resolving the following problem: 
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subjecting to ;0=∑ i

m

i
i yα and ;0≥≥ iC α  mi ...3,2,1= ; 

Suppose that the α* is the solution of the problem in (3.33), then the solution w* of the problem in 

(3.27) can be calculated according to relation equation (3.29): 
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ii xyw ∑

=

= α   (3.34) 

Similar to the linearly separable case, only some coefficients have the non-zero value in the 

expansion (3.34),   and the vectors with non-zero coefficients are called support vectors.   

 

Compared to the maximum-margin optimization, the 1-norm soft margin optimization has the same 

object function, and the only difference is that there exists an upper bound C for α in the constraint. 

The upper bound C intuitively limits the influence of the outliers that often have large Lagrange 

multipliers.  

 

 

3.4 Nonlinear Support Vector Machine  
 

For many practical applications, the ideal decision functions of the classifiers are probably not linear.  

 

In the introduced algorithms for maximum-margin classifier and 1-norm soft margin classifier, there 

is an important characteristic. The final decision function and the solution of the quadratic 

optimization problem both only depend on the inner product of input vectors. This characteristic 

makes it possible to solve some nonlinear problems by SVM. The basic idea is to first nonlinearly 

map the input data to another high dimension feature space, where the nonlinear problem may 

become a linear problem, and then use the above linear algorithm to solve the problem. Because the 

algorithm only depends on the inner product, it is not necessary to know the exact mapping function 
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if the inner product of the mapping function is known. For example, a nonlinear mapping function 

can be: 

Gn >−ℜ:φ ,  where G is the feature space.  And a kernel function is as follows: 

>⋅=< )()(),( yxyxk φφ     (3.35) 

When searching a 1-norm soft margin hyperplane in the feature space, every input sample ix will be 

replaced by the )( ixφ , finally the decision function and corresponding quadratic optimization 

problem become as follows: 
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subjecting to ;0=∑ i

m

i
i yα  and  0≥≥ iC α  mi ...3,2,1= ; 

As shown in equation (3.36) and equation (3.37), a maximum margin hyperplane classification in 

the feature space can be achieved only depending on the computation in the input data space by the 

kernel function.  

 

The determination of a kernel usually involves two cases. First, if the mapping function from the 

input space to the feature space is known, the kernel function can be derived from the map function 

according equation (3.35); in another case, the mapping function is implicit and the kernel can not 

be derived and need to be defined directly. One issue is how to judge if a function can be expressed 

like in (3.35) without the explicit form of a map function. The answer lies in the Mercers condition. 

According to Mercers theorem, if RXXK >−×:  is a continuous symmetric function, the input space 

X is a compact subset of Rn, and the K meets the following condition: 

0)()(),( ≥∫ ×
dxdzzfxfzxK

XX
 (3.38) 

for all square integratable function f; then K can be expanded into a uniform convergence series like: 
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Let a map function ∞>− RX:φ :  

)....)(),...(),(()( 21 xxxx nφφφφ = , and )()( xx iii ϕλφ =  

then the equality (3.39) can be rewritten as follows: 
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So if a function K meets the inequality constraint in (3.38), then K can be considered as a kernel 

function, which is the inner product of certain implicit map function.  

The two commonly-used kernel functions are the Gaussian and the polynomial kernel: 

Polynomial kernel: pzxzxk )1(),( +⋅=  (3.41) 

Gaussian kernel: 
22/),( σzxezxk −−=  (3.42) 

where p and σ are called the model parameters . 

More complex kernel functions can be constructed by some known kernel functions according to the 

following proposition [Crist00].  

 

Given the kernel function K1 and K2 over the X×X, nRX ⊆ , a∈R+
, f(.) is a real-valued function 

on X, and B a symmetric positive semi-definite n×n matrix. Then the new kernels can be 

constructed as follows: 

),(),(),( 21 zxkzxkzxk +=  (3.43) 

),(),( 1 zxakzxk =  (3.44) 

),(),(),( 21 zxkzxkzxk =  (3.45) 

)()(),( zfxfzxk = (3.46) 

 

3.5 Multi-Class Support Vector Machine  
 

The discussion about support vector machines in previous sections is based on the binary classifier; 

in practical applications the classifier need to be constructed for a multi-class classification problem. 

There exist several known proposed methods for multi-class support vector machines. These 

methods usually exploit two different strategies.  

 

3.5.1 One-against-rest Multi-class Classifier  

The first strategy is the so-called one-against-rest classifier, which is intuitive and simple. For a K-

class problem, the one-against-rest multi-class classifier first builds K 2-class classifiers, each of 

which is responsible for every class respectively. For the nth binary classifier, all training data need 
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to be involved; the positive result is the data point in class n, and the negative result is the data point 

in the other n-1 classes. Each of the K binary classifiers is trained to find the decision function by a 

2-class support vector machine, and then all the decision functions are combined to get the final 

decision function for multi-class classification problem: 
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where )),( n
i

n
i

SVi
i bxxky +∑

∈

α  is the decision function of the nth class binary classifier.  

 

3.5.2 One-against-one Multi-class Classifier  

The second strategy uses some schemes and combines pair-wise binary classifiers to resolve the 

multi-class classification problem; this is the so-classed one-against-one   classifier [Hast96]. In this 

strategy, a binary classifier has to be built for each possible pair of classes and the total number of 

these binary classifiers is equals to K(K-1)/2.  The training data of each binary pair classifier only 

includes the training data of the involved two classes. A one-against-rest multi-class classifier only 

can output the class decision but not the class probability. The probability estimation is important for 

some practical applications, in which the classifier is not used in isolation but integrated with some 

other higher level knowledge.  

 

The class probability problem for the K-class classification (K>2) may be expressed more clearly 

and formally as follows. Given the a K-class classification training data set, observation X and label 

Y, the first problem is how to estimate the posterior probability µi,j=P(Y=i|Y=i or j,, X) from the  

binary pair-wise classifier, and the second problem is how to estimate probability P(Y=i|X), 

i=1,…,K. based on the estimation of pair-wise probability µi,j  for the new data. As shown in the 

above sections, the output of the SVM decision function is not a probability. This because directly 

training a binary SVM classifier with probability output is very difficult in practice. One commonly-

used way is to solve the problem into two phases, first a standard binary SVM classifier is trained to 

get the decision function, and then estimation of the µi,j may be conversed to estimate a functional 

relation between the probability µi,j and the output of decision function. The probability µi,j can be  

described as follows: 

))(()( ,, xfFx jiji =µ (3.48) 

where fi,j(x) is the decision function of the pair-wise binary classifier involving the ith class and jth 

class. Direct estimation of the function F in (3.48) is still a difficult issue; usually with the 
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assumption of F belonging to a parameterized function set,  the  estimation of F is reduced to 

estimate the parameters. For an example, in [Platt99] the sigmoid function is suggested as the model 

of F, and the equation (3.48) can be written as follows: 
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ji
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where A and B are the parameters and need be estimated by some ways.  

With the assumption that the all the pair-wise probabilities µi,j  are known , several methods are 

suggested to get the probability P(Y=i|X) based on the combination of the estimates of all the pair-

wise probabilities µi,j.  

 

For example: an intuitive rule [Fried96]  of the combination of the all binary classifiers is to use a 

voting scheme and assign to the class that wins the most pair-wise comparisons as like: let ri,j be the 

estimate of µi,j,  and the voting rule is  
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where the I is a indicator function and I(x)=1,if x is true, otherwise I(x)=0. A simple estimation of 

class probabilities can be calculated according to equation (3.51): 
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Some other more refined methods can be found in the literatures [Wu04, Hast96] 
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C h a p t e r  4  

A FREQUENCY-DEPENDENT TIME-FREQUENCY 

ANALYSIS TOOL: RESONATOR TIME-FREQUENCY IMAGE 

As mentioned before, because the length of the window function of the STFT is independent from 

frequency, the STFT always maintains the same resolution in the time-frequency plane, and such 

resolution distribution is not suitable for music signal analysis. Other analysis methods have also 

been reviewed presenting specific advantages and problems in their use. For these reasons an 

original frequency-dependent time-frequency analysis tool has been developed and proposed here: 

the Resonator Time-Frequency Image (RTFI), which is especially designed for music signal 

analysis.  

4.1 Frequency-Dependent Time-Frequency Analysis 

To better introduce RTFI, it is better to start from a generalized definition of frequency-dependent 

time-frequency analysis.  It is proposed to define the Frequency-Dependent Time-Frequency 

Transform (FDTF) as follows: 

∫
∞

∞−

−−−= τωττω τω detwstFDTF tj )(),()(),(  (4.1) 

Differently from STFT, the window function w of FDTF may depend on frequency ω; this means 

that time and frequency resolutions can be changed according to frequency. The energy of STFT is 

named a spectrogram, a name that has earlier been used for speech analysis. Similarly the energy of 

FDTF is named here Musicgram, which can be defined as follows: 

2),(),( ωω tFDTFtMusicGram =   (4.2) 

 At the same time, equation (4.1) can also be expressed like: 

∫
∞

∞−

−−−= τωττω τω detwstFDTF tj )(),()(),(  

     ),()( ωtIts ∗=                    (4.3) 
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with   

tjetwtI ωωω ),(),( −=            (4.4) 

 

Equation (4.1) is more suitable to express a transform-based implementation whereas equation (4.3) 

is more straightforward to implement a filter bank with impulse response functions expressed by 

equation (4.4). As introduced in a previous section (Chapter 2 Section 2), in the filter bank 

implementation of STFT, the signal passes first through the band bass filter centered at ω and then 

it is demodulated to zero frequency. As illustrated in Figure 4.1, there are two main differences 

between the band pass filter implementations of STFT and FDTF. One difference is that, in the 

Figure 4.1 Comparison of Filter Bank Implementation of STFT and FDTF 
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implementation for STFT, the bandwidth of the band pass filter is kept fixed and independent on its 

centre frequency ω; instead for FDTF, the bandwidth of band filter can be changed according to 

centre frequency ω. Another difference is that, in the implementation of STFT, the output of every 

band pass filter centered at ω is then demodulated to zero frequency; such a demodulation process 

does not exist in the implementation of FDTF. As mentioned above, there are two different 

implementations of FDTF: transform-based implementation and filterbank-based implementation. 

The filterbank-based implementation may be further classified into IIR filter bank or FIR filter bank 

implementation. From the view of computational efficiency, the IIR filter-bank-based 

implementation is greatly advantageous over the other two implementations; the order of the filter 

bank needs to be as small as possible to reduce the computation cost.   

For music signal analysis an original FDTF tool is especially developed: the Resonator Time-

Frequency Image (RTFI), which selects a first-order complex resonator filter bank to implement a 

frequency-dependent time-frequency analysis. 

4.2 Resonator Time-Frequency Image for Musical 

Signals 
The Resonator Time-Frequency Image (RTFI) can be described as follows: 

),()(),( ωω tItstRTFI R∗=  

 ∫ −−−=
t tjtr deesr

0

)())(()()( ττω τωτω                    (4.5) 

where 0,0)()(,)(),( ))(( >>== +− tmaprertI tjr
R ωωωω ωω (4.6) 

In the above equations, IR denotes the impulse response of the first-order complex resonator filter 

with oscillation frequency ω, and the factor r(ω) before the integral in the equation (4.5) is used to 

normalize the gain of the frequency response when the resonator filter’s input frequency is the 

oscillation frequency. The decay factor r is dependent on the frequency ω and determines the 

exponent window length and the time resolution; at the same time it also determines the bandwidth 

(i.e. the frequency resolution). More formally, in this thesis, the frequency resolution of time-

frequency analysis implemented by the filterbank is defined as the Equivalent Rectangular 

Bandwidth (ERB) of implementing filter (2.45). The time-frequency resolution distribution can be 



 46

set efficiently and flexibly through the map function between the frequency and the exponential 

decay factor r of the filter impulse response. 

Because the RTFI has a complex spectrum, it may be expressed as follows: 

),(),(),( ωϕωω tjetAtRTFI =  (4.7) 

where  A(t,ω) and ωϕ ,(t ) are real functions. 

The energy and frequency-difference (FD) spectrum of RTFI can be defined as follows: 

2),(),( ωω tAtRTFIEnergy =    (4.8) 

ωωϕω −
∂

∂
=

t
ttRTFI FD

),(),(  (4.9) 

In the equation (4.9), the first term can be explained the instantaneous frequency of the output of the 

resonator filter with centre frequency ω, so the RTFIFD, in fact, is the difference between the 

instantaneous frequency and the center frequency of the  implementing resonator filter.  

 The selection of time-frequency resolution distribution is not trivial and has an important effect on 

the performance of the music analysis system. A time-frequency analysis with an inappropriate 

time-frequency resolution may cause two disadvantages; one is that it can not provide enough 

frequency resolution or instead provide a much redundant frequency resolution and increases the 

unnecessary computation cost in some frequency bands; and another one is that it is not able to 

provide enough time resolution and catch the necessary transient information. It is application-

specific to select an appropriate time-frequency resolution distribution for music signal time-

frequency analysis. For example, if one uses the RTFI to perform a timbre analysis for a single 

monotone note, and the frequency components of the music note are harmonics and evenly spaced 

in the frequency axis, a constant value of decay factor r may be set to make the RTFI have an 

evenly-spaced time-frequency resolution. It is straightforward and natural to consider the known 

character of the music signal as the important factors, which determine the time-frequency 

resolution distribution. In the following it is explained how it may be reasonable to select a nearly 

constant-Q time-frequency resolution for general-purpose music signal analysis.  
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In case of the common western music (CWM), the fundamental frequency and corresponding 

partials of a music note can be described as 

)2(440 12
69

0
−

⋅=
k

kf     and     0
k

m
k fmf ⋅= , 1≥k           (4.10) 

using the MIDI (Music Instrument Digital Interface) note numbers for note k. Supposing that the 

energy of every music note mainly distributes over the first 10 partials, and 0)( ≈m
kfEnergy  for 

11≥m , the frequency ratio between the partials of one note and the fundamental frequency of other 

notes is as follows:  
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0 =+kk ff ,  0079.1/10 0
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0 =+kk ff   

 

This means that always the first 10 partials either completely or in part overlap with another 

fundamental frequency; as the fundamental frequencies follow an exponential law (4.10), so most of 

the energy is concentrated in frequency bins that are exponentially spaced and then equally spaced 

according to a logarithmic axis. The frequency bins may be simply expressed according to (4.10) 

like n
n AB=ω  ; the required frequency resolution at frequency area nearly round ωn   may be 

expressed as follows: 

n
n

nnn BBABresolution ωωωω )1()1()( 11
1

−−
− −=−=−=   

The resolution distribution in the equation above is the constant-Q frequency resolution, which 

means that the ratio of frequency resolution and frequency is constant. If one wants to implement a 

constant-Q time-frequency resolution by RTFI, it is only needed to simply select a linear function 

mapping the frequency to the exponent decay factor as in the following equation: 

,)( ωω kr =  with k being a constant   (4.11) 
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 Another approach may be used to define the time-frequency resolution distribution by the known 

human ear’s time-frequency analysis presented in Chapter 2, because the ear performs very well in 

many music analysis tasks. It is well known that the human ear’s frequency analyzer has an almost 

evenly-spaced time-frequency resolution at low frequencies and a nearly constant-Q time-frequency 

resolution at high frequencies. One widely-accepted frequency-dependent frequency resolution (in 

terms of bandwidths) of the auditory filter bank can be approximately described as follows: 

fB 1079.07.24 +=  (4.12) (Hart97) 

Here the bandwidth B is the Equivalent Rectangular Bandwidth (ERB) in Hz. On one hand the 

human ear frequency analyzer may give us some important enlightenment to determine an 

appropriate time-frequency resolution for music signal analysis; on the other hand in a practical 

music analysis system it is not reasonable to apply completely the same time-frequency resolution as 

human ear’s frequency analyzer for the following three reasons. First, it is not completely sure that 

the current experiments can measure a very exact time-frequency resolution distribution of the 

human ear’s frequency analyzer, and the measured time-frequency resolution is only a rough 

approximation. Secondly, the time-frequency resolution of the human ear’s analyzer is not the 

absolute optimal for music signal analysis because it may have some physiology limitations. And 

third, generally speaking time-frequency analysis should be the front-end part of music analysis 

systems, and it most often needs to be combined with some post-processing phase to usefully 

complete the music analysis tasks; the two phases should match each other, so if one select a time-

frequency analysis front-end part similar to human ear frequency analyzer, then one should also 

construct some post-processing phase similar to the human auditory system to achieve a 

performance comparable to the human auditory function; however in current research it is not clear 

how to construct such post-processing parts simulating a function similar to the human auditory 

system.  

The author’s opinion is that it is more reasonable first to define a parameterized set of time-

frequency resolution distribution (which is considered as an approximation to the optimal time-

frequency resolution distribution of the music signal analysis) based on the inference from the 

character of music signal itself or on psychoacoustics and physiology research relative to the human 

auditory system; and then to estimate the parameters of the parameterized resolution and select a 

more exact time-frequency resolution distribution according to some experiments, which combine 

the time-frequency analysis front-end phase with the post-processing and determine the resolution 

parameter values according to the total performance of the music analysis system. Put in another 
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way, when the post-processing phase is fixed, the right time-frequency resolution distribution and 

corresponding parameters should be selected if they make the system have the best overall 

performance. For example, if the RTFI is used as time-frequency analysis front-end, we may define 

a parameterized approximation to the optimal time-frequency resolution by a map function from 

frequency to the exponent decay factor r as follows: 

 ωω bar +=)(  , with a, b being constants(4.13), 

 and then combine the post-processing phase into a music analysis system; finally by some 

experiments the appropriate parameters a and b can be estimated to make the system perform well in 

the corresponding music analysis task. In fact, the constant-Q resolution and cochlear resolution (as 

shown equation (4.12)) can be considered as a special case of (4.13). As shown above, the RTFI can 

easily and flexibly implement different frequency-dependent time-frequency resolution distributions 

by simply defining a function mapping frequency to the exponent decay factor of the complex 

resonator filter bank. 

4.2.1 Energy and Frequency-difference Spectrum of RTFI 

 In this subsection, it is explored how to make best use of the energy and frequency-difference 

spectrum of the RTFI as efficient time-frequency analysis tool for music signal. A real music signal 

may be approximately expressed by an additive sinusoidal model as follows:  

),()()(
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0)(,)()( 0 ≥= + taetatc i
tj

ii
i φω   (4.14) 

In this model, the music signal is approximated by the sum of n complex sinusoids with time-

varying magnitude parameters, whereas e(t) denotes the noise component. In the sinusoidal model 

there is an assumption that the ai(t) should be a slow varying signal e.g. a low passed signal and ci(t) 

locally resembles a pure complex  sinusoid.  The RTFI is explored as frequency-dependent time-

frequency tool that extracts the time-frequency character of the signal that can be approximated by 

the sinusoid model.  

In the simplest case, if the input signal s(t) consists of only one complex sinusoid with the constant 

magnitude as like,  
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then the corresponding RTFI can be written as follows: 

 ∫ −−−=
t tjtrj deeertRTFI
0

)())((1)(),( τωω τωτωτω
(4.15) 

)()(
1)(

1

))()(( 1
1

ωωω
ω

ωωω
ω

−−
−

=
−+−

jr
eer

tjr
tj

 (4.16) 

When considering the steady-state component of RTFI (when t->+∞) in the above equation, then 

RTFI energy spectrum can be described as follows: 
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From the equation (4.16), the instantaneous frequency spectrum at frequency ω=ω1 can be 

expressed as follows: 

tjtr eetRTFI 11 )1(),( )(
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ωωω −−=  

0),( 1 =ωtRTFI FD  (4.18) 

In summary, if the input signal consists of a single complex sinusoid with constant magnitude and 

frequency ω1, the energy spectrum RTFIEnergy has the maximum peak at the frequency ω=ω1 

according to the equation (4.17),and the frequency-difference at the frequency ω=ω1 is rightly 

equal zero, according to the equation (4.18). When the input signal consists of n complex sinusoids 

with constant magnitudes and the input signal s(t) may be expressed as follows: 
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And the corresponding RTFI can be expressed as follows: 
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When considering the steady-state component of RTFI (when t->+∞) in the above equation, then 

RTFI energy spectrum can be described as follows: 
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 As shown in the above equations, the RTFI energy spectrum also contains the oscillating cross 

terms, which are considered as interference because the magnitudes of the input complex sinusoids 

are constant and the corresponding RTFI energy spectrum should not oscillate. To reduce the 

oscillation term energy, a low pass filter bank may be used to smooth the RTFI energy spectrum. 

With the assumption that the smoothed RTFI energy spectrum contains almost no oscillating terms, 

the smoothed RTFI energy spectrum may be approximated as follows: 
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According to equation (4.19), with the ωk denoting the frequency of the kth input complex sinusoid, 

then RTFI at the frequency ωk can be expressed as follows: 
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In the above equations, if the frequency difference between the kth input complex sinusoid and the 

other n-1 sinusoids is large, so that the term aici(ωk) is omissible compared to the value ak, then 

RTFI(t,ωk) can be approximated like: 

tjtr
kk

kk eeatRTFI ωωω )1(),( )(−−≈  (4.23) 

The corresponding instantaneous frequency (IF) spectrum can be expresses as follows: 

0),( ≈kFD tRTFI ω  (4.24) 

In summary, when the input signal consists of n complex sinusoids with constant magnitude, if the 

frequency of the kth sinusoid is ωk and the frequency difference between the kth sinusoid and the 

other n-1 sinusoids is large enough, then the sinusoid may have a corresponding peak in the 

smoothed RTFI energy spectrum along the frequency axis and the peak is nearly around the 

frequency ωk,  at the same time  the kth sinusoid may have the corresponding zero value nearly 

around the frequency ωk in the RTFI frequency-difference spectrum  

 

4.3 Discrete Resonator Time-Frequency Image 

4.3.1 Definition of Discrete RTFI 

For practical applications, it is proposed to use the first order complex resonator digital filter bank to 

implement a discrete RTFI, which can be described as follows: 
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f s being the sampling frequency    (4.25) 

In a discrete RTFI , a corresponding complex resonator filter is used to approximate the frequency 

response of the continuous one as much as possible; if a continuous resonator filter has the impulse 

response hc(t), then we approximate the continuous resonator filter by a digital one, which has a 

impulse response h(n)=lhc(n/fs) and the parameter l normalizes the frequency response of the digital 

resonator filter  when the input is a single complex sinusoid with the oscillation frequency; 

according to such an approximation, the impulse response IR ,of the implementing digital filter in a 

discrete RTFI is achieved and shown in the equation (4.25). As introduced before, the continuous 

RTFI may be implemented by the first-order complex resonator filter bank at the center frequency 

ω, which is a continuous variable; that is, countless resonator filters need to be used to implement a 

continuous RTFI;  the discrete RTFI is both time-discrete and frequency-discrete; time-discrete 

means that the input signal is a discrete sequence and the filter is digital, while frequency-discrete 

means that center frequency ω of the digital filter bank is a discrete variable and number of the 

digital filters should be limited.  

 

4.3.2 Implementation of Discrete RTFI 

One important issue for implementation of a discrete RTFI is how to determine the number and 

centre frequencies of the digital filters: it is necessary to consider how to determine the sampling 

rate in the frequency domain from a continuous RTFI to a discrete RTFI.  It is straightforward to 

place more digital filters in a frequency band that needs better frequency resolution. In the following 

a way is proposed to determine the centre frequencies of the resonator digital filters for discrete 

RTFI implementation based on the time-frequency resolution distribution requirement of the RTFI.   

To better explain with an example, an ideal rectangle band pass digital filter bank is used to 

implement a frequency-dependent time- frequency transform (FDTF) with the time-frequency 
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resolution distribution ),()( ωω mapresolution =  and the filter bank consists of n rectangle band 

pass filters with centre frequencies ωk, k=1,2,…N ,ωk <ωk+1; because the bandwidths of the band 

pass filters determine the frequency resolution, the bandwidth of the kth band pass filter Bk  should 

meet the constraint  

nkmapB kk ,...2,1),( == ω  (4.26) 

and if the n rectangle band filters together rightly cover all the analyzed frequency range as shown in 

Figure  4.2  (b) , then the constraint in equation (4.27)  need to be met: 

Critical Sampling: nkBB kkkk ...3,2),(5.0 11 =+=− −−ωω  (4.27)  

Under-sampling: nkBB kkkk ...3,2),(5.0 11 =+>− −−ωω  (4.28)  

Over-Sampling:  nkBB kkkk ...3,2),(5.0 11 =+<− −−ωω  (4.29)  

 

 
Figure 4.2 Under-sampling, over-sampling and critical-sampling 
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As mentioned before, the process to determine the center frequencies of filter bank may be 

considered as frequency sampling from a continuous frequency-dependent time-frequency transform 

(FDTF) to a discrete FDTF; with the assumption that the selected filter bank can keep the 

predetermined time-frequency resolution distribution, then the process can be called critical 

sampling, under-sampling or over-sampling if the center frequencies of the filter bank respectively 

meet the constraint of equation (4.27), (4.28) or (4.29). As shown in Figure 4.2-(a), in under-

sampling some frequency area is not covered by any filter; this means that if there exist some 

frequency components in that frequency area, the under-sampling discrete FDTF can not detect 

these frequency components. An over-sampling case is illustrated in Figure 4.2-(c), the neighbor 

rectangle filter has some overlapped frequency band; compared to critical sampling, the over-

sampling increase the number of rectangle filters without improving the frequency resolution and 

causes redundancy. Here for the sampling process a parameter named sampling factor is defined as 

follows: 

nk
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SamplingF
kk

kk
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In a practical implementation, we consider the sampling factor as constant along the frequency axis, 

so the following equation holds: 

nkBBSamplingF kkkk ...3,2),(5.0 11 =+⋅⋅=− −−ωω  (4.31)  

With the assumption that the frequency resolution is predetermined, according to the equation (4.26), 

equation (4.31) can be rewritten as follows: 

nk
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...3,2
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  (4.32) 

If the sampling factor and the starting analysis frequency ω0 are determined, one can determine the 

other filter’s centre frequencies ωk, k=2, 3, …n. according to iterative equation (4.32).  

As discussed above a way is proposed to determine the sampling rate for frequency-dependent time-

frequency analysis (FDTF), which is implemented by the boxcar   filter bank; if FDTF is 

implemented by a filter of different shape, a similar approach may still be used by replacing the 
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bandwidth of the filter with an Equivalent Rectangular Bandwidth (ERB), and in this case the 

equations (4.31) and (4.26) can be modified as follows: 

nkmapB k
ER
k ,...2,1),( == ω  (4.33) 

nkBBSamplingF ER
k

ER
kkk ...3,2),(5.0 11 =+⋅⋅=− −−ωω  (4.34) 

with BER  denotes the ERB of the filter. 

 As mentioned before the commonly-used frequency resolution distribution for music analysis may 

be expressed like:   

00,)( >≥+= cdcdresolution ωω  (4.35) 

 and the equation (4.33) can be rewritten as like: k
ER
k cdB ω+= , and the following recursive equation 

can be derived according to equation (4.34) 

,1 HG kk += −ωω (4.36) 
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To design a discrete FDTF with frequency resolution according to equation (4.35), one can 

determine the discrete centered frequencies of the filter bank according to the following formula, 

which can be derived from equation (4.36): 
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As discussed above, this is a proposed general way to determine the centre frequencies of the filter 

bank, which is used to implement a discrete FDTF. The RTFI is a special case of the FDTF, and the 

RTFI is a FDTF that can be implemented by first-order complex resonator filter bank; of course a 
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discrete RTFI also can use the proposed method to determine the centre frequencies of the complex 

resonator bank.  

As shown in the discrete RTFI definition in equation (4.25), to implement a discrete RTFI, two steps 

are requested: one is to resolve the frequency sampling issue, i.e to determine the centre frequencies 

ωm, which can be resolved by the above proposed method. Another issue is to implement the 

frequency resolution distribution, i.e. to determine the bandwidth of each filter in the filter bank. The 

bandwidth of the first-order complex resonator filter can be set by the value of exponent decay 

factor r in its impulse response. As mentioned before the bandwidth is the ERB width, it is 

necessary to know how the exponent decay factor determines the ERB bandwidth of the complex 

resonator filter. The ERB bandwidth is defined for the continuous filter in (2.45).  

The ERB bandwidth is generalized for a digital filter. The ERB bandwidth of a digital filter is 

defined. If a continuous filter has the impulse response h(t), and a corresponding digital filter’s 

impulse response is the discrete sampling of h(t), then we approximate the digital filter’s ERB width 

by the continuous filter.  

According to the RTFI definition (4.5 and 4.6), the frequency response of the filter to be 

implemented is centered at frequency ωk and can be described as follows: 
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The filter ERB can be calculated according to the equation (2.45) and the ERB value can be 

expressed according angle frequency as follows: 
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In practical cases, the resonator filter exponent factor is nearly zero, so arctan(ωk/r(ωk)) can be 

approximated to 0.5π, and equation (4.39) can be approximated as follows: 

πω )( k
ER
k rB =  (4.40) 
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If the RTFI resolution distribution is according to the equation (4.35), the formula to determine the 

exponent decay factor for the filter in RTFI filterbank-based implementation can be derived from the 

equation (4.40) as follows: 

πωω /)()( kk cdr +=  (4.41)  

In practical application, one issue is that sometime we wish the center frequencies of the 

implementing filters can be predetermined, for example, we wish the center frequencies always 

follows a exponent law and make the analysis result can be more conveniently to connect with 

western music, in this case, the sampling factor can not be predetermined any more,  but we can 

calculate the sampling factor from the known frequency resolution parameters and the centre 

frequencies according to the relationship equation (4.30), and the calculated sampling factors at 

different frequency can provide the  frequency sampling rate information .  When the centre 

frequencies and exponent decay factors of the impulse response of the implementing digital 

resonator filters are determined, the z transfer function of the digital resonator filters can be 

expressed as the following equation: 
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As analyzed in the continuous RTFI, the RTFI energy spectrum includes the oscillation terms and 

need be smoothed by the low-pass filter. We propose a way to get the smoothed discrete RTFI 

energy spectrum by a special low pass filter, and for the mth implementing digital resonator filter, 

it’s energy spectrum is smoothed by the corresponding low pass filter with the impulse response as 

like  
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 and the low pass filter’ s z transfer function can be expressed as follows: 
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There exist two reasons to select such a special low pass filter for smoothing the energy spectrum of 

the discrete RTRI.  First, a important advantage of the RTFI is it’s computation-efficiency, so we 

need keep the advantage and the low pass filter’s order need be also small as possible. Secondly, the 

impulse responses of the mth resonator filter and the corresponding mth low pass filter for 

smoothing the energy spectrum have the equal exponent decay factor, and this makes the energy 

spectrum smoothing process still keep a similar time-frequency resolution distribution as defined in 

the discrete RTFI.  The smoothed energy spectrum of a discrete RTFI at the frequency  ωm can be 

expressed as follows according to the responses of the implementing resonator filter and it’s 

corresponding low pass filter. 
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Where the IR and IL is respectively defined in the equation (4.25) and (4.43) 

We calculate the frequency-difference spectrum of a discrete RTFI at the frequency ωm and time 

point n by the following formula: 
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In the practical application of the discrete RTFI, we need consider not only computation but also the 

memory issue , generally speaking it is impossible and also not necessary to keep all the RTFI 

energy spectrum and  frequency-difference spectrum at every time sampling point; to reduce the 

requirement of the memory to store the RTFI values, we separate the RTFI into different time 

frames  and calculate the average RTFI values in each time frame, finally the average smoothed 

RTFI energy spectrum and frequency-difference spectrum are used to track a time-frequency 

character of the music signal. The average RTFI energy spectrum and frequency–difference 

spectrum may be expressed as follows: 
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Where the M is an integer and M/fs is the duration time of the frame in the average process.  

As analyzed in the continuous RTFI, if there exist several sinusoid components in the input signal, 

then the corresponding smoothed RTFI energy spectrum may exist a peak along the frequency axis 

nearly around the frequency of each sinusoid component. A discrete RTFI can be considered as an 

approximated implementation of continuous RTFI, so it is reasonable to consider the discrete RTFI 

still almost keeps some basic characters of the continuous RTFI, this also has been testified by a lot 

of experiments in our research of performing the time-frequency analysis for music signal by the 

discrete RTIFI.  In the discrete RTFI, we do not directly find the peak in the smoothed RTFI energy 

spectrum, but in the average smoothed RTFI energy spectrum to reduce the memory requirement as 

mentioned before, and the process to find the peak value in the average smoothed RTFI energy 

spectrum may be expressed as follows: 
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In the above expressions, the L and δ are the two parameters to define the peak. In the general case, 

we set L=1, and the δ can be considers as a threshold that is useful to remove the noise peak.  In the 

average smoothed RTFI energy spectrum, if the point is not a peak in the frequency axis, its value is 

set to the constant a, which is usually set to the minimum of the smoothed RTFI energy spectrum.  

Similar to the case in the continuous RTFI frequency-difference spectrum, in the discrete RTFI 

average frequency-difference spectrum, if the average frequency-difference ARTFIFD(k, ωm)  is 

nearly to zero , this means that it is probable that, in the input signal, there exists a sinusoid 

component with the frequency ωm at the kth time frame.  
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4.3.3 An Example of Discrete RTFI 

In the previous sections, an original time-frequency analysis tool called RTFI has been formulated. 

In the following paragraphs, an example of the discrete RTFI is introduced to explain the 

implementation of a discrete RTFI and to demonstrate the RTFI performance in the music signal 

analysis. As discussed above, there exist two cases in the design process of the discrete RTFI. One 

case is that first the sampling factor is determined and then the center frequencies are calculated, in 

this case , the frequency sampling rate can be assured equal in all the frequency range, but the center 

frequencies can not be predetermined. A second case is that the center frequencies are determined 

first, but the frequency sampling rate can not be assured equal in different bands, and the sampling 

factor in a different band can be calculated to provide the frequency sampling rate information. In 

the proposed example, the method belongs to the second case, and the centre frequencies are set like   

0ωω m
m P= , (4.49) 

qP 12
1

2=  and  12
69

0 24402
−

⋅⋅=
StartNoteN

πω  (4.50) 

where q and StartNoteN is two integer parameters. 

According to the equation (4.49, 4.50), the center frequencies of the implementing filter bank can be 

rewritten as follows: 
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In equation (4.57), StartNoteN is an integer parameter indicating the lowest note number (MIDI note 

numbers are used) in the considered range, and q is another integer parameter used to denote how 

many filters are used to cover the frequency band of one semitone. Because the fundamental note 

frequencies in CWM follow an exponential law, if the center frequencies of the filters are 

determined by equation (4.58) and also according to the exponential law, it will become more 

convenient to map the analysis results of the discrete RTFI to CWM notation.  
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As already said, there exist four parameters that completely determine a discrete RTFI 

implementation, the parameters are the frequency resolution distribution parameters c and d, 

sampling factor SamplingF , starting analysis frequency ω0 ; in this example, SamplingF and ω0, 

are indirectly set by the two integer parameters q and StartNoteN , so that the centre frequencies 

always can meet the definition in equation (4.51). And the relationship between the parameter 

SamplingF, the integer parameter q and resolution distribution parameters can be derived. For 

convenience of computation, in this example RTFI, the approximated sampling factor A_SamplingF 

is derived, which is the sampling factor when the center frequency equals the fundamental frequency 

of a CWM note A0 : 
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After the center frequencies and exponent decay factors of the digital resonator filters are 

determined, the example of the discrete RTFI can be implemented according to the method 

introduced in the previous section.  

The real music application examples in music signal analysis can be found in Chapter 5- 9. 

 

4.3.4 Multiresolution Fast Implementation of Discrete RTFI 

4.3.4.1 Proposed Multiresolution Fast Implementation   

For practical applications, a multiresolution fast implementation for the discrete RTFI has been 

developed. The basic idea is to reduce the redundancy in computation: in some cases it is not 

necessary to keep the same sampling frequency of the input for every filter in the filter bank. For the 

filters with lower center frequencies, the sampling rate can be decreased.  At the same time, because 

the main partials of music notes exist according to the exponential law, the high frequency regions 

need a lower frequency resolution. This means that a shorter duration signal frame is enough for the 

frequency analysis. 
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The block diagram of the proposed implementation is shown in Figure 4.3 

LPF  2   

Filter Bank

Filter Bank

LPF  2   Filter Bank

S(n) 

More

Figure 4.3: Block diagram for the proposed multi-
resolution fast implementation 

 

Considering a filter bank without fast implementation, the center frequencies are selected according 

to the expression 
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The filter bank is separated into N frequency bands, every frequency band has K filters, and the 

center frequencies of the filters in nth frequency band are: 

),*)1(( iKn +−ω      (i =0,1,2,…K-1)                         (4.54) 

Using the fast implementation, the signal is recursively low pass filtered and down sampled by a 

factor 2 from the highest to the lowest frequency band according to the scheme in Figure 4.3. The 

signal sampling rate ratio between the nth frequency band and the original sampling rate is  

s
Nn

sn ff −= 2  

and according to equation (4.53), the center frequencies of the filters in nth frequency band are 

changed as  
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Consequently, all the other n-1 frequency bands use the same filters as the filters in the highest 

frequency band. 

If the computation cost of one frequency band is C, for N frequency bands the total computation 

cost of the filter bank without fast implementation is  

NCCoriginal ⋅=  

whereas the computation cost of fast implementation is 

CCCCCC Nfast 2
2
1...

4
1

2
1

1 <++++= −
 

The computation cost of the low pass filter is negligible. The fast implementation is about N/2 times 

faster than a normal implementation. 

The proposed algorithm is especially conceived for multi pitch tracking based on short signal frames, 

which in a large majority of frames corresponds to a monotone or polyphonic stationary situation.  

In the spectrum extraction algorithm, first the signal is separated into 8 different frequency bands 

according to the fast implementation introduced above. At the same time, since the required 

frequency resolution at higher frequencies is lower, shorter time frames are used to compute the 

power spectrum in order to reduce the computation cost further. Detailed information is shown in 

Table 4.1. As shown in the table, the downsampling begins from the sixth frequency band; this is 

reasonable choice to make the ratio between sampling rate and analysis frequency about 20 or more 

according to an experimental rule of thumb. Finally the spectrum peaks are extracted independently 

in different frequency bands; a small overlap between neighbor frequency bands is used to find the 

spectrum peaks for the frequency bin at the edge of the frequency band. . Every frequency band 

includes 60 frequency bins (the overlap frequency bins are not considered here). The above 

algorithm has been used in our polyphonic transcription system, which is introduced in the Chapter 

5. 
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Table 4.1 Fast Implementation of RTFI 

Band 

Number 

Sampling 

Rate (Hz) 

Frequency Range 

(Hz) 

Used 

samples 

Duration  time 

(Sec) 

1 689.06 25.96--55.00 680 0.9861 

2 1378.12 51.91--110.0 680 0.4934 

3 2756.25 103.8--220.0 1360 0.4934 

4 5512.5 207.7--440.0 1360 0.2467 

5 11025 415.3--880.0 2720 0.2467 

6 22050 830.6--1760 2720 0.1234 

7 44100 1661--3520 2720 0.0617 

8 44100 3322--7040 2720 0.0617 

 

4.3.4.2  Comparison with other Multiresolution Fast Implementations 

With the muliresolution analysis and computing efficiency, different mulitrate filter bank has been 

explored to resolve music problems [Keren98, Levine98, Jang05]. Wavelet is another constant-Q 

filter bank and much preferred for audio compressing and music synthesis because wavelet often has 

the orthonormal or biorthornormal characteristics; but it has little been used for music analysis 

because the commonly used dyadic sampling fast Discrete Wavelet Transform (DWT) only provide 

the very coarse frequency resolution, which is far from the requirement of the music analysis, on the 

other hand the orthonormalization or biorthonormalization not necessary for music analysis, thirdly 

most of the wavelet is implemented by FIR that need much more computation then IIR. In 

[Levine98] and [Jang05] the multirate filter bank is used to separate the signal into several octave 

spaced subband and then the sinusoids analysis has been done in every subband. In [Keren98], 

similar to the way in [Levine98] and [Jang05], signal is also first separated into several octave 
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subband by multrate filter bank and then the detail frequency analysis is performed by FFT filter. On 

the one hand, the multirate complex resonator filter bank in the discrete RTFI use similar way to 

first separate the signal into the several octave spaced subband; on the other hand, different from the 

existing ways, still keep the constant-Q frequency resolution for further detail frequency analysis in 

every subband. But for example in [Keren98], when performing the detail frequency analysis in 

every subband, the FFT filter has equally-spaced frequency resolution. 
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C h a p t e r  5  

MUSIC ONSET DETECTION  

5.1 Introduction 

The audio signal is often considered to be a succession of the discrete acoustic events. The term 

onset detection refers to detection of the instant when a discrete event begins in an acoustic signal. 

The human perception of the onset is commonly related to the salient change in the sound’s pitch, 

intensity or timbre. Onset detection plays an important role in music analysis and has very broad-

range music applications. The information from onset detection is usually used for the music’s 

temporal analysis, such as tempo identification and meter identification. As a more typical example, 

automatic transcription of polyphonic music commonly needs to segment the analyzed signal into 

different notes by onset detection. It is also able to facilitate the edit operations of audio recordings 

and the synchronization: synchronization of music with video and the synchronization of music with 

lighting effects.  

Many onset detection systems have been developed. They have different advantages and 

disadvantages. Most of them consist of  three stages. Firstly, the analyzed music signal is 

transformed into a more efficient time-frequency representation, such as a spectrogram. Then, the 

representation data is further processed to derive the detection function. Finally, the onset is 

achieved by a certain peak-picking algorithm from the detection function. The first phase is 

especially important because an inappropriate transform may lose some useful information. This can 

greatly affect the overall detection performance. In the existing onset detection systems, three 

commonly-used transform analysis tools are multi-band filtering, STFT, and constant-Q transform. 

Energy change and pitch change are the two main clues for onset detection. Here are two typical 

cases: (a) given two successive music notes and wanting to detect onset of the second one, if both 

notes have the same pitch, the energy change is the only clue. Time-frequency decomposition is 

almost useless as a means to improve onset detection; (b) in most cases, the two successive notes 

have different pitches. At the onset time the harmonic frequency components of the second note 

begin to increase in energy,  at the same time, the first note probably enters into the offset time and 

decreases in energy. The overall energy may only undergo a minor change. Accordingly, an 

appropriate time-frequency decomposition should be used so that the frequency components of the 

two successive notes can be decomposed into different frequency channels and the energy-
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increasing information can be detected in independent frequency channels that correspond to the 

frequency components of the second note. The note onsets may be classified as “soft” or “hard” 

onsets to denote slow or fast transitions between the two successive notes. The hard onset is 

accompanied by a sudden change in energy, whereas the note transition with soft onset shows a 

gradual change. For example, piano and guitar music often have a number of hard onsets. On the 

other hand, violin music and singing have many soft onsets. With the appropriate time-frequency 

representation, the hard onsets can be easily detected by the energy-based detection algorithms. 

However, the detection of soft onset has been proved to be a very difficult task because real-life 

music signals often contain noise and vibrations associated with frequency and amplitude 

modulation. The energy-change in the vibration probably surpasses the energy-change of soft onset 

and this makes it very difficult to distinguish true onsets from vibration based only on the energy-

change clue.  

In principle, the time-frequency resolution of the time-frequency representation for the energy-based 

onset detection algorithm must be one of the most critical factors to affect the detection performance. 

However, there is no thorough investigation of how time-frequency resolution affects the 

performance of onset detection system. As indicated in the previous chapters, I propose a new 

computation-efficient time-frequency representation called Resonator Time-Frequency Image 

(RTFI). The RTFI is a more general time-frequency representation and can perform a time-

frequency analysis with different time-frequency resolutions. Based on the RTFI, I have developed 

an energy-based onset detection algorithm that is simple and performs very well in the detection of 

hard onsets. For the detection of the soft onsets, I propose a new pitch-based detection algorithm. It 

has achieved an excellent performance compared to existing onset detection systems. Both of the 

energy-based and pitch-based detection algorithms have been tested on a dataset that includes 30 

real-life musical excerpts, a total of  more than 15 minutes in duration and 2543 onsets. 

5.2 Reviews of  Related Work 

There are many different onset detection systems. Most of them can be described as processing 

chains, which include three different phases: time-frequency processing, a detection function 

production, and peak-picking. The processing chain is illustrated in Figure 5.1.  
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5.2.1 Time-Frequency Processing  

In the past, the whole envelope of waveform was used to detect the note onset. This approach has 

been proved to be inefficient for onset detection in real music signals. For example, consider two 

successive music notes in the duration of the note transition. The first note probably enters into the 

offset time and decreases in energy, while the second note enters into the onset time at the same time 

and increases the energy. So, no change in total energy is noticeable. Some researchers have found it 

useful to separate the music signal into several frequency bands and then detect the onsets across the 

different frequency channels. This is so-called multi-band processing. For example, Goto utilized 

the rapid energy change to detect onset in 7 different frequency ranges and used these onsets to track 

the music beats by a multi-agent architecture [Goto03]. Klapuri divided the signal into 21 frequency 

bands by the nearly critical-band filter bank [Klapuri99]. Based on the psychoacoustic knowledge, 

he used the amplitude envelope to detect the onsets across the different frequency bands. Most of the 

existing onset detection systems have selected STFT as the time-frequency representation, although 

the constant-Q transform is another popular alternative. Some researchers combine different time-

frequency processing methods. For example, Duxbury first utilized the constant-Q conjugate 

quadrature filter to implement a multi-band processing and then used the different ways to detect 

onsets in the different frequency subbands [Duxb02]. In the high frequency subbands, he used the 

energy change information. In the low frequency subbands, he included the STFT analysis to better 

detect the change of frequency content. 

 
 
 
 
 

Figure 5.1: A General Onset Detection System  
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5.2.2 Detection Function Producing   

In the second phase, the output of time-frequency processing can be further used to derive the 

detection function, which reflects the time-varying character of the analyzed signal in a simplified 

form. The onset detection systems can derive the detection function by several clues, such as 

energy-change, phase-change and pitch-change. These clues are often used to classify the detection 

systems into different types, such as energy-based, phase-based and pitch-based systems. 

5.2.2.1 Energy-Based Detection 

In early methods, the amplitude envelop of music signal was used to derive the detection function. 

The amplitude envelope can be constructed by rectifying and smoothing the signal: 
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where w(m) is N-point window. A variation on this is to derive the detection function from local 

energy, instead of amplitude. 
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In a number of practical onset detection systems, the first order of difference function of energy or 

amplitude is selected as the detection function. However, the first order of difference function is 

usually not able to precisely mark the onset time. As a refinement, Klapuri introduced relative 

difference as the detection function, using psychoacoustics knowledge [Klapuri99]. According to the 

principle of psychoacoustics, the increase in the perceived loudness of the sound signal is relative to 

its level. The same increase in energy can be perceived more easily in a quiet signal. For a 

continuous time signal E(t), the relative difference is calculated by the d(log(E(t))/dt, instead of 

d((E(t))/dt.  

Let us consider the STFT of the signal s(n): 
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where w(m) is N-point window and h is the hop size. 

For a more general case, when the STFT is selected as the time-frequency processing tool, the 

spectrum of the different frequency bins in the same time frame may be considered as a N-

dimension vector. The detection function can be constructed by the “distance” between the 

successive STFT spectra. For example, Duxbury uses a standard Euclidean Distance Measure (EDM) 

[Duxb02] in his system:  
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The distance has a non-zero value only when )1()( −− nXnX kk >0. This limitation is used to 

select the energy-increase information because the energy should increase at the onset time.  

5.2.2.2 Phase-Based Detection 

Different than the standard energy-based detection, the phase-based detection makes use of the 

spectral phase information as its source of information. The STFT can also be considered as 

complex band-bass filter banks with equal bandwidth, and the STFT coefficient Xk(n) denoting the 

output of the kth filter. In cases in which there is only one sinusoid component passing the kth band-

pass filter and at the same time this sinusoid component is stable, the output of the kth filter must 

have a nearly constant frequency. Therefore, the difference between two consecutive unwrapped 

phase values of the X(n) must remains nearly constant: 

)2()1()1()( −−−≈−− nnnn kkkk ϕϕϕϕ  

where the φk(n) is defined as the 2π-upwrapped of the STFT coefficient Xk(n). The phase deviation 

△φk(n) can also be defined as: 

0)2()1(2)()( ≈−+−−=∆ nnnn kkkk ϕϕϕϕ  

During the stable-state part of the signal, the △φk(n) is nearly equal to zero. During the transient 

part, the frequency of Xk(n) is not constant, and the △φk(n) tends to be large. Bello extended this 
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analysis to the distribution of phase deviations of all frequency bins of the STFT [Bello03A]. During 

the steady-state part of the signal, the values of phase deviations are expected to be close to zero, and 

the distribution is pointed. In the transient part, the corresponding distribution is flat and wide. Bello 

quantified these observations by calculating the inter quartile range and the kurtosis coefficient of 

distribution. Phase-based onset detection has demonstrated a better performance in the detection of 

the soft onset than have standard energy-based methods.  However, it is susceptible to phase 

distortion and to phase noise introduced in the phases of low energy components. In another 

approach, Bello proposed to use both the energy and phase information for onset detection [Bello04]. 

And the complex coefficients of STFT are used to calculate Euclidean distance between the Xk(n) 

and that predicted by the previous frame, 
^
,Xk(n). For a local stable-state part in the analyzed signal, 

the frequency and amplitude is assumed to be constant. Then the complex coefficient in the kth 

frequency bin of STFT can be predicted as: 
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where the predicted magnitude 
^
,Rk(n) is the magnitude of the complex coefficient Xk(n-1) of the 

previous frame, and the angle 
^
,φk(n) can be calculated as the sum of the previous phase and phase 

difference between previous frames: 
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 and the stationary character of the signal in frame n can be quantified by the Euclidean distance 

measure Гk(n)between the Xk(n) and the predicted 
^
,Xk(n): 
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and the sum of all Euclidean distance measure Гk(n) across all the frequency bins is used to generate 

the detection function.  
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5.2.2.3 Pitch-Based Detection 

Pitch changes are the most salient clues for note onset detection of the music signal with soft onset. 

On the one hand, there are many onset detection systems that use energy change and/or phase 

change as the source of information. On the other hand, there are only a few pitch-based onset 

detection systems. One important reason for this is that pitch-tracking itself is a challenging task. 

Collins proposed a pitch-based onset detection system [Collins05A], in which a constant-Q pitch 

detector is used to track pitch and then the tracked pitch information is used to find a possible 

transition between notes. The system is designed to only detect onset of monophonic music signal 

with soft onset, but its actual use is very limited because the real-life music signal is usually 

polyphonic.     

5.2.2.4 Onset Detection Using Neural Network 

There are several studies that utilize machine learning for onset detection [Maro01, Lacoste05]. 

Marolt utilized the neural network to construct an onset detection system for piano music. He first 

separated the input signal into several frequency bands by an IIR auditory filter bank, and then used 

the output envelope of the filter bank to detect the onset by the combination of a integrate and fire 

neurons and multi-layer perceptron neural network. The system performs well for synthesized 

recording, but poorly for real music recordings. Lacoste proposed another onset detection system 

using the neural network. In this system, he first performed a time-frequency analysis, such as STFT 

and constant-Q analysis for the music signal. Then, corresponding energy and phase information is 

used to classify every frame as being onset or non-onset by a neural network. It is reported that the 

detection algorithm achieved the best overall performance in the MIREX 2005 audio onset detection 

contest.   
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5.3 Onset Detection System  

5.3.1 System Overview  

 
Figure 5.2: Proposed Onset Detection System 
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I propose an onset detection system that uses a combination of pitch-based and energy-based 

detection algorithms based on the RTFI analysis. As shown in Figure 5.2, the system consists of two 

main parts - time-frequency processing and detection algorithms.  

5.3.2 Time-Frequency Processing 

The monaural music signal is used as the input signal at a sampling rate of 44.1Hz. The system 

utilized RTFI as the basic tool for time-frequency processing. The center frequencies of discrete 

RTFI are according to logarithmic scale; 10 filters are used to cover the frequency band of one 

semitone and there is a total of 960 filters in the analyzed frequency range, which extends from 46 

Hz to 6.6 kHz .  

It is well known that the human auditory system has different sensitivities to the different frequency 

bands. This is often described by equal-loudness contours. The human auditory system has a 

maximum of sensitivity at about 3-4 kHz, while it is less sensitive to the low-frequency bands. This 

psychoacoustics knowledge is useful in resolving some difficult issues in real-life music analysis. 

For example, in the detection system, we want to remove the noise in the energy spectrum and must 

select a threshold value of the energy spectrum below which it will be considered as a noise 

spectrum. The selection of the threshold will be very difficult without considering psychoacoustics 

knowledge. In the real-life music signal, the values of the low frequencies of the noise’s energy 

spectrum are even higher than the values of the energy spectrum of the harmonic components at 

high frequencies. In this case, if one wants to both remove the low-frequency noise spectrum and 

keep the energy spectrum of the harmonic components at the high-frequencies, he must select 

different thresholds for the different frequency channels. However, the question of how to select 

different thresholds for the different frequency channels is still difficult. To resolve this issue, the 

RTFI energy spectrum is transformed into the Adjusted Energy Spectrum (AES) according to the 

Robinson and Dadson equal-loudness contours, which have been standardized in the international 

standard ISO-226. In order to simplify the transformation, only an equal-loudness contour 

corresponding 70db is used to adjust the RTFI energy spectrum. The standard provides equal-

loudness contour limited to 29 frequency bins. Then, this contour is used to obtain the equal-

loudness contour of 960 frequency bins by cubic spline interpolation in the logarithmic frequency 

scale. Let us define this equal-loudness contour as Eq ( mω ). Then, the Adjusted Energy Spectrum 

(AES) can be expressed as follows: 
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) ( Eq),(),( mmm kARTFIkAES ωωω −=  

where k denotes the kth time-frame, and mω  denotes the angel frequency of the mth frequency bin.  

 

Experiments have proved that this method is a good solution for removing the low-frequency noise. 

In the Adjusted Energy Spectrum, one can select the same threshold for all frequency channels to 

remove the low-frequency noise very well. Figure 5.3 illustrates the change from the Average 

Energy Spectrum to the Adjusted Energy Spectrum of classical string music. In comparing the 

Adjusted Energy Spectrum (AES) (Figure 5.3, top sub-image) to the Average Energy Spectrum 

(Figure 5.3, down sub-image), one can see that the low-frequency noise has been removed and the 

low-frequency intensity has obviously been reduced. This is useful because the human auditory 

Figure 5.3: Comparing the Average Energy Spectrum 
with Adjusted Energy Spectrum 
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system is less sensitive to low frequency sound. The vertical line in each image denotes the correct 

position of true note onset. Then the Adjusted Energy Spectrum is further recombined into the Pitch 

Energy Spectrum (PES) according to the following equation:  
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The music signal is organized according to “note”. It is more interesting than if an energy spectrum 

is organized according to pitch instead of a single frequency component. In order to further reduce 

noise, the pitch energy spectrum is then smoothed in both time and frequency as follows, 
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The smoothed pitch energy spectrum is used to produce the difference pitch energy spectrum (DPES) 

and the normal pitch energy spectrum (NPES): 

),3(),(),( mmm kSPESkSPESkDPES ωωω −−=  

))),(max((),(),( :1 Nmmmm kSPESkSPESkNPES =−= ωωω  

where N is the total number of frequency bins in the Smoothed Pitch Energy Spectrum . The Normal 

Pitch Energy Spectrum is a relative measure of the maximum value of Smoothed Pitch Energy 

Spectrum in a certain time-frame. The most silent pitch has the maximum value 0db.  
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The Difference Pitch Energy Spectrum makes the energy change more obvious. Figure 5.4 shows the 

Adjusted Energy Spectrum and Difference Pitch Energy Spectrum of an example of piano music. The 

Difference Pitch Energy Spectrum clearly demonstrates that the main energy-increasing change only exists 

in the onset time of the piano example. 

Figure 5.4: Difference Pitch Energy Spectrum 
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In Figure 5.5 the Normal Pitch Energy Spectrum of the classic string music sample is displayed for 

values between 0 db and -10 db, and it clearly illustrates the main pitch-change. Finally the 

Difference Pitch Energy Spectrum, Normal Pitch Energy Spectrum, and Smoothed Pitch Energy 

Spectrum together are considered as the input for the second stage of the onset detection algorithm.  

 

 

Figure 5.5: Normal Pitch Energy Spectrum 



 
 
80

 

5.3.3 Detection Algorithms and Experiments 

5.3.3.1 Performance Evaluation, Tuning Database and Test Database  

In this thesis, three measurements for detection performance: - precision, recall, and F-measure - 

are used as an evaluation rule. They are also used for measurements in the Music Information 

Retrieval Evaluation Exchange (MIREX) 2005. The detected onsets must be compared to the 

reference onset labels. For a given reference onset label, if there is a detection within a tolerance 

window of  -50ms to 50ms, it is considered to be a correct detection (CD). If not, there is a false 

negative (FN), and all detections outside of the tolerance window are considered to be false positives 

(FP). The three measurements for onset detection performance, precision, recall, and F-measure 

can be expressed as follows:  

Precision=Ncd/(Ncd+Nfp), 

Recall = Ncd/(Ncd+Nfn), 

F-measure=2*P*R/(P+R) 

where the Ncd, Nfp, and Nfn denote the total number of correct detections, false positives and false 

negatives. 

Given a test database, one may get a better result by setting more appropriate parameters for the 

evaluated algorithm. Consequently, the performance may be overestimated because the parameters 

may over fit the test examples. In order to prevent such an overestimate, two databases have been 

constructed. One is a tuning database, which is utilized to tune the parameters of detection 

algorithms. Another is the test database. there is no duplication between tuning and test database. 

The parameters can be tuned on the tuning database and good ones may be selected according to 

some evaluation rules. However, when the algorithms are tested on the test database, the parameters 

of algorithms are fixed, so that the test results of algorithms on the test database are comparable and 

not overestimated.  
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Table 5.1: Tuning Database 
# Content Reference Duration Onset Num 
1 Solo Piano (piano fast) RWC-M06TR1, 2:28-2:48 20s 110 
2  Folk music (Folk1) RWC-M07TR5, 0:00-0:11 11s 36 
3  Solo Guitar, Classics RWC-M06TR4, 0:00-0:30 15s 64 
4 Female Singing 

(accompanied by 
piano) 

RWC-M07TR11, 0:00-
0:15 

15s 35 

5 Country music RWC-M07TR10, 0:00-
0:15 

16s 37 

6 Piano,Classical 
Baroque 

 RWC-M06TR2, 0:00-0:15 15s 76 

7 String Quartet RWC-M06TR2, 3:04-3:28 20s 40 
8 Solo Trumpet Commercial CD 21s 43 
9 Solo Clarinet Commercial CD 30s 31 
10 Solo Violin Bow Commercial CD 46s 43 

Total 3 Min 29s 515 
 

The tuning dataset selects 10 different examples of music of different genres and instruments. The 

respective details  are listed in Table 5.1. There are 7 examples in the dataset that have been 

excerpted from the RWC music database [Goto03], and the positions of these examples in the RWC 

database are shown in the Reference column of the Table. The other 3 examples are excerpted from 

commercial CDs. For the tuning database and test database, the true onsets are all first labelled by 

hand.  The detailed information of test database will be introduced in the later sections.   

 
5.3.3.2 Proposed Energy-based Detection Algorithm 

  
The music signal usually includes two parts - a transient part and a stable part. The Difference Pitch 

Energy Spectrum from the RTFI analysis as introduced previously can be used to track the transient 
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information, such as the onset of the music note.  I propose a method to track the transient 

information based on the Difference Pitch Energy Spectrum. The method can be simply described as 

follows: 

11)),,((),( θθωω −= mm kDPESLimitkLDPES  (5.1) 
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where N is the total number of frequency bins in the Difference Pitch Energy Spectrum . 

In this method, firstly the Difference Pitch Energy Spectrum is limited by a threshold θ1 so that only 

the values that exceed threshold θ1 are considered to be possible transient clues; and then the 

Limited Difference Pitch Energy Spectrum are averaged across all pitch channels to generate the 

detection function. The detection function is further smoothed by a moving-average filter and a 

simple peak-picking is used to find the note onsets. In the peak-picking, another threshold θ2 needs 

to be set and only the peaks having values greater than threshold θ2 are considered as the possible 

onset candidates. In the final step, if there are two onset candidates and the position difference 

between them is smaller than or equal to 50ms, then only the onset candidate with the greater value 

will be kept. The algorithm is illustrated in Figure 5.6. 
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The left image illustrates the Energy-based 
detection algorithms for a popular music 
example with duration time 4 seconds. The 
vertical line in the image denotes the label 
of the true onsets. The first image is the 
Adjusted Pitch Energy Spectrum. And the 
second image is the Limited Difference 
Energy Spectrum with a threshold θ1=3 db 
according to the equation (5.1).  In this 
example, it is obvious that most of the 
main energy-changes only exist in the 
onset time. The Limited Difference Energy 
Spectrum is averaged across all the 
frequency channels to generate the 
detection function. The detection function 
is further smoothed to detect onset by a 
simple peak-picking. The smoothed 
detection function is shown in the third sub-
image, and the blue line in this image 
denotes the position of the true note onsets. 
Finally a simple peak-picking is used with 
the second threshold θ2=0.02 db; 
additionally, if there exist two successive 
onset candidates and the position difference 
between them is smaller or equal 50ms, 
only the onset candidate with bigger value 
will be kept. The detecting result is shown 
the last sub-image, the blue line in this 
image denotes the position of the true note 
onsets and the red line denotes the position 
of detected onsets.  
 

Figure 5.6: Energy-Based Detection 
Algorithm 
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In the energy-based detection algorithm, two threshold parameters need to be selected.  Some 

experimental results in Table 5.2 demonstrate that different parameters need to be set for the 

algorithm in order to achieve the best performance for the different types of music signals of the 

tuning database.  

Table 5.2: Result of Energy Detection Algorithm  
With Best Fitting Parameter for Each Example 

# Content FMeasure Best Fitting Parameter 

1 Solo Piano  98.2% Threshold: θ1=1; θ2=0.01 

2 Folk music 98.5% Threshold: θ1=1; θ2=0.02 

3  Solo Guitar, Classics 97.7% Threshold: θ1=1; θ2=0.03 

4 Female Singing  65.0% Threshold: θ1=2; θ2=0.19 

5 Country music 80.9% Threshold: θ1=0; θ2=0.06 

6 Piano, Classical 
Baroque 

97.3% Threshold: θ1=3; θ2=0.01 

7 String Quartet 48.2% Threshold: θ1=3; θ2=0.01 

8 Solo Trumpet 92.6% Threshold: θ1=3; θ2=0.14 

9 Solo Clarinet 93.1% Threshold: θ1=3; θ2=0.01 

10 Solo Violin Bow 80.0% Threshold: θ1=7; θ2=0.01 

 

In practical applications, it is difficult to select appropriate parameters for music examples to test. It 

is proposed to use a tuning database to select the best parameters. The parameters will be considered 

to be the best global parameters if they make the detection algorithm have best overall performance 

on the all types of examples in a tuning database. The average F-measure across all examples is 

selected as the evaluation rule for the global performance.  The best global performance of this 

energy-based detection algorithm in the tuning dataset is illustrated in Table 5.3.   
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Table 5.3: Result of Energy-Based Detection Algorithm  
with Global Best Fitting Parameter (achieving the best average-FMeasure) 

Threshold: θ1=3; θ2=0.02, average-FMeasure=77.8% 
# Content F-Measure Recall Precision 
1 Solo Piano  93.4% 89.2% 99.0% 
2 Folk music 93.9% 88.6% 100% 
3          Solo Guitar 97.7% 96.9% 98.4% 
4 Female Singing  62.0% 86.1% 48.4% 
5 Country music 75.0% 64.8% 88.9% 
6 Piano, Baroque 97.3% 96.1% 98.7% 
7 String Quartet 48.2% 48.8% 47.6% 
8 Solo Trumpet 84.9% 95.5% 76.3% 
9 Solo Clarinet 75.4% 74.2% 76.7% 
10 Solo Violin, Bow 51.0% 89.6% 36.1% 

Average 77.8% 82.9% 77.0% 
 

The results in this table clearly demonstrate that the energy-based detection algorithm performs very 

well on the examples (such as Solo Piano, Solo Guitar, Classical Baroque) with strong, hard onsets. 

However, it did not perform as well on the examples (such as String Quartet, Solo Bow Violin) with 

soft onsets.  Figure 5.7 illustrates an example of energy-based detection for bow violin. Many notes 

in this example have very strong vibrations. As shown in the second sub-image in Figure 5.7, the 

Difference Pitch Energy Spectrum demonstrates that the salient energy-change exists not only in the 

onset time, but also in the note duration time. In the detection function (sub-image 3), it is seen that 

there are many spurious peaks that are, in fact, not relate to the true note onsets. Consequently, the 

energy-based detection algorithm shows very low performance in this example (the F-Measure is 

51.0% as shown in the Table 5.3).. 
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Figure 5.7: Energy-Based Detection of Bow Violin with soft onsets 
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5.3.3.3 Proposed Pitch-based Detection Algorithm 

As mentioned before, the energy-based detection algorithm is not good at detecting soft onsets. 

Consequently, I propose a pitch-based detection algorithm, which performs well on both hard and 

soft onsets. In particular, it  has greatly improved the detection performance for the detections of soft 

onsets. Generally speaking, the music note consists of two different parts, a transient part and a 

stable part. In the stable part, the pitch change is small. The pitch is almost stable. In the proposed 

pitch-based detection algorithm, the music signal is first divided into transient and stable parts by the 

pitch-change clue, and then the onset is located in the transient part by energy-change.  As the output 

of RTFI time-frequency processing, the Smoothed Pitch Energy Spectrum, Different Pitch Energy 

Spectrum and Normal Pitch Energy Spectrum are used together as the input for this detection 

algorithm. The algorithm can be separated into two steps: 

1) Searching the possible note onsets with the approximate fundamental frequency ωm. 

2) Combining the detected onset candidates across all of the frequency channels and generating the 

final result for onset detection.   

1) Search of the Onset Candidates 
 
The algorithm searches possible pitch onsets in every frequency channel. It is emphasized that, when 

searching in a certain frequency channel with frequency ωm, the detection algorithm tries to find 

only the onset where the new occurred pitch rightly has an approximate fundamental frequency ωm . 

If a pitch with a fundamental ωm occurs in a certain time segment, then probably there is a peak line 

in this time segment around the frequency ωm in the Smoothed Pitch Energy Spectrum and the 

intensity of the Normal Pitch Energy Spectrum should be stronger than a threshold.  

The proposed detection strategy consists of searching for the pitch onset based on the two following 

assumptions, which are reasonable in most cases. Under the first assumption, when searching for the 

pitch onset in a certain frequency channel with frequency ωm , the detection algorithm first tries to 

find the time segment T , where the intensity of the Normal Pitch Energy Spectrum is strong enough. 

Then, check that the average Smoothed Pitch Energy Spectrum across the corresponding time 

segment has a spectrum peak in the frequency axis near the frequency ωm . If the two conditions are  

met within the time segment T, then it is considered possible that a new pitch with fundamental 

frequency ωm occurs in that time segment T. Two thresholds are used to evaluate whether the pitch 

in the segment T is noticeable: i) all of the Normal Pitch Energy Spectrum in segment T exceeds 
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threshold α1; ii) the maximum value of the Normal Pitch Energy Spectrum in segment T exceeds 

threshold α2. For a better explanation of the detection algorithm, the classic music excerpt is selected 

as an example. The two thresholds are selected as follows: α1=-10, α2=-5; The Normal Pitch Energy 

Spectrum of this sample is shown in Figure 5.8. Its duration time is 8 seconds and only the values 

that are more than -10 db are displayed.  

For example, when searching for the pitch onset in the 293Hz frequency channel for the classic 

music sample, the corresponding Normal Pitch Energy Spectrum, Difference Pitch Energy Spectrum 

and Smoothed Pitch Energy Spectrum are as shown in Figure 5.9. The detection algorithm first 

searches the Normal Pitch Energy Spectrum and finds that two time segments T1 [0.3sec, 2.3sec], 

and T2 [5.8sec, 7.6sec] have values higher than, or equal to, -10 db. Additionally, their maximum is 

more than threshold α2=-6. This implies that, in the duration time of the  two segments, the Pitch 

Energy Spectrum intensity of this frequency channel is strong enough compared to the other 

frequency channel. Then, the sum of Smoothed Pitch Energy Spectrum (SPES) in the two time 

segments has to be computed respectively as follows,  

∑
=

=
230

30

1 ),()(_
i

T kSPESSPESSum ωω  

Figure 5.8: Normal Pitch Energy Spectrum for a classic string 
music sample 
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And if there is a peak at the 293 Hz frequency in the Sum_SPEST2, it is considered probable that 

there is a new note with a fundamental frequency of 293 Hz occurring in the time segment T2. Then 

the detection algorithm locates the onset position of this new note by searching for a noticeable 

energy-change peak greater than the threshold α3 (in this example, α3=2) in the Difference Pitch 

Energy Spectrum. The searching is backward from the beginning of the time segment T2, and the 

searching range is limited in the 0.3 second window before the time segment T2. As shown in the 

Difference Pitch Energy Spectrum of the Figure 5.9, there exists a peak with the value more than the 

threshold α3 nearly at the 5.8th second; the time position of this energy-change peak of the 

Difference Pitch Energy Spectrum is considered as a candidate pitch onset. In summary, in the 

frequency channel with frequency ωm, the algorithm first tries to find the time segment T where a 

new note with fundamental frequency ωm probably occurs, and then locates the onset position of this 

new note backward from the time segment T by the noticeable energy-change from the Difference 

Pitch Energy Spectrum. The basic algorithm has been explained by the simple example. An 

Figure 5.9: Searching of the pitch onsets in one frequency channel 
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additional constraint needs to be added to improve the detection performance in practical cases. If a 

new note is considered to occur in the time segment T, then the duration time of segment T must be 

more than 0.01 second.  

After all frequency channels have been searched, the pitch onset candidates can be found and 

expressed as follows: 

0),(_ ≥mkCOnset ω , m=1, 2, 3, …N,  

where k denotes the time frame and N denotes the total num of the pitch channels. If Onset_C(k, 

ωm)=0, no onset exists in the kth time-frame and mth frequency channel. If the Onset_C(k, ωm)>0, 

there is an onset candidate in the kth time-frame and mth frequency channel, and the value of  

Onset_C(k, ωm) is equal to the value of  DPES((k, ωm) (Difference Energy Spectrum in the kth time-

frame and mth frequency channel) . 

2 ) Combination of onset candidates  
 
Finally the detection algorithm combines the pitch onset candidates across all the frequency 

channels to get the final onset. The combining procedure can be separated into two phases - 

canceling and merging. In the first phase, if two onset candidates are neighbors in a 0.05 second 

time window, then only the onset candidate with the greater value will be kept. The onset candidate 

with smaller value will be cancelled. The task in the second phase is to determine if the two 

neighbor onset candidates should be merged into a single onset. In the time segment between the 

two neighbor onset candidates if the first pitch is still in the transient part, then the two onset 

candidates will be merged into a single note onset, whose time position is the mean of the time 

positions of the two merged onset candidates. Figure 5.10 illustrates the processing steps in pitch-

based onset detection.  
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The left image illustrates the pitch-
based detection algorithm for a bow 
violin example with duration time 10 
second. The red vertical lines in all the 
sub-images denote the time position of 
the true onsets. Very strong vibration 
can be obviously viewed from it’s 
Energy Spectrum shown in the first 
sub-image. As introduced before, the 
energy-based detection algorithm 
shows very low performance on this 
example (referring to the Figure 7) 
because the vibration causes that the 
noticeable energy-change also exists 
in the note’s stable parts. As shown in 
the second sub-image, the Normal 
Pitch Energy Spectrum clearly 
demonstrates it’s pitch-change. Here 
the pitch-based detection algorithm 
makes best use of the pitch-change 
clues to separate the signal into 
transient and stable parts, and then 
searches the onset candidates only in 
the transient part of the signal 
according to different frequency 
channels. The dots in the third image 
denote the detected onset candidates 
in the different frequency channel by 
the algorithm. Finally the detection 
algorithm combines the pitch onset 
candidates across all the frequency 
channels to get the final result, which is 
shown in the last sum-image. In the last 
sub-image, the blue line denotes the 
time position of the true onset, and the 
green line with circle on the top 
denotes the time-position of the 
detected onsets.  

Figure 5.10: Pitch-Based Detection 
Algorithm 
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 Tuning the Parameters of the Algorithm  
 
As indicated earlier,  there are 3 parameters that need to be set in the proposed pitch-based detection 

algorithm.  The two thresholds, α1 and α2, are used to determine if any pitch energy is noticeable in a 

time segment T. The third threshold, α3, is used to locate the onset position of a detected pitch by the 

energy-change in its transient part. As in the parameter tuning of the proposed energy-based 

detection algorithm, the idea here is to tune the parameters of the pitch-based detection algorithm. 

The tuning database is used to tune the parameters. The more appropriate values of the parameters 

should cause the detection algorithm to have better global performance in the tuning databases. The 

different parameter values are tried by the heuristic method. Those that cause the algorithm to have 

the best average F-Measure in all the examples of the tuning database are selected. The detection 

results for the tuning database are shown in Table 5.4. 

Table 5.4: Results of Pitch-Based Detection Algorithm  
with Global Fitting Parameter, Threshold: α1=-10; α2=-3; α2=2; 

average-FMeasure=92.0% 

# Content FMeasure Recall Precision 

1 Solo Piano 91.6% 84.5% 100% 

2 Folk music 95.5% 91.4% 100% 

3 Solo Guitar, Classics 98.4% 96.7% 100% 

4 Female Singing 81.8% 85.1% 77.0% 

5 Country music 80.6% 69.4% 96.2% 

6 Classical Baroque 98.0% 96.5% 100% 

7 String Quartet 90.0% 85.7% 94.7% 

8 Solo Trumpet 94.0% 90.7% 97.5% 
9 Solo Clarinet 96.8% 100% 93.8% 
10 Solo Violin, Bow 93.3% 97.7% 89.4% 

Average 92.0% 89.7% 94.9% 
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5.4 Results of Database 

5.4.1 Results 

The performance evaluation and comparison of different automatic onset detection algorithms in the 

publications is a difficult task because there is no common test collection and evaluation rule. I 

propose two onset detection algorithms (energy-based and pitch-based detection). Their detection 

performances have been compared with the same test dataset to find their advantages and 

disadvantages on the different types of music signal. At the same time, the detection results of the 

proposed detection systems will be compared with the best results in MIREX 2005 [Mirex05].  

Music Information Retrieval Evaluation Exchange (MIREX) proposes a common test environment 

for the contest. In MIREX 2005, some algorithms have been tested and compared on the same test 

collection. Unfortunately, the test database of MIREX contest is not public distributed. So, it must 

be emphasized that the comparison is only approximate because the test databases are different.   

As mentioned before,  two different databases (tuning database and test database) are constructed in 

my experiments.. The parameters of algorithms are tuned and selected by the tuning database. When 

the algorithms are tested on the test database, no changes to the corresponding parameters are 

permitted. This method prevents the parameters of the evaluated algorithm form over fitting the test 

examples and ensures that the test results on the test database are more comparable and not 

overestimated.  

The test database contains different types of excepts from the broad range of real-life music, which 

are played by different music instruments, such as piano, guitar, violin, cello, clarinet, flute, oboe, 

trumpet and horn. It also includes different genres of music, such as Jazz, Rock, Popular, Dance, 

Latin and Country. In the test database, some examples have been selected from the Real World 

Computing (RWC) music generic database, which is often selected as a common foundation for 

research.. Some are selected from a Public distributed database, which contains 17 short music 

sequences in different music instruments and genres, and the validated onset labels for more than 

700 corresponding onsets are also freely distributed. The other examples are selected from 

commercial music CDs. In total, the test database includes 30 music excerpts, more than 15-minutes 

in duration time and 2543 onsets. Similar to the MIREX 2005, the test examples in the test database 

are classified into classes: Plucked String, Sustained String, Brass, Winds, Complex Mixes.  



 
 
94

The piano is considered as a single class because most of the piano music contains many hard onsets. 

In the MIREX 2005, the class Plucked String and Sustained String only contains the monophonic. 

However, in this test dataset, both the Plucked String class and the Sustained String class contain 

real-life polyphonic music. The complete test results of the proposed energy-based and pitch-based 

detection algorithms of all class examples are listed in Table 5.5-5.10. At the same time, the tables 

contain detailed information for every example, such as duration time, source reference, instrument 

or generic, and total number of labelled onsets.  

 

 

Table 5.5: Test Results for Plucked String 
(5 Files ,Total 2 minutes 15 second duration, 421 Onsets ) 

  Result of Pitch-Based 
 Detection Algorithm 

Result of Energy-Based 
Detection Algorithm 

#  Content 
 

Ref 
 

Duration CO FP 
 

FN F- 
Measure 

F- 
Measure 

CO 
 

FP 
 

FN 

1 Guitar I Commercial 
CD 

60s 102 3 11 93.6% 88.6% 109 24 4 

2 Guitar II Public 15s 53 1 4 95.5% 99.1% 57 1 0 

3 Violin I Public 15s 50 4 22 79.4% 81.8% 54 6 18 

4 Violin II Commercial 
CD 

30s 116 7 9 93.6% 88.4% 122 29 3 

5 Cello I Public 15s 36 5 18 75.8% 60.0% 24 2 30 

 Average F-Measure: 
87.6% 

Average F-Measure: 
83.6% 
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Table 5.7: Test Results for Piano 
(2 Files , Total 2 minutes  duration, 449 Onsets ) 

  Result of Pitch-Based Detection 
Algorithm 

Result of Energy-Based 
Detection Algorithm 

#  Content 
 

Ref 
 

Duration CO 
 

FP 
 

FN F- 
Measure 

F- 
Measure 

CO 
 

FP
 

FN

1 Piano I Commercial 
CD 

60s 152 1 19 93.8% 99.1% 169 1 2 

2 Piano II Commercial 
CD 

60s 248 6 40 91.5% 96.2% 268 1 20

 
 

Average F-Measure: 
92.7% 

Average F-Measure: 
97.7% 

Table 5.6: Test Results for Solo Winds 
(5 Files, Total 2 minutes 32 second duration, 375 Onsets ) 

  Result of Pitch-Based Detection 
Algorithm 

Result of Energy-Based 
Detection Algorithm 

#  Content 
 

Ref 
 

Duration CO 
 

FP
 

FN F- 
Measure 

F- 
Measure 

CO 
 

FP
 

FN

1 Clarinet I Commercial 
CD 

30s 23 5 1 88.5% 68.9% 21 16  3 

2 Clarinet II Commercial 
CD 

30s 28 4 1 91.8% 79.3% 23 6 6 

3 Flute I Commercial 
CD 

45s 68 0 19 87.7% 75.0% 67 23 20 

4 Flute II Commercial 
CD 

30s 92 1 37 82.3% 85.1% 106 14 23 

5 Oboe  Commercial 
CD 

17s 90 0 16 91.8% 92.1% 99 10 7 

 Average F-Measure: 
88.4% 

Average F-Measure: 
80.8% 
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Table 5.8: Test Results for Solo Brass 
(3 Files , Total 1 minutes 17 second duration, 230 Onsets ) 

  
 

Result of Pitch-Based Detection 
Algorithm 

Result of Energy-Based 
Detection Algorithm 

#  Content 
 

Ref 
 

Duration CO
 

FP 
 

FN F- 
Measure 

F- 
Measure 

CO 
 

FP
 

FN

1 Trumpet I Public  15s 51 0 7 93.6% 90.6% 53 6 5 

2 Trumpet II Commercial 
CD 

30s 74 0 7 95.5% 85.4% 79 25 2 

3 Horn  Commercial 
CD 

32s 76 1 15 90.5% 87.3% 86 20 5 

 Average F-Measure: 
93.2% 

Average F-Measure: 
87.8% 

 

Table 5.9: Test Results for Sustained String 
(6 Files with polyphonic sound, Total 4 minutes 12 second duration, 378 Onsets ) 

  Result of Pitch-Based Detection 
Algorithm 

Result of Energy-Based 
Detection Algorithm 

#  Content 
 

Ref 
 

Duration CO 
 

FP 
 

FN F- 
Measure 

F- 
Measure 

CO 
 

FP
 

FN

1 Violin   Commercial 
CD 

50s 86 7 4 93.9% 56.0% 84 126 6 

2 String 
Quartet I 

Commercial 
CD 

50s 65 14 9 85.0% 43.2% 46 93 28 

3 String 
Quartet II 

Commercial 
CD 

36s 36 10 5 82.8% 29.2% 19 70 22 

4 String 
Quartet III 

RWC 
 

30s 42 9 3 87.5% 38.5% 21 43 24 

5 Violin/ 
Viola I 

Commercial 
CD 

50s 67 13 13 83.8% 50.9% 69 122 11 

6 Violin/ 
Viola II 

Commercial 
CD 

36s 40 2 8 88.9% 46.5% 33 61 15 

 Average F-Measure: 
87.0% 

Average F-Measure: 
44.1% 
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Table 5.10: Test Results for Complex Music 
(9 Files , Total 3 minutes 28 second duration, 690 Onsets ) 

  Result of Pitch-Based Detection 
Algorithm 

Result of Energy-Based 
Detection Algorithm 

#  Content 
 

Ref 
 

Duration CO 
 

FP 
 

FN F- 
Measure 

F- 
Measure 

CO 
 

FP 
 

FN

1 Jazz I  Public 15s 27 5 9 79.4% 88.6% 35 8 1 

2 Jazz II RWC  20s 71 3 22 85.0% 94.9% 92 9 1 

3 Rock I RWC  30s 100    6 27 85.8% 96.9% 126 7 1 

4 Rock II Public 15s 40 2 19 79.2% 82.7% 43 2 16

5 Popular I Public  15s 27 5 10 78.3% 87.5%  35 8 2 

6 Popular II RWC 42s 75 8 20 84.3% 84.2% 93 33 2 

7 Latin  RWC 30s 84 5 16 88.9% 97.5% 98 3 2 

8 Dance  RWC 30s 66 2 18 86.8% 97.6% 82 2 2 

9 Country RWC 11s 46 4 25 76.0% 89.8% 66 10 5 

 Average F-Measure: 
82.6% 

Average F-Measure: 
91.0% 
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5.4.2 Discussion 
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Figure 5.11: Comparison of Results among the Different Detection Algorithms 

The total results of the proposed Energy-based and Pitch-based detection algorithms appear in 

Figure 5.11. The best results in the MIREX 2005 are also shown in this diagram for an approximate 

comparison.   

Overall, the proposed Pitch-based detection performs best. In this evaluation, the Average F-

Measure is used to evaluate detection performance. On the one hand, the proposed Energy-based 

detection algorithm performs better than does the Pitch-based detection algorithm on the Piano and 

Complex music, which contains a lot of hard onsets. The Energy-based detection wins 5.0% for 

Piano music and 8.4 % for the Complex music.  On the other hand, the Pitch-based detection 
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algorithm performs better in the Pluck String, Brass, Winds and Sustained String where note onsets 

are softer. Especially, for the Sustained String, the Pitch-based detection algorithm wins 42.9% and 

greatly improves the performance from 44.1% to 87.0%. The Pitch-based detection algorithm wins 

5.4%, 7.6%, 4.0% respectively for Brass, Winds, and Pluck String than the Energy-based detection 

algorithm.  

Compared with the best results in the MIREX 2005, the performance of the proposed Pitch-based 

detection algorithm has been a great improvement for the Brass, Winds and Sustained String. The 

proposed Pitch-based detection algorithm wins 20.5% on the Brass, 22.4% on the Winds, and 29.1% 

on the Sustained String. Most of the existing onset detection algorithms are based on the energy-

change or phase-change clues. However, in some real-life music signals with soft onsets, the energy-

change in the note transition may be not noticeable.  At the same time, for some music signals, the 

noticeable energy-change does not necessarily only exists the note onset time. A typical example is 

the music of sustained string, such as bow violin; where, because of the vibration caused by the 

frequency modulation, the music note probably has a very noticeable energy change in the stable 

part of the note. In this case, an energy-based detection algorithm probably is misdirected by such a 

noticeable energy change and will cause a lot of false positives in the detection results. This is an 

important reason why the proposed Energy-based detection algorithm shows very low performance 

on the Sustained String. In the same case, in the MIREX 2005, all of the detection algorithms exhibit 

very low performance on the Sustained String (the best result is 57.9%). The reason is that  most of 

the detection algorithms in the MIREX 2005 are based on energy-change clue s[Bross05, Collins05, 

Lacoste05, West05, Pert05]. One of them also combines the phase information with energy 

information. However, the phase information is very sensitive to noise and exhibits very low 

performance on the onset detection of real-life music.   

The proposed Pitch-based detection algorithm first makes best use of pitch change clues to separate 

the music signal into a transient and a stable part, and then searches for the possible note onsets only 

in the transient part. This method greatly reduced the false positives that are caused by the salient 

energy-change in the stable part of the music note, and greatly improved the detection performance 

of the music signal with many soft onsets or vibrations. Because of the reduction of false positives, 

the proposed Pitch-based detection algorithm has not only greatly improved the overall detection 

performance, but also endowed the detection result with very high precision. A comparison between 

the precision of the detection results of the proposed Pitch-based and Energy-based detection 

algorithm is illustrated in Figure 5.12. The better precision is very meaningful for practical 
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applications in which high confidence in the detected onsets may be required, even at the expense of 

under-detection.  
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Figure 5.12: Comparison of the Precision of Proposed Pitch-based and Energy-based Detection 

Algorithms 
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C h a p t e r  6  

INTRODUCTION TO POLYPHONIC PITCH ESTIMATION 

6.1 Introduction 

Pitch is a perceptual and subjective attribute of sound and plays an important role in the human 

understanding of sound. Although the pitch estimation of monophonic sound is well resolved, the 

polyphonic pitch estimation has been proved to be a very difficult task. Polyphonic pitch estimation 

requires the resolution of some difficult problems that do not exist in the estimation of monophonic 

pitch. For example, one polyphonic music note consists of two music notes with fundamental 

frequencies of F0 and F1, and a ratio between F0 and F1 of approximately 2:3。Then, this probably 

causes the non-exist pitch with fundamental frequency F0/2 to be detected. In most polyphonic pitch 

estimation systems, the analyzed music signal must be first decomposed into different time-

frequency components, which can be further organized into different sound sources according to 

some measurable cues, such as harmonic frequency relation and synchronous change. In this chapter, 

some related works in this field are reviewed, and the problems in polyphonic pitch estimation are 

discussed.  

6.2 Reviews of  Related Work 

Most approaches to polyphonic pitch estimation are very complex. The approaches often consist of 

different phases, utilize different knowledge and combine different processing principles. 

Consequently, it is very difficult to classify theses approaches according to a single taxonomy. The 

following reviews are focused on some typical polyphonic pitch estimation methods. There are a 

number of polyphonic music transcription systems, which more or less utilize the human auditory 

model. Therefore, the reviews begin with the human auditory model.  

6.2.1 Auditory Model of Pitch Perception 

It is a long research history to understand how the human ear achieves a pitch perception of sound. 

An important goal of modern psychoacoustics research is to construct a human pitch perception 

model based on some known physiological and psychoacoustic knowledge.  There are two different 

main theories of human pitch perception: the spectral theory and the temporal theory.  
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The spectral theory considers pitch perception to be pattern recognition processing of an acoustical 

signal. In the human auditory system, the cochlear is an important component that performs 

spectrum analysis as a frequency analyzer [Plomp64, Plomp68]. Sinusoid frequency components 

can be tracked by the spectral peaks in the sound spectrum. The human auditory system can use the 

position pattern of the relative spectral peaks to form a pitch perception by pattern recognition 

processing.  Goldstein proposed an optimum processor theory [Gold73]. In this theory, a central 

processor is considered to be the recognizer of the spectral pattern provided by the auditory 

peripheral frequency analyser. A maximum likelihood statistical estimator determines which pitch 

best matches the spectral pattern of the analyzed acoustical signal. The theory can explain a wide 

range of auditory phenomena, such as the pitch of sounds that are missing a fundamental frequency, 

the percept of dichotic pitch.  

Unlike the spectral theory, the temporal theory uses temporal processing to detect the periodicity in 

different cochlear channels.  In the temporal theory, acoustical signal is first processed by the 

cochlear frequency analyzer; and then the periodicity is detected by the time-domain envelope of the 

output signal of every cochlear channel, instead of extracting the spectral peaks. There are several 

temporal theories that explain human pitch perception.  

In [Meddis97], Meddis and O’Mard summarized a more general model: unitary model, which 

consists of four successive stages: 1) peripheral (mechanical) band-pass filtering, 2) half-wave 

rectification and low-pass filtering, 3) within-channel periodicity extraction, 4) across-channel 

aggregation of periodicity estimates. The final pitch estimation utilizes only the results of across-

channel aggregation in stage 4. Figure 6.1 illustrates the system structure of the general model. 

Stages 1 and 2 model the function of the middle and inner ear, and stages 3 and 4 model the function 

of brain activity. The four stages can be described as follows: 
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1. A band-pass auditory filter bank is used to simulate the cochlear function and separates the input 

acoustical signal into tens of different frequency bands (or channels). The bands (or channels) are 

distributed approximately uniformly on a logarithmic frequency scale. The commonly-used band-

pass filter is the gammatone filter, which was proposed by the Patterson [Patterson92, Slaney93].  

2. The output signal at each cochlear channel is passed to the Meddis’ model of hair cell 

transduction. In each cochlear channel, the hair cell model transforms the output signal into the 

firing probability of auditory nerve activity. The model is often implemented by compressing, half-

wave rectification and low-pass filtering.  

3. Within every cochlear channel, the short-time autocorrelation function (ACF) is used to detect the 

periodicity.  

4. The ACFs across all cochlea channels are summed linearly to create a summary autocorrelation 

function (SACF). The maximum value of the SACF is typically used to determine the time delay 

(lag) that corresponds to the pitch period. 

Figure 6.1: General Four-Stages Pitch Perception Model 
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The model can explain a wide range of pitch perception phenomena. However the model 

computation cost is very expensive. Modified versions of this model are used in a number of 

practical music analysis systems.  

6.2.2 Blackboard System   

The blackboard system is a problem solving model, which is able to flexibly integrate knowledge 

from different sources. It was first introduced in the field of artificial intelligence.  The first known 

blackboard system was developed to resolve problems of speech comprehension. A blackboard 

system frequently consists of three components: a blackboard, a set of knowledge sources (KSs), 

and a control mechanism. The blackboard is a global database in which data and hypothesis are 

stored. The global database is shared by all of the knowledge sources and is organized into different 

abstract levels. The knowledge sources are independent of each other. Their inner interaction is by 

means of the global database. The control mechanism decides when each knowledge sources is 

activated. 

Martin proposed a polyphonic music transcription system to transcribe the four-voice piano music of 

Bach chorales. The system is based on the blackboard architecture and combines top-down and 

bottom-up processing.  The STFT is used as the time-frequency processing front-end. The short-

time running energy of the input signal is measured by the squaring and low-pass filtering of the 

signal. The salient rising energy-increasing information is used to track the onset and to segment the 

signal. In every segment, the magnitude output of the STFT is averaged over the segment and 

produces an average spectrum. The partials are tracked by peak-picking on the average spectrum.  

The list of the track from the time-frequency analysis is used as the input of blackboard system. 

Each track is associated with an onset time, frequency and magnitude. The blackboard workspace is 

organized into a hierarchy of five levels: Tracks, Partials, Notes, Intervals and Chords. The 

blackboard system includes thirteen knowledge sources, which can be categorized into three broad 

areas: garbage collection, knowledge from physics, and knowledge from the music practice. It is 

reported that the system can transcribe synthesized piano performances with some limitations. More 

detailed reviews of the blackboard system in music applications can be found in the reference 

[Bello03]. 

 

 



105

 

6.2.3 Machine-learning Methods   

Recognizing a note in note-mixtures is a typical pattern recognition problem. This, it is rather 

intuitive and reasonable to transform the polyphonic pitch estimation to pattern recognition problem, 

which can be resolved by machine learning methods.  

Marolt used neural networks to construct a polyphonic music transcription system for piano music 

[Marolt04]. The system is based on the combination of adaptive oscillators and neutral networks. 

The auditory model is considered to be the main part of time-frequency processing. In the system, 

the input signal is first separated into 200 different frequency channels by a gammatone auditory 

filter bank with logarithmically-spaced centre frequencies. Then the outputs of gammatone filter 

bank are further processed by Meddis’s hair cell model. The human ear time-model assumes that the 

pitch perception comes from the periodicity detection of every frequency channel. The most 

common way to detect the periodicity is to use the autocorrelation. In the system, Marolt used the 

adaptive oscillators to track the partial in every frequency channel. Further, the network of the 

adaptive oscillators is used to track a group of harmonically relative partials. Finally, the neural 

network is used to recognize music notes. A combination of oscillators’ network output and 

amplitude envelopes in every frequency channels are used as the input for the neural network. He 

compared the performance of the Different types of neural networks: multi-layer perceptrons 

(MLPs), radial basis function (RBF) networks, time-delay neural networks (TDNN), Elman’s 

partially recurrent networks. It is reported that TDNN performs better than the other three types of 

neural networks. The system performance is evaluated by testing with synthetic and real piano 

music. It is reported that the system achieves a good performance on synthetic piano music, but a 

low performance on real piano music.  

Pertusa and his colleagues proposed another polyphonic transcription system using the time-delay 

neural network [Pert03]. Their purpose was to determine if neural network fed only with a 

spectrogram can work well for the polyphonic transcription problem. In contrast to Marolt’s system, 

Pertusa selected STFT as the basic time-frequency processing tool instead of the auditory filter bank. 

In Pertusa's system, the spectrum of 1024-point STFT is combined into the 94 frequency band in the 

logarithm scale. Then the 94-dimension spectrum is used as the input vector of a time-delay neural 

network, which is used to recognize music notes. The system is limited to recognizing musical notes 

only in mono-timbre polyphonic music. The training samples are selected from the different 

synthetic mono-timbre polyphonic notes, which are generated from MIDI files using a physical 

virtual synthesizer. It is reported that the system trained by a mono-timbre polyphonic music will 
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perform better on the same timbre test examples than on the other timbre test examples. The system 

performance on real-music is not reported.  

6.2.4 Iterative Methods  
Klapuri proposed a polyphonic pitch estimation algorithm based on the iterative method 

[Klapuri03]. In this algorithm, first the predominant pitch of concurrent musical sound is 

estimated, and then the detected sound corresponding to the predominant pitch is removed from 

the mixture. The process is repeated iteratively on the residual signal. Figure 6.2 presents an 

overview of this polyphonic pitch estimation algorithm.  

The acoustical input signal is first preprocessed to suppress the noise by a magnitude warping 

technology. In the predominant pitch estimation stage, the fundamental frequency of the most 

prominent sound is estimated in the mixture, where there is also some other harmonic sounds and 

noise. To find the predominant pitch, the preprocessed spectrum is first separated into 18 different 

frequency bands that are logarithmically spaced between 50Hz-6kHz. In every frequency band, a 

corresponding weight vector is calculated to represent the likelihood of a different pitch. The 

calculation of the weight vector is based mainly on the harmonic group principle that simultaneous 

harmonic-relative spectral components are grouped into a single sound source. The calculation also 

considers the inharmonic sounds, those in which the frequencies of the overtone partials do not 

occur in exact integer ratios.  

Then, the bandwise likelihood vectors are combined to globally estimate the predominant pitch 

across the different frequency bands. In the next stage, the spectrum of the sound with the 

predominant pitch is estimated and subtracted from the mixture according to the spectral smoothness 

principle. The estimation and subtraction is repeated iteratively on the residual signal until there is 

evidence that all of the harmonic sounds have been detected. The algorithm has been tested on 

polyphonic mixtures with multiple timbres under different acoustic conditions, and performs very 

well.   

Wan and his colleagues proposed another iterative method of polyphonic pitch estimation. In this 

method, the predominant pitch is first detected and, then, in the original analyzed signal, the detected 

sound is weakened, according its corresponding harmonic structure. The processing is repeated for 

the weakened residual signal. Figure 6.3 illustrates the main procedures of this algorithm. In this 

algorithm, only the half wave rectification is utilized to enhance the harmonic structures, instead of 
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the complete auditory model processing.  The input signal first is transformed into frequency 

spectrum by FFT, and then the spectrum is band pass filtered in the 50Hz-6000Hz range.  

 

 

 By means of the IFFT, the band-limited signal is transformed into a time-domain signal, which is 

processed by half-wave rectification to enhance harmonic structures. This harmony-enhanced time-

domain signal is used to extract the predominant pitch by an autocorrelation operation.  To detect 

Figure 6.3: A Harmonic Enhancement Based Pitch 
Estimation Algorithm 

 Figure 6.2: Overview of Klapuri’s Iterative Method  
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the multiple pitches, the corresponding harmonic structures of the predominant pitch will be 

weakened in the spectrum of the original signal and produce the residual signal. The residual signal 

is used to find the next possible predominant pitch by the same iterative processing. The number of 

iterations is controlled by various stop criteria, such as prior knowledge and psychoacoustic 

knowledge. Some results are reported with monophonic and polyphonic music samples.  

6.2.5 Estimation Using Instrument Model 

Yin and his colleagues proposed a polyphonic pitch estimation algorithm based on the instrument 

model [Yin05]. They used the instrument model to characterize the harmonic structure of different 

instruments to assist a stronger polyphonic pitch estimation. In their algorithm, the FFT is used to 

generate the amplitude spectrum of the instrument sample, and then the amplitude spectrum is 

separated into 88 semitone frequency bands. The middle frequency of each band consists of the 

fundamental frequencies of a western music note, and the bandwidth is a semitone. The amplitude 

spectrum bins in every frequency band are combined to generate the band energy spectrum Z[i], 

i=1,2,…88, (A0..C8) where the frequency band index i corresponds to the MIDI note number of a 

western music note. For music note i, Z[i] denotes the energy of the fundamental, and the energy of 

the lowest 16 harmonics partials lie in the Z[i], Z[i+12], Z[i+19],...Z[i+48]. The band energy 

spectrum 49 number vector Z[i…i+48] is considered to be the instrument model of a music note 

with pitch i ( according to the MIDI note number). In the instrument model, it is assumed that the 

harmonic structure of the music note is the same, regardless of pitch. Based on this assumption, for a 

certain music instrument, only one 49 number vector I[0…48] can completely signify the harmonic 

structure of  music notes with different pitches. For a music note with volume a and MIDI number p, 

the note’s spectrum can be generated as:  


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=
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Then, for a polyphonic music note with band energy spectrum ZM, which is played by the 

instrument with instrument model I, the polyphonic pitch estimation is converted to resolve the 

following minimization problem: 
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where n is the total number of the estimated notes, and (ai, pi) denotes the volume and pitch .  

The algorithm has been evaluated by only very limited several MIDI files, and they claim that music 

transcription performance can be improved by using the instrument model if the musical sounds 

have stable harmonic structures.  

6.3 Problems in Polyphonic Pitch Estimation 

Polyphonic pitch estimation of music signals is very challenging because of the wide pitch range 

and great variety of the spectral structures of different instruments' sounds. The sounds of most of 

musical instruments are more or less harmonic relative. For the ideal harmonic sound, the ratios of 

the frequencies of the harmonic components (partials) and fundamental frequency should be integers. 

The frequency ratios of harmonic components to fundamental often are not strictly integers, 

although nearly so. For example, the partial frequencies of a monophonic piano note can be 

expressed as follows: 

)1(1 2 −+= nnFf n β  (6.1) 

where n denotes the index of partials, F is the fundamental, and β is the inharmonic factor, . As 

shown in the equation 6.1, the frequencies of the higher order partial exhibit a greater difference 

from the ideal harmonic position. Figure 6.4 illustrates the inharmonic spectral structure of a piano 

example. 

The most difficult problem in the polyphonic pitch estimation is caused by coinciding harmonic 

components. In the most severe case, given two music notes with fundamental frequencies f1=nf2 

and n is an integer, the harmonic components of the music note that has the higher fundamental 

frequency can be completely overlapped by another music note. Then, the frequency of the kth  

harmonic component of the music note with fundamental frequency f1 is equal to the frequency of 

the (nk)th harmonic component of another music note with fundamental frequency f2. For a more 

general case, if two music notes with a fundamental frequency relation of: 

m
nff 12 =  
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 where the m and n is integer, then the frequency of the pth (p=nk) partial of the music note that has 

the fundamental frequency f1 is equal to the frequency of the qth (q=mk) harmonic component of the 

music note with fundamental frequency f2.  

                          

 

In common western music, the fundamental frequencies of the musical notes can be expressed as 

follows: 

12
69

2440
−

⋅=
L

Lf  (6.2) 

where L denotes the MIDI number according to the MIDI notation. The interval between the Lth and 

(L+1)th music note is equal to a semitone.  

The fundamental frequency ratio of two musical notes is determined by their music interval. Table 

6.1 illustrates the note intervals that can make the fundamental frequency ratio nearly equal to m/n 

and m and n are small integers.  

Figure 6.4 Inharmonic Spectral Structure of a Piano Note 
 

This Figure shows the inharmonic Spectral Structure of a Piano Note Example 
with the fundamental frequency of 148 Hz. The red line denotes the ideal harmonic 
position. It can be viewed that the real frequencies of the 15th or higher order 
harmonic components are obviously deviate from the ideal harmonic position.  
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Figure 6.5 illustrates the magnitude spectrum of two violin music notes, in which the partials of the 

high pitch note are completely overlapped by the harmonic components of the other music note.  

 

Table 6.1 Small Integer Ratio and Note Interval 

Note Interval 
(semitone)

Small Integer Ratio Deviation 

3 6:5 -0.92% 

4 5:4 +0.79% 

5 4:3 +0.11% 

7 3:2 -0.11% 

12 2:1 0.00% 

16 5:2 +0.79 

19 3:1 -0.11% 

28 5:1 +0.79% 

31 6:1 -0.11% 

Figure 6.5 Coinciding Harmonic Components in Two Violin Notes 

This Figure illustrates the spectral magnitude of the two violin music notes with 
fundamental frequencies 261.6 Hz and 784.0Hz. The blue line denotes the spectrum of 
the note with lower pitch and the red line denotes the other note. It is obviously viewed 
that harmonic components of the high pitch note are completely overlapped by the 
every third harmonic component of the low pitch note. 
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C h a p t e r  7  

A NEW POLYPHONIC PITCH ESTIMATION METHOD: 
METHOD I 

Two new polyphonic pitch estimation methods have been proposed in this thesis. This chapter 

introduces the polyphonic pitch estimation method no. I. Method no. I performs a polyphonic pitch 

estimation based on the harmonic relation and spectral smoothing principle. 

7.1 System Overview 

  

 

 

 

Figure 7.1 Overview of Proposed Polyphonic Pitch Estimation Algorithm I 
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Figure 7.1 illustrates the system overview of the proposed polyphonic pitch estimation method no. I.  

The method can be separated into five different steps: 

1) Time-frequency processing based on the RTFI analysis 

2) Transforming the input RTFI Energy Spectrum into the Relative Energy Spectrum, and 

extracting the harmonic components  

3) Transforming the RTFI Energy Spectrum into the Relative Pitch Energy Spectrum and making 

a preliminary estimate of the possible multiple pitches.  

4) Cancelling pitch candidates without enough confidence from the extracted harmonic 

components.  

5) Judging the existence of the pitch candidate by the spectral smoothing principle.  

7.2 Time-frequency Processing Based on the RTFI 

Analysis 

In the first step of this method, RTFI is used to analyze the input music signal and produce a time-

frequency energy spectrum. The input sample is a monaural music signal frame at a sampling rate of 

44.1Hz. The frame length is not necessarily fixed. This is designed for a real polyphonic music 

transcription task, in which the frame length varies for different music notes. Discrete RTFI with 

constant-Q resolution is selected for the time-frequency analysis to produce the time-frequency 

energy spectrum. All 1250 filters are used. The middle frequencies are set in logarithm scale,. The 

centre frequency difference between two neighbouring filters is equal to 0.1 semitone and the 

analyzed frequency range is from 8Hz to 6.6 kHz.  Then, the time-frequency energy spectrum is 

further averaged across the time domain in the input frame to obtain an average energy spectrum. 

This RTFI average energy spectrum is used as the only input vector for later processing in this 

polyphonic pitch estimation method. In the description of this method, the integer k is used to denote 

the frequency index in the logarithm scale, whereas fk denotes the corresponding frequency value in 

Hz as follows: 

120/)690(2440 −⋅= k
kf   (7.1) 
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One example for the input RTFI energy spectrum of a piano note is provided in the upper image in 

Figure 7.2.  

 

 

Figure 7.2 The Input RTFI Energy Spectrum, Relative Energy Spectrum and Extracted Harmonic 
Components of a piano polyphonic note consisting of two concurrent notes with fundamental 
frequencies 82 Hz and 466 Hz 



116

 

7.3 Extracting Harmonic Components 

In the second step, the input RTFI energy spectrum is first transformed to the relative energy 

spectrum (RES) according to the following expression: 

∑
+

−=

−=
2/

2/
)()()(

Nk

Nki
ikk fRTFIfRTFIfRES ,   k=1,2,3,… (7.2) 

where k denotes the frequency index in the logarithm scale,  the second term in the right hand part of 

the equation denotes the moving average of the input RTFI energy spectrum, and N is the length of 

the window for calculating the moving average.. In the heuristic way, N is set to 30. As shown in the 

upper image in Figure 7.2, the red line denotes the moving average of the RTFI energy spectrum, 

and the relative energy spectrum RES(k) in fact is a relative measure of the energy spectrum for a 

frequency bin of k. This contrasts with the energy spectrum of a frequency range that is around the 

frequency bin of k. The middle image in Figure 7.2 illustrates the relative energy spectrum of a 

piano example.  

The transformation from the original energy spectrum to a relative energy spectrum has been proven 

by experiments to be very useful for improving the method’s performance.  If there is a peak in the 

relative energy spectrum at the frequency index equal to k and the value RES(fk) is more than a 

threshold A1, it is likely that there is a harmonic component at the frequency index k. The 

corresponding value RES(fk) is assumed to be a measure of confidence of existence of the harmonic 

component. The third image in the Figure 7.2 shows the extracted harmonic components of the 

piano example.  

7.4 Making Preliminary Estimation of  Possible 

Multiple Pitches 

In the third step, based on the harmonic grouping principle, the input RTFI energy spectrum is first 

transformed into the pitch energy spectrum (PES) and the relative pitch energy spectrum (RPES) as 

follows: 

)()(
1

k

L
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, k=1,2,3,… (7.3) 



117

 

∑
+

−=

−=
2/

2/
)()()(

Nk

Nki
ikk fPESfPESfRPES ,k=1,2,3,… 

Where the L is a parameter that denotes how many low harmonic components are together 

considered as important evidence for judging the existence of a possible pitch. The ideal parameter 

L and N value need to be set by the experiments on the tuning database. In the following reported 

test experiments, L and N are fixed at 4 and 50 respectively. 

In practical implementations, instead of using the equation (7.3), the pitch energy spectrum can be 

easily approximated in the logarithm scale by the following calculation (here L is less than 10): 

)()( ][
1
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i
k fRTFIfPES +

=
∑= , 

]399,380,360,337,310,279,240,190,120,1[]10[ =A  

 

As shown in Table 7.1, the deviation between the approximate and ideal values is negligible. 

There are two assumptions made when making a preliminary estimate of the possible pitches from 

the relative pitch energy spectrum. If there is a pitch with fundamental frequency fk, in the input 

sample, 1) there should be a peak around the frequency fk in the relative pitch energy spectrum; 2) 

the peak value should be large enough and surpass a threshold A2.  Both assumptions fit well for 

real music examples if a suitable threshold A2 is selected. 

Table 7.1  Deviation between approximation and ideal values 
i 1 2 3 4 5 6 7 8 9 10 

k

iAk
fi

f
⋅

+ ][

 
0% 0% -0.11% 0% 0.21% -0.11% 0.07% 0% -0.23% 0.21%
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Figure 7.3 illustrates the relative pitch energy spectrum of a violin example, which consists of four 

concurrent notes with fundamental frequencies of 266Hz, 299Hz, 353Hz and 403Hz respectively. 

As shown in Figure 7.3, there are 9 pitch candidates that can be preliminarily estimated. when 

selecting the threshold A2= 10db, The fundamental frequencies of the 9 pitch candidates are 177 Hz, 

266Hz, 299Hz, 353Hz, 403Hz, 532Hz, 598Hz, 796Hz and 901Hz. In this preliminary estimate, all 4 

true pitches in the example have been correctly estimated. On the other hand, 5 extra pitches have 

been incorrectly estimated. The estimated extra pitches usually share many harmonic components 

with the true pitches. In this example, the estimated extra pitch of 177Hz is nearly half of the true 

pitch of 353 Hz.  The extra pitches 532Hz, pitch 598Hz are nearly twice of the true pitch 266Hz, 

pitch 299Hz respectively; and the extra pitch 796Hz is nearly triple of the true pitch 266Hz. The 

extra pitch estimations are considered to be cancelled in the next two steps.  

Figure 7.3 Relative Pitch Energy Spectrum of a violin example consisting of four 
concurrent notes with the fundamental frequencies 266Hz, 299Hz, 353Hz and 403Hz. 
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7.5 Cancelling Extra Pitches by Checking Harmonic 

Components 

Throughout a great number of experiments, it has been noted that, in most real music instruments, 

the several lowest harmonic components of the music notes are strong and can be extracted reliably 

through the second step of this method. Only a very low music note may have a very faint first 

harmonic component that cannot be extracted reliably. Based on these observations, some 

assumptions can be made for judging whether there is a pitch using the extracted harmonic 

components. For example, in this method, there is the following assumption: 

If there is a pitch with a fundamental frequency of more than 82 Hz, either the lowest three 

harmonic components, or the lowest three odd harmonic components of this pitch, should all be 

present in the extracted harmonic components. If there is a pitch with a fundamental frequency that 

is lower than 82 Hz, four of the lowest six harmonic components should be present in the extracted 

harmonic components.  

In two typical cases, the extra estimated pitches can be cancelled based on the above assumption. In 

the first case, the extra pitch estimation is caused by the noise peak in the preliminary pitch 

estimation. In the second case, the harmonic components of an extra estimated pitch are partly 

overlapped by the harmonic components of the true pitches. In this case, the non-overlapped 

harmonic components become important clues to check the existence of the extra estimated pitch. 

For example, if a polyphonic note contains two concurrent music notes C5 and G5, the fundamental 

frequency ratio of the two notes is nearly 2:3. Then, it is probable that there is extra pitch estimation 

on the C4, because the C4’s second, fourth, sixth,…harmonic components are overlapped by the C5’ 

first, second, third,… harmonic components, and the C4’s third, sixth, ninth,… harmonic 

components are nearly overlapped by the G5’s first, second, third,…harmonic components. 

However the C4’s first, fifth, seventh harmonic components are not overlapped, so the extra C4 

estimation can be easily cancelled by checking the existence of the first harmonic component based 

on the above assumption. 
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7.6 Judging the Existence of  the Pitch Candidate by 

the Spectral Smoothing Principle  
Through the last several steps, the extra incorrect estimation focused on the pitches whose note 

intervals are 12, 19, and 24 semitones higher than the true pitches. In this case, the fundamental 

frequencies of these extra estimated pitches are 2, 3 or 4 times those of a true pitch and the harmonic 

components of each extra pitch are completely overlapped by a true pitch. For example, two of the 

estimated pitch candidates are the notes with fundamental frequencies f1 and 3f1. Here the difficulty 

is to determine if the note with the fundamental frequency 3f1 really occurs or, in fact, is an incorrect 

extra estimation caused by the overlapped frequency components of the lower music note.  This is 

the most difficult case in the polyphonic pitch estimation, and the problem can be well resolved by 

the spectral smoothing principle.  

Here, the spectral smoothing principle refers to the fact that the corresponding harmonic spectral 

envelop of a real monophonic music note often gradually changes. In other words, the spectral value 

difference between two neighbouring harmonic components is small and random in most cases. 

However, when a music note with the fundamental frequency f1 is mixed with another note with the 

higher integer ratio fundamental frequency nf1, then the corresponding harmonic spectral envelope 

often will not be smooth again and the spectral value of every nth harmonic component become 

obviously larger than the neighbouring harmonic components. Figure 7.4 illustrates the RTFI energy 

spectrum of the first 30 harmonic components of two piano music samples. The upper image 

presents the analysis results for the piano sample that contains only one music note with a 

fundamental frequency of 147 Hz. The lower image shows the result of analysis for the other piano 

sample that has two concurrent music notes with a fundamental frequency of 147 Hz and 440Hz 

(≈3*147Hz). It is apparent that, in comparison to the upper image, the 3rd, 6th, 9th, …, harmonic 

components are strengthened and their spectral values are almost larger than the neighbouring 

harmonic components.  
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Figure 7.4:  Harmonic Component Energy Spectrum of Two Piano Samples. 
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If there are two estimated pitch candidates that have fundamental frequencies of f1 and f2 (f2≈nf1), 

and a frequency ratio that is approximately an integer n, then the proposed method has the following 

two steps to judge if the higher pitch with the fundamental f2 occurs. Firstly, the energy spectrum of 

the first 10n corresponding harmonic components with the fundamental frequency f1 is calculated by 

an RTFI analysis with constant-band resolution.  

As mentioned before, for the overall polyphonic estimation, the spectral analysis in the logarithm 

scale is reasonable and the constant-Q frequency resolution is better. However, for the 

corresponding harmonic spectral analysis of a certain known fundamental frequency, the constant-

band frequency resolution is necessary because the harmonic components are equally spaced on the 

frequency axis. And the centre frequencies of the constant-band resolution RTFI analysis filter is set 

at  f1, 2f1, 3f1,  ..., (10n)f1.. The corresponding harmonic RTFI energy spectrum can be expressed as 

RTFIH(k), k=1, 2, 3,…,(10n), where k denotes the harmonic component index 

Secondly, the Spectral Irregularity (SI) is calculated as follows: 
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As indicated before, if two of the estimated pitch candidates have the fundamental frequencies, f1 and 

f2 (f2≈nf1) and if the higher pitch does not occur, then the SI(n) is often smaller, according to the 

spectral smoothing principle. On the other hand, if the higher pitch does occur, then the overlapped 

harmonic components are often strengthened so that the SI(n) has the larger value. So, in the proposed 

method, when the SI(n) is smaller than a threshold, the overlapped higher pitch candidate is cancelled. 

The threshold is determined by experiments. In practical examples, most incorrect extra estimations 

caused by overlapping harmonic components are 2, 3, or 4 times the true pitches. Consequently, the 

proposed method only consider cases in which two  pitch candidates have fundamental ratio at the 2,3 

and 4.  
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C h a p t e r  8  

A NEW POLYPHONIC PITCH ESTIMATION METHOD 
COMBINING SVM AND SIGNAL PROCESSING: METHOD II 

The second proposed polyphonic pitch estimation method is based on machine learning. The basic 

idea is to consider the polyphonic pitch estimation as a pattern recognition problem. 

8.1 System Overview 

 

 

The proposed estimation method is composed mainly by a signal processing block followed by a 

learning machine. Compared to the human listening system, the signal processing stage is a time-

frequency signal analysis tool that is similar to a cochlear filter, whereas the learning machine 

plays a role similar to one of the human brains. A multi-resolution, fast RTFI is used as signal 

processing component, and a support vector machine (SVM) is selected as an intelligent agent. 

Figure 8.1 shows the main system block diagram. Firstly, the music signal is processed to produce 

Figure 8.1 System Architecture of Proposed Polyphonic Pitch Estimation II 
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the average energy spectrum by a multi-resolution fast RTFI analysis (as introduced in Chapter 4, 

Section 3) on the logarithm scale. Finally, the peaks are picked from the average energy spectrum to 

produce the input vector to the SVM. In the training phase, the extracted peaks are used with the 

target output to produce the SVM polyphonic estimator. In the application phase, the SVM 

polyphonic estimator uses the peaks vector to perform multiple pitch tracking. The SVM polyphonic 

estimator consists of 88 two-class classifiers for 88 notes (piano extension from A0 to C8). Each 

two-class SVM classifier recognizes whether an input sample includes the corresponding note or not; 

and can also output the probability that every music note can occur in the input sample.   

8.2 Motivation for Selecting SVM Instead of  Neural 

Network 

For the uses for which the machine type, SVM has been chosen, as it provides several important 

advantages. Firstly, SVM is based on Structural Risk Minimization (SRM)   and provides the 

theoretical support and related tools to control the ability of generalization, whereas a neural 

network design often depends on heuristics and easily leads to an overfitting problem. Secondly, 

SVM can achieve a global solution, whereas the neural network can only converge on a local 

solution. Finally the input vector is composed by the extracted spectrum peaks that only exist in 

some frequency bins with the result that the input vector is sparse and high dimensional, SVM can 

process such sparse input vector very efficiently. In our experiments, the input vector size was up to 

960 and the SVM still worked well. This property is very useful. On the contrary, neural networks 

with hidden layers training are very time consuming for high dimensional input vectors. 

In practice, the LIBSVM [Chang01] software has been used as a major tool for SVM training. To 

train a SVM classifier, it is first necessary to select a kernel function. The library provides linear 

kernel, RBF kernel, sigmoid kernel and polynomial kernel. Indeed the linear kernel is a special case 

of RBF kernel [Hsu], sigmoid kernel is not test under some conditions [Cortes95], and polynomial 

kernel classifier needs too long a training time for such a high-dimension classification problem; 

RBF has therefore been chosen as the kernel function. 

8.3 Input Vectors and SVM Training 

Every input sample is pre-processed to a normal amplitude. The normal input sample is first 

processed by the multi-resolution fast RTFI analysis, and then the peaks are extracted from the 

outputted RTFI energy spectrum. Every peak value is added by a 200 db, and the spectrum values at 
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the frequency bins without peak are set to zeros. Because the spectral peak only exists in limited 

frequency positions, the spectral peak vectors are sparse vectors. The vector size is 960 frequency 

bins and the analyzed frequency range is from 27 Hz to 6.6 KHz. Figure 8.2 illustrates the input 

spectral peak vector that is extracted from the RTFI energy spectrum of a polyphonic violin example 

with four concurrent notes.  

 

Figure 8.3 illustrates the detailed structure of the SVM polyphonic estimator, and its input vector 

and output. As shown in Figure 8.3, the SVM polyphonic estimator consists of 88 two-classifiers, 

each of which is responsible for recognizing a certain single note. All note recognizers uses the same 

input vector, but the output of each note recognizer is determined by the input sample. For example, 

if the input sample contains four concurrent music notes - A3, B3, C3, G3 - the ideal outputs of 

these note recognizers would be that the outputs of the A3, B3,C3,and G3 note are ‘Yes’ and the 

outputs of all other note recognizers are ‘No.’ Every note recognizer should also be able to output 

the probability that the corresponding note occurs.  

Figure 8.2 illustrates a SVM input spectral peak vector. The input vector is extracted peaks from a 
polyphonic violin sample, comprising of four concurrent notes with the note number 60,62,65,67 
in MIDI notation. The frequency is in the logarithm scale. And the frequency distance between 
two neighbour frequency bins is 0.1 semitone. The analysis frequency range is from 27 Hz(20th 
semitone) to 6.6 kHz (116th semitone). According to the frequency bin index, the first several 
corresponding harmonic components of Note 60 is at the 600th, 720th, 790th, … frequency bin; as 
shown in the image, the spectral peaks do exist in these frequency bins. The spectral peaks at the 
first several harmonic components of the other 3 notes also can be viewed in the image. It also can 
be viewed that values on the most of the frequency bins are zeros, so it is a sparse vector.  
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In the training phase, every note recognizer is trained independently, but the input spectral vectors 

can be re-used by all of the note recognizers. This also reduces the difficulty in preparing a great 

number of training samples. Figure 8.4 illustrates several training examples of two note recognizers. 

For details about the training database, refer to section 9.2 of Chapter 9.  

Figure 8.3 SVM Polyphonic Estimator
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When using the RBF kernel, two parameters, C and γ, specify the function. C is the penalty 

parameter of the error term and γ is the RBF kernel parameter([Cortes95]). An optimal (c, γ) is 

needed to make the classifier perform well on unknown new samples. This is achieved by grid-

search using crossing validation. First, I try several (c, γ) pairs and pick the pair, with which the 

9 training examples for Note Recognizer C4 and E4: 
Training Examples for Note Recognizer C4:  
1, -1  199:175   248:159   287:148   319:166   346:159   390:143  408:143  ... 
2, -1  208:182   258:162   297:155   328:154   355:152  379:136  418:138 ...   
3, -1  269:157   340:146   389:171   427:148   459:165   486:159   509:170 ... 
4, -1  110:98  230:105  327:125   440:181   540:172   560:176   631:172 ...    
5, -1  69:130   189:175   259:165   309:154   348:165   380:164   405:149 ...  
6, -1  103:108   199:156   299:149   357:155   370:156   389:179   418:165 ... 
7, -1  334:119   508:134  635:141  681:151   712:150   751:187   800:186   ... 
8, -1  279:179   349:177   399:155   497:148  520:154   541:148   583:171  ... 
9, 1  109:111    490:172    519:175   589:163  610:167  680:147   692:142 ...  
  
Training Examples for Note Recognizer E4:  
1, -1  199:175   248:159   287:148   319:166   346:159   390:143  408:143  ... 
2, -1  208:182   258:162   297:155   328:154   355:152  379:136  418:138 ...   
3, -1  269:157   340:146   389:171   427:148   459:165   486:159   509:170 ... 
4, 1  110:98  230:105  327:125   440:181   540:172   560:176   631:172 ...    
5, -1  69:130   189:175   259:165   309:154   348:165   380:164   405:149 ...  
6, -1  103:108   199:156   299:149   357:155   370:156   389:179   418:165 ... 
7, -1  334:119   508:134  635:141  681:151   712:150   751:187   800:186   ... 
8, -1  279:179   349:177   399:155   497:148  520:154   541:148   583:171  ... 
9, -1  109:111    490:172    519:175   589:163  610:167  680:147   692:142 ... 
 
 
* The every row denotes an input sparse vector, only the first 
several peak values are displayed because of the limited space. The 
red digit denotes the target output, 1 denotes the certain note 
occurs in the input sample. The green digit denotes the vector 
index of the input peak vector. And black digit following the 
vector index denotes the spectral peak value in the vector index. 
The value of vector index not listed in the row is zero. 
 
* It can be viewed in fact that the input peak vectors of the 
training examples are same for all the note recognizer. The 
difference is that the target values are different for different 

note recognizer.  

Figure 8.4, Training Examples of Two Note Recognizers
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trained classifier has the best crossing-validation accuracy. Hundreds of classifiers have to be trained 

and every classifier has more than 100,000 training samples. So, it is impossible to run an extensive 

grid-search to find (c, γ). A subset is selected from the training samples, and this subset is used to 

find the good (c, γ) by grid-search and crossing-validation. Then, the parameter pair (c, γ) that is 

selected will be used to train the classifier on the complete training set.  
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C h a p t e r  9  

EXPERIMENTAL RESULTS OF POLYPHONIC PITCH 
ESTIMATION METHODS  

9.1 Performance Evaluation Criteria 

Four criteria are used to evaluate the performance of the proposed polyphonic pitch estimation 

methods. These criteria are note precision (NP), note recall (NR), note f-measure (NM), and chord 

error rate (CER). The estimated fundamental frequencies must be compared to the reference 

fundamental frequency labels. A given reference fundamental frequency is considered to be a 

correct estimation (CE), if the estimation has an error of no more than 3% (0.5 semitone) from the 

reference fundamental frequency. If not, it is a false negative (FN) and any estimation that deviates 

by more than 3% from the reference fundamental frequency is considered to be a false positive (FP). 

The performance measurements for the polyphonic pitch estimation method, note precision, note 

recall, and note F-measure can be defined as follows:  

Precision=Nce/(Nce+Nfp), 

Recall= Nce/(Nce+Nfn), 

F-measure= 2*P*R/(P+R) 

where the Nce, Nfp, and Nfn denote the total number of correct estimations, false positive and false 

negative. Chord precision (CP) is defined as the percentage of the sound mixture where no pitch 

class identification error occurs.  

Additionally, another performance measure, Note Error Rate (NER), is also used for the comparison 

with the Klapuri’s estimation methods. The NER is defined as the sum of the fundamental frequency 

estimation errors divided by the number of the fundamental frequencies in the reference estimation. 

The errors can be classified as three different types: substitution errors, deletion errors and insertion 

errors. If the number of estimated fundamental frequencies is smaller than the number of 

fundamental frequencies in the reference, then the difference is considered to be the number of the 

delete errors. If the number of estimated fundamental frequencies is greater than the number of the 

fundamental frequencies in the reference, the difference is considered to be the number of insertion 
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errors. The substitution errors are defined as the errors in which a given F0 is detected, but the 

estimated value differs by more than 3% from the reference.   

9.2 Training/Tuning Database and Test Database 

The proposed method II is to perform the polyphonic pitch estimation by machine learning, which 

requires a lot of training samples. However, it is difficult to record thousands and thousands of 

polyphonic samples from different musical instruments and label their polyphony content. The 

music synthesizer can conveniently provide training samples with known polyphonic content, but is 

not ideal because the timbre of the synthetic and real music samples differ greatly.  A good way is to 

produce the polyphonic samples by mixing real recorded monophonic samples of different music 

instruments. In these experiments, two different monophonic sample sets are used to create the 

training and test sample database. As shown in Figure 9.1, the monophonic sample set I consists of a 

total of 755 monophonic samples from 19 different instruments, such as piano, guitar, winds, strings, 

and brass, etc. Every monophonic sample is pre-processed to normal amplitude and fades into a one 

second duration time. The high number of polyphonic samples can be generated by randomly 

mixing these different monophonic samples. For example, the number of possible different 3-note 

polyphonic samples is more than 7 million by mixing these monophonic samples. The number of 

possible generated 4-note polyphonic samples is more than 610 million.  Based on the monophonic 

sample set I, a total of 150,000 polyphonic samples with the polyphony from two to six note 

mixtures are generated for training database. The training database is used to train the SVM 

polyphonic estimator.  The monophonic sample set I is also used to generate the polyphonic samples 

which are used to tune the parameters in the proposed polyphonic estimation method I.   

In practical applications, tested polyphonic samples can be considered to be mixtures of 

monophonic samples, which are probably played by different performers and instruments from 

different instrument manufacturers. As shown in Figure 9.1, in order to obtain fairer evaluation 

results of practical cases, another monophonic sample set II is used to generate the Test Database I 

(Polyphonic Mixtures) in the same way in which the training database has been produced from the 

monophonic sample set I. The monophonic samples in set I and set II are different. Compared to set 

I, the set II has some samples for instrument types that are not present in set I.  The monophonic 

samples for the same type of instrument in set II are played by different performers and instruments 

from different instrument manufacturers. Set II includes 23 different instrument types, a total of 690 

monophonic samples in the five octave pitch range of 48 Hz to 1500 Hz. The Test Database 1 is 
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used for performance evaluation of both proposed estimation methods. All the monophonic samples 

in sets I and set II are selected from the RWC instrument sound database.  

The Test Database 2 consists of six real-life music excerpts, most of which are selected from a RWC 

generic database. The detailed information about the Test Database 2 is listed in Table 5.1. The 

sound of the drum has not been considered for transcription, but is permitted to be present in the 

analyzed music signal.  
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Figure 9.1: Training/Tuning Database and Test Database 
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9.3 Test Results on the Test Database 1 (Polyphonic 

Mixtures) 

 9.3.1 Test Results of Method I on Polyphonic Mixtures 

 Figure 9.2-9.6 show the estimation performance (F-measure, Recall, Precision, Note Error Rate 

(NER), Chord Error Rate) of method I in case of different pink noise levels. The pink noise is 

generated in the frequency range of 50 Hz to 10K Hz. The Signal-to-Noise refers to the ratio 

between the clean input sample signal and the added pink noise. In general, method I is robust, even 

in cases of severe noise levels. The tested samples are classified into five different sample subsets 

according to the polyphony number of the polyphonic samples. For example, in Figure 9.2, the F-

measure corresponding to the polyphony number 2 denotes the F-measure value estimated on the 

sample subset, in which every polyphonic sample consists of a two-note mixture. In this test 

experiment, 100 test examples are randomly selected from the Test Database 1 for every sample 

Table 9.1  Test Database 2-( Real Music Excerpts from Music CDs) 
# Title   Reference Instrument Duration 

Time  
1 Chuggin RWC-MDB-

G2001 
 No 32 

Jazz, Piano, Bass , 
Drums 

20s 

2 Beethoven, 
<Egmont> 

Overture, op.84 

RWC-MDB-
G2001 
 No 50 

Orchestral, Violin, 
Viola, Clarinet, 

Contrabass, 
Trombone, oboe, etc 

50s 

3 Mozart, Rondo in 
D major, K.485 

RWC-MDB-
G2001 
 No 59 

Solo, Piano 30s 

4 Haydn, String 
Quartet no.77 in 

C major 

RWC-MDB-
G2001 
 No 60 

Chamber, Violin, 
Viola, Bass  

50s 

5 Tchaikovsky, 
String Quartet 

no.1 in D major 

RWC-MDB-
G2001 
 No 61 

Chamber, Violin, 
Viola, Cello 

30s 

6 Beethoven, Piano 
Sonata No 26 in 
E-flat major 

Commercial  CD Solo, Piano 50s 
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subset. Depending on applications, better Precision (percentage of the transcribed notes that are 

correct) or better Recall (percentage of all the notes that are found) is preferred for a polyphonic 

pitch estimation method. For example, in some music transcription systems, the extra notes in the 

result are very harmful, so better Precision is preferred. However, if the output result will be used for 

further improvement with the combination of some higher level knowledge, better Recall is 

preferred. In method I, if the parameter set is tuned for larger values, then the estimation 

performance will have better Precision. Otherwise, the estimation performance will have better 

Recall. Figure 9.7 shows the estimation performance (F-measure, Recall, Precision) of method I 

with two different parameter sets. Comparing the left image (with a smaller parameter value) to the 

right image (with the larger parameter value) in Figure 9.7, the corresponding estimation Precision 

shown in the right image becomes better in price of the lower Recall. In general, the total estimation 

performance, F-measure, is reduced by increasing the polyphony number of the estimated 

polyphonic sample. It can also be noted in Figure 9.7 that the estimation of Recall is greatly reduced 

in cases where the polyphony number is increased. On the other hand, the precision is gradually 

changed. Similarly, Figure 9.8 shows the estimation of Note Error Rate (NER) of method I with two 

different parameter sets. It is clearly evident that, when the larger parameter value is selected, the 

insertion errors are reduced for the estimated polyphonic sample with a low polyphony number, in 

price of the total increased deletion errors   
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Figure 9.2, FMeasure of Test Results of Method I with Clean signal or Added Noise 

Figure 9.3, Recall of Test Results of Method I with Clean signal or Added Noise 
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Figure 9.5, Note Error Rat (NER) of Test Results of Method I with Clean signal or Added Noise

Figure 9.4, Precision of Test Results of Method I with Clean signal or Added Noise 
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Figure 9.7, FMeasure, Recall and Precision of Test Result of Method I with different parameter values

Figure 9.6, Chord Error Rate (NER) of Test Results of Method I with Clean signal or Added Noise



138

 

 

9.3.2 Test Results of Method II on Polyphonic Mixtures 

Figure 9.9-9.13 show the estimation performance (F-measure, Recall, Precision, Note Error Rate 

(NER), Chord Error Rate) of method II in cases of different pink noise levels. In this test experiment, 

2000 test examples are randomly selected from Test Database 1 for every polyphony sample subset.   

As indicated earlier, the polyphonic SVM estimator can also have a probability output; which can be 

used to achieve a trade-off between the Recall and Precision of estimation performance. When the 

probability outputs have been estimated, a probability threshold P can be selected. If the estimated 

probability of a certain note ‘s occurrence  is greater than the threshold P, then the note is assumed 

to exist in the input sample. Otherwise, the note is not assumed to exist in the input sample; with a 

higher threshold P. The estimated results can provide better precision than increasing the missing 

notes  (reducing the recall). Figure 9.14 shows the estimation performance F-Measure, Recall and 

Precision, when the estimation method selects the different probability threshold P; with the higher 

probability threshold (P=0.8, in the right sub-image in Figure 9.14), the method’s estimation 

Precisions are improved and the Recalls are reduced, compared to the estimation performance of the 

method with the lower probability threshold (P=0.5, in the left sub-image of Figure 9.14). The 

Figure 9.8, Note Error Rate (NER) of Test Result of Method I with different parameter values
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similar phenomena also can be clearly seen in Figure 9.15, which shows the estimation performance 

in Note Error Rate. When the method selects a higher probability threshold (P=0.8, in the right sub-

image), the insertion errors are reduced. However, the deletion errors are increased, compared to the 

estimation performance of the method with the lower probability threshold (P=0.5, in the left sub-

image of Figure 9.15). 

 

 
Figure 9.9, F-Measure of Test Results of Method II (SVM) with Clean Signal or Added Noise
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Figure 9.11, Precision of Test Results of Method II (SVM)   
with Clean signal or Added Noise 

Figure 9.10, Recall of Test Results of Method II (SVM) with Clean signal or Added Noise 
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Figure 9.13, Chord Error Rate (CER) of Test Results of Method II (SVM) 
 with Clean signal or Added Noise 

Figure 9.12, Note Error Rat (NER) of Test Results of Method II (SVM) 
with Clean signal or Added Noise 
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Figure 9.14, F-Measure, Recall and Precision of Test Result of Method II (SVM)   
with different parameter values 
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9.4 Automatic Music Transcription Systems 

In order to test the estimation performance of the two proposed methods on the real music excerpts, 

the automatic music transcription prototype systems have been constructed with the combination of 

the proposed music onset detection algorithms (introduced in Chapter 5) and polyphonic pitch 

estimation methods. The goal of the transcription system is to detect the music notes occurring and 

their onset time. The sampling rate of input music signal is 44100 Hz. The onset detection 

algorithms are first used to separate the input real music signal into different segments according to 

the detected note onsets, and then pitches in each segment are estimated by the two proposed 

polyphonic pitch estimation methods. Finally, every estimated pitch in a certain segment must be 

checked if the pitch begins from a current segment or from the previous segments. For a certain 

segment N, if a pitch A with fundamental frequency f is estimated; then if the estimated pitches in 

the previous segment N-1 do not contain the pitch A, the transcription system will consider that this 

pitch A is a new occurring pitch in the segment N. In another case when the estimated pitches in the 

previous segment N-1 also contain the pitch A, then this pitch A is considered to be a new occurring 

pitch only on the condition that the corresponding energy spectrum of the pitch A’s first or second 

harmonic component has been obviously increased at the starting moment of the segment N. Figure 

Figure 9.15, Note Error Rate (NER) of Test Result of Method II (SVM) with different 
parameter values 
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9.16 shows the overview of an automatic music transcription system using the proposed polyphonic 

pitch estimation I.  

 

Figure 9.16, Automatic Music Transcription System Using the Proposed Polyphonic 
Estimation Method I
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Figure 9.17, Automatic Music Transcription System Using the Proposed Polyphonic Estimation 
Method II (SVM)
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Figure 9.17 gives an overview of an automatic music transcription system using the proposed SVM 

polyphonic estimator. As shown in Figure 9.17, in the first phase, the note onsets are detected from 

the input music signal using the proposed onset detection algorithms (introduced in Chapter 5), and 

the SVM polyphonic estimator is used to produce the time-pitch probability (TPP) estimation.  

For a given discrete music signal s(n) at a sampling rate 44100 Hz, the time-pitch probability 

estimation can be produced as follows: 

LnTnsnFT ,...3,2,1),441()( =⋅+= (9.1) 

,...3,2,1
,108...23,22,21

),(),(

=
=

=

T
k

FSVMETkTPP T

   (9.2) 

In the above equations, FT denotes an extracted signal frame beginning at the instant Tth  in units of 

0.01 seconds from the input music signal s(n) , and the duration time of the signal frame is equal to 

L/44100 seconds. As mentioned before, given a music signal frame, the SVM polyphonic estimator 

can estimate the probability that every music note occurs in the music signal frame. In the equation 

9.2, k denotes the MIDI note number; the unit of the T is equal to 0.01 seconds; SVME denotes the 

SVM polyphonic estimator that estimates the occurring probability of 88 different music notes (from 

A0 to C8, in MIDI notation from 21 to 108) in the signal frame FT, and produces a two-dimension 

time-pitch probability estimation TPP(k, T).  For example, if the parameter L=11025, the calculated 

value of the TPP(60, 100) denotes the estimated probability that music note 60 occurs in segment 

[1sec, 1.25sec]  of input music signal. Figure 9.18 illustrates the time-pitch probability output of a 

piano music example. In the Figure, the horizontal axis denotes time, and the vertical axis is for the 

88 different music notes. The colour denotes the probability output.  

As shown in Figure 9.17, in the second phase, the produced time-pitch probability (TPP) estimation 

and detected onset information are used for transcription. This transcription process can be 

expressed as follows: 

Given the detected onset time: OT(m) ,m=1,2,3,… and the time-pitch probability estimation 

TPP(k,T), k=21,22,23,…,88, T=1,2,3,…, the time unit of both T and the detected onset time OT(m) 

is 0.01 second, the average time-pitch probability(ATPP) at the onset time OT(m) can be calculated 

as follows: 
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If ATPPOT(m)(k) is greater than a threshold, then the transcription process considers that  the note k is 

a candidate which  occurs at the onset time OT(m). Finally, every note candidate will be checked if it 

occurs in this onset time. The checking method is the same as one described in the beginning of this 

section.  

 

 

Figure 9.18, Time-Pitch Probability Output of a Piano Example 
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9.5 Results on the Real Music Excerpts 

Using the two automatic music transcription prototype systems, the proposed two polyphonic pitch 

estimation methods have been tested on the real music excerpts. The test results are listed in the 

table 9.2. 

Table 9.2 : Test Result fromTest Database 2 (Real Music Excerpts) 
  Result of  Proposed Polyphonic 

Pitch Estimation Method I 
Result of  Proposed 
Polyphonic Pitch 

Estimation Method II 
(SVM) 

# Title Note 
Num 

Average 
Poly 

F- 
Measure 

Precision Recall F- 
Measure 

Precision Recall 

1 Chuggin 
 

83 1.9 61% 67% 55% 53% 58% 49% 

2 Beethoven, 
<Egmont> Overture, 

op.84 

92 3.0 81% 89% 73% 51% 55% 48% 

3 Mozart, Rondo in D 
major, K.485 

261 1.6 74% 87% 65% 57% 52% 64% 

4 Haydn, String 
Quartet no.77 in C 

major 

137 2.8 71% 76% 66% 65% 63% 67% 

5 Tchaikovsky, String 
Quartet no.1 in D 

major 

108 2.5 67% 72% 62% 58% 59% 57 

6 Beethoven, Piano 
Sonata No 26 in E-

flat major 

132 1.6 77% 76% 78% 67% 62% 69% 

Average 72% 78% 67% 60% 59% 59% 
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Compared to method II (SVM), method I performs better both on real music excerpts and 

polyphonic mixtures with different level noises.  

The comparison with the other polyphonic pitch estimation methods is a difficult task because there 

is no standard and public distributed test database. Klapuri proposed a polyphonic pitch estimation 

method and achieved excellent results in this field. Here the performances of the proposed two 

polyphonic pitch estimation methods are compared to the Klapuri method that is introduced in 

section 6.2.4. It is emphasized that the comparison is approximate because the test database is 

similar, but not entirely the same.  

For real music excerpts, the two proposed estimation methods perform much better than Klapuri’s 

method. The results are listed in Table 9.3. When estimation methods employ a strategy of 

avoiding insertions, the proposed method I and Klapuri’s method have approximate performances 

on the clean polyphonic mixtures, and Note Error Rates (NER) are listed in Table 9.4. When 

estimation methods employ a strategy of avoiding deletions, the proposed two methods have 

better performances than Klapuri’s method, and the corresponding Note Error Rates (NER) are 

listed in Table 9.5. 

 

Table 9.3: Recall and Precision of Different Methods on Testing Real 
Polyphonic Music Excerpts   

Evaluation Rule Proposed Method I 
Proposed Method II 

(SVM) 
Klapuri’s Method 

[ Ryyn05] 

Average Recall 67% 59% 39% 

Average Precision 78% 59% 41% 
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Table 9.4: Note Error Rate (NER) of Different Methods on Testing 
Polyphonic Mixtures  (Avoiding Deletions ) 

Number of Polyphony  Proposed Method I 
Proposed Method II 

(SVM) 
Klapuri’s Method 

[ Klapuri03]  

2 12% 20% 14% 

3 13% 20% 16% 

4 16% 23% 18% 

5  23% 26% 22% 

6 30% 29% 32% 

Table 9.5: Note Error Rate (NER) of Different Methods on Testing 
Polyphonic Mixtures  (Avoiding Insertions ) 

Number of 
Polyphony  

Proposed Method I 
Proposed Method II 

(SVM) 
Klapuri’s Method 

[  Klapuri03] 

2 9% 13% 18% 

3 16% 17% 22% 

4 25% 24% 27% 

5 30% 30% 35% 

6 41% 37% 41% 
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C h a p t e r  1 0  

CONCLUSION AND FUTURE WORK 

10.1 Conclusion  

10.1.1 An Original Time-Frequency Analysis Tool: Resonator 

Time-Frequency Image (RTFI) 

Most of the music related tasks need a joint time-frequency analysis because a music signal varies 

with time. Chapter 2 provides an exhaustive summary of previous approaches to music signal time-

frequency analysis. The existing time-frequency analysis approaches show some serious limitations 

for application in music signal processing. With a clear mathematical description, Chapter 4 

formulates a new frequency-dependent time-frequency representation (TFR): RTFI, which is 

especially designed for music signal processing.  A fast multi-resolution implementation of RTFI 

has also been proposed. As examples of practical application, all proposed methods for music onset 

detection and polyphonic pitch estimation in this thesis successfully exploit RTFI as the basic time-

frequency analysis tool. Using the RTFI, one can select different time-frequency resolutions, such as 

uniform analysis, constant-Q analysis, or ear-like analysis by simply setting several parameters; and 

letting the RTFI generalize all these analyses in one framework.  

 

10.1.2 Music Onset Detection 
In this thesis, two music onset detection algorithms have been proposed - an energy-based detection 

algorithm and a pitch-based detection algorithm. Both algorithms employ the RTFI as the time-

frequency analysis tool.The note onsets of the music signal can be classified into “soft” or “hard” 

onsets. With an appropriate time-frequency resolution, the proposed Energy-based detection 

algorithm works well for the music signal with hard onsets, and shows a better performance than the 

other existing algorithms. However, the Energy-based detection algorithm exhibits very low 

performance for the detection of soft onsets. In some real-life music signals with soft onsets, the 

energy-change in the note transition may be not noticeable. At the same time, for some music 

signals, the noticeable energy-change does not necessarily exist only in note transitions, but also in 

the stable part of the music notes. In this case, an energy-based detection algorithm probably is 

misdirected by such a noticeable energy change in the stable part and will cause many false positives 
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in the detection results. This is an important reason that an energy-based detection algorithm shows 

very low performance on the detection of soft onsets. On the one hand, pitch change is the most 

salient clue for note onset detection of the music signal with soft onsets. On the other hand, most 

existing onset detection algorithms are based on the energy-change and/or phase-change evidence, 

because it is still very difficult to track a pitch change in real polyphonic music. In this thesis, I 

propose a Pitch-based onset detection algorithm. This Pitch-based detection algorithm is the first one, 

which successfully exploits the pitch change clue for onset detection in real polyphonic music, and 

achieves a much better performance than the other existing detection algorithms. The detailed 

descriptions of the two proposed onset detection algorithms can be found in Chapter 5.  

 

10.1.3 Polyphonic Pitch Estimation 
In this thesis, two polyphonic pitch estimation methods have been proposed. Polyphonic pitch 

estimation can be considered to be a core problem in automatic music transcription.  

 

Based on the RTFI analysis, proposed method I primarily exploits the harmonic relation and spectral 

smoothing principle. The test result indicates that method I can perform well for different music 

sounds even if there is no available priori knowledge of these sounds. For real music excerpts, 

proposed method I performs better than other existing methods. A comparison of the results can be 

found in Table 9.3 of Chapter 9.  

 

The proposed estimation method II involves the transformation of polyphonic pitch estimation to a 

pattern recognition problem. The method uses a signal processing block followed by a learning 

machine. Multi-resolution fast RTFI analysis is used as a signal processing component, and a 

support vector machine (SVM) is selected as the learning machine. The method II has a lower 

performance when used for real music excerpts and polyphonic mixture with the added noise. 

However method II is simpler and has greater potential for improvement. The possible improvement 

of this method is described in the following section. Another advantage of method II is its 

probability output, which is useful for some applications.  

 

The detail description of the two proposed polyphonic pitch estimation methods can be found in 

Chapters 7 and 8. 
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10.2 Future Work 
This section explores several interesting directions of future research by extending the work 

presented in the thesis.  

 

10.2.1 Special-Purpose SVM Polyphonic Estimator 
In this thesis, the goal was to develop a general-purpose polyphonic estimator that is not limited to 

one or several musical instrument sounds. When musical instruments of the analyzed polyphonic 

music sequence are known in advance, it may be better to run the polyphonic pitch analysis by a 

special-purpose SVM polyphonic estimator, which is trained with samples only of the 

corresponding instruments. For example, it may happen (and it is rather intuitive) that a better 

performance can be obtained by having an estimator, who was trained only with piano samples, 

undertake the polyphonic pitch analysis of piano music. Some preliminary experiments have been 

made. In these experiments, a single instrument SVM polyphonic pitch estimator was trained for 

piano, guitar and violin. The experimental results indicate that a special-purpose estimator performs 

better than does a general-purpose estimator, when the music instrument of the tested polyphonic 

mixtures corresponds to that used to train the special-purpose polyphonic estimator. In future work, 

the use of a special-purpose polyphonic estimator can be extended to different combinations of 

several instruments. Additionally, it may be better that training samples are extracted from the real 

music signal. For example, standard string quartet music is often played by violin, cello and viola, 

and a special-purpose polyphonic estimator for the string quartet music can be trained only with the 

polyphonic samples, which have been extracted from real string quartet music played by violin, 

cello and viola.  

 

10.2.2 Using Temporal Features for Polyphonic Pitch Estimation 
In the proposed polyphonic pitch estimation methods, the temporal features are not exploited for the 

estimation. The proposed pitch estimation I may be improved by utilizing the temporal features. In 

method I, the RTFI analysis can provide information about how the different frequency components 

of the analyzed signal evolve over time. This temporal information is useful for polyphonic pitch 

estimation. The harmonic components from the same instrument sound source often have some 

similar temporal features, such as a common onset time, amplitude modulation and frequency 

modulation. In the future, improvement, to the proposed estimation method I can make use of the 

temporal features, and harmonic relative frequency components with similar temporal features 
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should be considered as a new note with more probability than the harmonic relative frequency 

components with different temporal features.  

 

For example, an analyzed polyphonic note consists of two polyphonies A3 and A4 The note A3 is 

played by piano and the note A4 is played by violin. It is very difficult to make a polyphonic 

estimation for this case, because the harmonic components of A4 are completely overlapped by the 

even harmonic components of A3.  However, such a difficult case may become resolved by using 

the temporal feature. As shown in  Figure 10.1, the blue lines denotes first four odd harmonic 

components of the note A3, and the red/magenta lines denotes the first four even harmonic 

components of the note A3. In Figure 10.1, it can be clearly seen that the energy spectrums of the 

first four even harmonic components have different temporal features than the first four odd 

harmonic components. This difference indicates that the even harmonic components probably are 

shared with another musical note A4 played by a different music instrument.  

 

 

 

 

 

Figure 10.1 Energy Changes of Harmonic Components 
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10.3 Potential Commercial Applications  
 An automatic music transcription system can transform recorded sound to symbolic representations, 

which represents important high-level features. These have some important applications. For 

example, the transcription system can be used as a tool to assist in music composition. A composer 

may play a new music piece by some music instruments, such as piano or guitar, and then obtain the 

corresponding musical score with the help of an automatic music transcription system. Another huge 

potential commercial application for transcription systems consists of Karaoke fans.  The singing 

voice of a Karaoke fan can be recorded by a microphone. Then, the music transcription system can 

transform the singing voice to a musical score, which can be compared to a reference musical score 

of the song. The difference can be shown to the Karaoke fan to help him/her to improve his/her 

singing skill.  

 

Automatic music transcription is such a difficult task that a practical general-purpose transcription 

system is not available at the present time. Although a few commercial transcription systems can be 

found in the market, the performance of the systems are not satisfactory, and the accuracies of the 

transcriptions are very low [Akoff01 Araki03 Innov04]. 

With future further improvements, the proposed onset detection algorithms and polyphonic pitch 

estimation methods will become very promising for commercial applications. The results of this 

thesis work clearly demonstrate progress.  In total, the proposed solution to automatic music 

transcription is more systematic. Both the proposed onset detection and polyphonic estimation 

methods select RTFI as the same time-frequency analysis tool.  The RTFI is implemented by the 

simple first-order complex resonator filter bank and is computation-efficient, whereas the simplicity 

also makes it possible to implement the faster RTFI in the future work.  

The main goal of the thesis is to develop new methods for automatic music transcription. However, 

the original contributions in the thesis also have some other potential applications.  

Firstly, the proposed RTFI can be employed as a more general time-frequency analysis tool for 

applications that require frequency-dependent time-frequency analysis. In other words, the RTFI is 

not limited only to music signal analysis, but can be extended to some other applications. The RTFI 

can be implemented more quickly by software and hardware optimization, and become a convenient 

and general time-frequency analyzer for commercial applications.  
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Secondly, the proposed methods can be used to extract the musical features and support content-

based music retrieval. The available commercial sound retrieval systems are mainly allowing users 

to search only by some text criteria, such as title, name of composer, date of production, which are 

stored in the content header or associated descriptor. Although this approach has proven to be useful 

and is widely accepted, it does not make the best use of plentiful sound resources. The challenge is 

to develop more “intelligent” new technologies to support content-based sound and music 

descriptions and retrieval, which combine coding, storage and further human-like interactions. Such 

a system can be used to describe and retrieve sounds and music based on features, such as tempo, 

rhythm, melody, harmonic progression etc. For example, the user (or a higher level application) 

queries for piano solo waltz. The system can seek a song or composition by comparing the 

requirements with stored descriptions.  

Thirdly, automatic music transcription can also be used to assist the high-bit rate compression 

coding for music signals. The easiest and still most common way to describe digital audio content is 

by waveform sampling encoded in pulse code modulation (PCM). This way of representing sound 

does not assume any “model” behind the coded signal. If the signal is represented assuming a model 

in it, that representation is said to be structured. The definition of a model makes assumptions 

about the nature of the sound and consequently defines the parameter space of the model.  The 

more the signal can be represented by a small number of parameters. The more: the sound is 

structured. The more structured coding provides a higher compression ratio. As proposed in 

MPEG-4 audio coding, the MPEG-4 general audio coding toolset provides low-structured 

representations, such as perceptual coding, and the MPEG-4 Structured Audio (SA) provides a 

low-bitrate compression coding scheme by high-structured representations. However, in order to 

efficiently exploit the Structured Audio coding for music signals, two key problems must be 

resolved in the future. One is to define precise instrument models for a music signal. Another 

problem will be to automatically extract the parameter representation, such as music scores. The 

solution to the latter problem depends mainly on the development of automatic music 

transcription. The low-bitrate Structured Audio compression coding of music signals has broad 

practical applications. Thus, there is a large potential commercial market to develop for automatic 

music transcription for assisting the low-bitrate compression coding of music signals.  
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