323 research outputs found

    SoK: Cryptographically Protected Database Search

    Full text link
    Protected database search systems cryptographically isolate the roles of reading from, writing to, and administering the database. This separation limits unnecessary administrator access and protects data in the case of system breaches. Since protected search was introduced in 2000, the area has grown rapidly; systems are offered by academia, start-ups, and established companies. However, there is no best protected search system or set of techniques. Design of such systems is a balancing act between security, functionality, performance, and usability. This challenge is made more difficult by ongoing database specialization, as some users will want the functionality of SQL, NoSQL, or NewSQL databases. This database evolution will continue, and the protected search community should be able to quickly provide functionality consistent with newly invented databases. At the same time, the community must accurately and clearly characterize the tradeoffs between different approaches. To address these challenges, we provide the following contributions: 1) An identification of the important primitive operations across database paradigms. We find there are a small number of base operations that can be used and combined to support a large number of database paradigms. 2) An evaluation of the current state of protected search systems in implementing these base operations. This evaluation describes the main approaches and tradeoffs for each base operation. Furthermore, it puts protected search in the context of unprotected search, identifying key gaps in functionality. 3) An analysis of attacks against protected search for different base queries. 4) A roadmap and tools for transforming a protected search system into a protected database, including an open-source performance evaluation platform and initial user opinions of protected search.Comment: 20 pages, to appear to IEEE Security and Privac

    HardIDX: Practical and Secure Index with SGX

    Full text link
    Software-based approaches for search over encrypted data are still either challenged by lack of proper, low-leakage encryption or slow performance. Existing hardware-based approaches do not scale well due to hardware limitations and software designs that are not specifically tailored to the hardware architecture, and are rarely well analyzed for their security (e.g., the impact of side channels). Additionally, existing hardware-based solutions often have a large code footprint in the trusted environment susceptible to software compromises. In this paper we present HardIDX: a hardware-based approach, leveraging Intel's SGX, for search over encrypted data. It implements only the security critical core, i.e., the search functionality, in the trusted environment and resorts to untrusted software for the remainder. HardIDX is deployable as a highly performant encrypted database index: it is logarithmic in the size of the index and searches are performed within a few milliseconds rather than seconds. We formally model and prove the security of our scheme showing that its leakage is equivalent to the best known searchable encryption schemes. Our implementation has a very small code and memory footprint yet still scales to virtually unlimited search index sizes, i.e., size is limited only by the general - non-secure - hardware resources

    Practical Architectures for Deployment of Searchable Encryption in a Cloud Environment

    Get PDF
    Public cloud service providers provide an infrastructure that gives businesses and individuals access to computing power and storage space on a pay-as-you-go basis. This allows these entities to bypass the usual costs associated with having their own data centre such as: hardware, construction, air conditioning and security costs, for example, making this a cost-effective solution for data storage. If the data being stored is of a sensitive nature, encrypting it prior to outsourcing it to a public cloud is a good method of ensuring the confidentiality of the data. With the data being encrypted, however, searching over it becomes unfeasible. In this paper, we examine different architectures for supporting search over encrypted data and discuss some of the challenges that need to be overcome if these techniques are to be engineered into practical systems

    Privacy-preserving efficient searchable encryption

    Get PDF
    Data storage and computation outsourcing to third-party managed data centers, in environments such as Cloud Computing, is increasingly being adopted by individuals, organizations, and governments. However, as cloud-based outsourcing models expand to society-critical data and services, the lack of effective and independent control over security and privacy conditions in such settings presents significant challenges. An interesting solution to these issues is to perform computations on encrypted data, directly in the outsourcing servers. Such an approach benefits from not requiring major data transfers and decryptions, increasing performance and scalability of operations. Searching operations, an important application case when cloud-backed repositories increase in number and size, are good examples where security, efficiency, and precision are relevant requisites. Yet existing proposals for searching encrypted data are still limited from multiple perspectives, including usability, query expressiveness, and client-side performance and scalability. This thesis focuses on the design and evaluation of mechanisms for searching encrypted data with improved efficiency, scalability, and usability. There are two particular concerns addressed in the thesis: on one hand, the thesis aims at supporting multiple media formats, especially text, images, and multimodal data (i.e. data with multiple media formats simultaneously); on the other hand the thesis addresses client-side overhead, and how it can be minimized in order to support client applications executing in both high-performance desktop devices and resource-constrained mobile devices. From the research performed to address these issues, three core contributions were developed and are presented in the thesis: (i) CloudCryptoSearch, a middleware system for storing and searching text documents with privacy guarantees, while supporting multiple modes of deployment (user device, local proxy, or computational cloud) and exploring different tradeoffs between security, usability, and performance; (ii) a novel framework for efficiently searching encrypted images based on IES-CBIR, an Image Encryption Scheme with Content-Based Image Retrieval properties that we also propose and evaluate; (iii) MIE, a Multimodal Indexable Encryption distributed middleware that allows storing, sharing, and searching encrypted multimodal data while minimizing client-side overhead and supporting both desktop and mobile devices

    An In-Depth Analysis on Efficiency and Vulnerabilities on a Cloud-Based Searchable Symmetric Encryption Solution

    Get PDF
    Searchable Symmetric Encryption (SSE) has come to be as an integral cryptographic approach in a world where digital privacy is essential. The capacity to search through encrypted data whilst maintaining its integrity meets the most important demand for security and confidentiality in a society that is increasingly dependent on cloud-based services and data storage. SSE offers efficient processing of queries over encrypted datasets, allowing entities to comply with data privacy rules while preserving database usability. Our research goes into this need, concentrating on the development and thorough testing of an SSE system based on Curtmola’s architecture and employing Advanced Encryption Standard (AES) in Cypher Block Chaining (CBC) mode. A primary goal of the research is to conduct a thorough evaluation of the security and performance of the system. In order to assess search performance, a variety of database settings were extensively tested, and the system's security was tested by simulating intricate threat scenarios such as count attacks and leakage abuse. The efficiency of operation and cryptographic robustness of the SSE system are critically examined by these reviews

    M-SSE: an effective searchable symmetric encryption with enhanced security for mobile devices

    Get PDF
    Searchable Encryption (SE) allows mobile devices with limited computing and storage resources to outsource data to an untrusted cloud server. Users are able to search and retrieve the outsourced, however, it suffers from information and privacy leakage. The reason is that most of the previous works rely on the single cloud model, which allows that the cloud server get all the search information from users. In this paper, we present a new scheme M-SSE that achieves both forward and backward security based on a multi-cloud technique. The new scheme is secure against both adaptive file injection attack and size pattern attack by utilizing multiple cloud servers. Experiment results show that our scheme is effective compared with the other existing schemes

    Forward and Backward Private Searchable Encryption from Constrained Cryptographic Primitives

    Get PDF
    Using dynamic Searchable Symmetric Encryption, a user with limited storage resources can securely outsource a database to an untrusted server, in such a way that the database can still be searched and updated efficiently. For these schemes, it would be desirable that updates do not reveal any information a priori about the modifications they carry out, and that deleted results remain inaccessible to the server a posteriori. If the first property, called forward privacy, has been the main motivation of recent works, the second one, backward privacy, has been overlooked. In this paper, we study for the first time the notion of backward privacy for searchable encryption. After giving formal definitions for different flavors of backward privacy, we present several schemes achieving both forward and backward privacy, with various efficiency trade-offs. Our constructions crucially rely on primitives such as constrained pseudo-random functions and puncturable encryption schemes. Using these advanced cryptographic primitives allows for a fine-grained control of the power of the adversary, preventing her from evaluating functions on selected inputs, or decrypting specific ciphertexts. In turn, this high degree of control allows our SSE constructions to achieve the stronger forms of privacy outlined above. As an example, we present a framework to construct forward-private schemes from range-constrained pseudo-random functions. Finally, we provide experimental results for implementations of our schemes, and study their practical efficiency
    corecore