
Forward and Backward Private Searchable Encryption from
Constrained Cryptographic Primitives

Raphael Bost∗ Brice Minaud† Olga Ohrimenko‡

Abstract

Using dynamic Searchable Symmetric Encryption, a user with limited storage resources can securely
outsource a database to an untrusted server, in such a way that the database can still be searched and
updated efficiently. For these schemes, it would be desirable that updates do not reveal any information
a priori about the modifications they carry out, and that deleted results remain inaccessible to the server
a posteriori. If the first property, called forward privacy, has been the main motivation of recent works,
the second one, backward privacy, has been overlooked.

In this paper, we study for the first time the notion of backward privacy for searchable encryption.
After giving formal definitions for different flavors of backward privacy, we present several schemes
achieving both forward and backward privacy, with various efficiency trade-offs.

Our constructions crucially rely on primitives such as constrained pseudo-random functions and punc-
turable encryption schemes. Using these advanced cryptographic primitives allows for a fine-grained
control of the power of the adversary, preventing her from evaluating functions on selected inputs, or de-
crypting specific ciphertexts. In turn, this high degree of control allows our SSE constructions to achieve
the stronger forms of privacy outlined above. As an example, we present a framework to construct
forward-private schemes from range-constrained pseudo-random functions.

Finally, we provide experimental results for implementations of our schemes, and study their practical
efficiency.

1 Introduction
Symmetric Searchable Encryption (SSE) enables a client to outsource the storage of private data to an
untrusted server, while retaining the ability to issue search queries over the outsourced data. Dynamic SSE
schemes add the ability for the client to update the outsourced database, inserting and possibility deleting
entries remotely. All the while, the design of the scheme should ensure that the server is able to infer as
little as possible about the content of the database, or even the content of the queries it processes.

At the core of SSE schemes are trade-offs between efficiency, such as storage requirements, bandwidth
or latency, and the degree to which the scheme protects the content of the client’s data against a curious
(or malicious) server. The latter is captured by the notion of leakage functions that restrict the type of
information leaked to the server while processing search or update queries.

Since the inception of searchable encryption, tremendous progress has been made toward efficient solutions
yielding high throughput, low latency, and more expressive queries [CJJ+13, CJJ+14, MM17]. Amid a
growing awareness of privacy concerns however, a different line of work has uncovered devastating and fairly
generic attacks against many SSE schemes [CGPR15, ZKP16]. Such leakage-abuse attacks do not contradict
the security claims of the targeted SSE schemes, but show how seemingly benign leakage functions can be
exploited to reveal a considerable amount of information in practice.
∗Direction Générale de l’Armement - Maîtrise de l’Information & Université de Rennes 1, France. The views and conclusions

contained herein are those of the author and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the DGA or the French Government. email: raphael_bost@alumni.brown.edu
†Royal Holloway, University of London, UK. email: brice.minaud@gmail.com
‡Microsoft Research, Cambridge, UK. email: oohrim@microsoft.com

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Royal Holloway - Pure

https://core.ac.uk/display/131177303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:raphael_bost@alumni.brown.edu
mailto:brice.minaud@gmail.com
mailto:oohrim@microsoft.com

Table 1 – Comparison with prior work. N is the number of keyword/document pairs in the database, K
the number of distinct keywords, and D the number of documents. nw is the size of the search result set
for keyword w, aw is the number of entries matching w inserted in total, while dw is the number of deleted
entries matching w (and nw = aw − dw). The RT column stands for the number of roundtrips in the search
protocol. FP (resp. BP) stands for forward (resp. backward) privacy. We denote different levels of backward
privacy with I, II, and III, where I is the strongest level (see Section 4.2 for details). The notation Õ hides
polylog factors.

Scheme Computation Communication Client FP BPSearch Update Search RT Update Storage
Πdyn [CJJ+14] O(aw) O(1) O(nw) 1 O(1) O(1) 7 -

SPS [SPS14] O
(

min
{aw + logN

nw log3N

})
O(log2N) O(nw + logN) 1 O(logN) O(Nα) 3 -

TWORAM
[GMP16] Õ

(
nw logN + log3N

)
Õ(log2N)

Õ(nw logN

+ log3N)
2 Õ(log3N) O(1) 3 -

Σoφoς [Bos16] O(aw) O(1) O(nw) 1 O(1) O(K logD) 3 -
ARX [PBP16] O(aw) O(log aw) O(nw + log aw) 1 O(1) O(K logD) 3 -

Moneta § 4.3 Õ
(
aw logN + log3N

)
Õ(log2N)

Õ(aw logN

+ log3N)
3 Õ(log3N) O(1) 3 I

Fides § 4.4 O(aw) O(1) O(aw) 2 O(1) O(K logD) 3 II
Diana § 5.2 O(aw) O(log aw) O(nw + log aw) 1 O(1) O(K logD) 3 -

Dianadel § 5.3 O(aw) O(log aw) O(nw + dw log aw) 2 O(1) O(K logD) 3 III
Janus § 6 O(nw · dw) O(1) O(nw) 1 O(1) O(K logD) 3 III

Forward privacy (also known as forward security) is an important property of searchable encryption
schemes that mitigates these attacks by ensuring that newly updated entries cannot be related to previous
search results. Notably, forward-private schemes prevent the most powerful versions of the recent injection
attacks by Zhang et al. [ZKP16]. Another natural notion of privacy is that of backward privacy : search
queries should not leak matching entries after they have been deleted. However, besides being mentioned by
Stefanov et al. [SPS14], it is almost not discussed in the literature.

Our contribution. In this work, we realize single-keyword SSE constructions from constrained and punc-
turable primitives. By leveraging the fine-grained control afforded by this type of primitives, we are able
to build (1) a very efficient forward-secure scheme; and (2) a scheme that achieves both forward privacy
and a weak form of backward privacy. For both schemes, we define and prove a general framework to build
forward-secure SSE from the abstract SSE primitive; and then propose and study a concrete scheme by
instantiating the framework with a specific choice of the underlying primitive. In the process, we also inves-
tigate the notion of backward privacy, providing formal definitions and a generic construction. Finally, we
provide experimental results for implementations of our schemes. In more detail, our contributions are as
follows.

(1) We propose formal definitions for several forms of backward privacy, which up to now had only been
treated informally. We also describe a simple and generic way to achieve backward privacy from any forward
private SSE scheme at the cost of an extra roundtrip per search query, and two instantiations, Moneta and
Fides.

(2) We define the FS-RCPRF framework, which builds a single-keyword forward-private SSE scheme
from any constrained pseudo-random function (CPRF) compatible with range constraints. By instantiating
the CPRF with the classic construction by Goldreich, Goldwasser and Micali [GGM84], we obtain Diana, a
forward-secure SSE scheme with very low computational and bandwidth overhead—on some data sets, Diana
performs up to 10 times faster than recent schemes from the literature achieving the same leakage. Note
that Diana is very similar to the ARX-EQ construction [PBP16]. We also show how we can modify Diana
into a two-roundtrips backward-private scheme Dianadel.

(3) Finally, we describe Janus, a framework for constructing a forward-secure SSE scheme that also
achieves a weak form of backward privacy; namely, search queries do not leak entries that match the query

2

after the entry has been deleted. The Janus framework requires a puncturable encryption scheme with a
particular incremental update property, which can be instantiated by the Green-Miers puncturable encryption
scheme [GM15].

To the best of our knowledge, Fides, Dianadel and Janus are the first schemes not based on oblivious RAM
to achieve backward (and forward) privacy. Moreover, Janus is the only existing single-roundtrip forward
and backward-private scheme.

A comparison of our schemes with prior work is provided in Table 1. Beside the schemes themselves,
we believe this work draws a new connection between constrained primitives and searchable encryption,
which from the perspective of SSE schemes means new construction techniques, and from the perspective of
constrained or puncturable primitives, new applications.

2 Related Work
Searchable Encryption. Song et al. [SWP00] first introduced SSE. The modern security definitions were
developed by Curtmola et al. [CGKO06]. They introduced the idea of leakage, and designed the first reversed-
index-based SSE construction, achieving optimal search complexity. Note that SSE is a particular case of
structured encryption, as defined by Chase and Kamara [CK10], focused on multi-maps (a.k.a. T-Sets or
reversed index).

Even though the dynamic setting had been studied earlier, Kamara and Papamanthou [KP13] designed
the first sublinear dynamic scheme. Cash et al. [CJJ+14] constructed a dynamic scheme optimized for large
datasets.

Forward privacy was introduced by Stefanov et al. in [SPS14]. In that paper, the authors present
an ORAM-inspired forward-private SSE construction. Their construction also deals with deletion in an
elegant way, as it allows the server to skip deleted entries. However, this was only designed to improve the
performance of the scheme, rather than its security. In [Bos16], Bost formally defined forward privacy and
designed an insertion-only SSE scheme with optimal search and update complexity, based on asymmetric
cryptography (trapdoor permutations). The motivation for studying forward security came from file injection
attacks on SSE [ZKP16].

In order to achieve the highest security guarantees, SSE can be constructed using Oblivious RAM compo-
nents [GO96, GMP16]. Unfortunately the overhead of ORAM is too high for a practical SSE scheme [Nav15].

Several results propose SSE schemes with expressive search queries: Cash et al. [CJJ+13] considered con-
junctive queries; Kamara and Moataz [KM17] built a scheme for disjunctive queries; while graph encryption
was studied by Chase and Kamara [CK10] and Meng et al. [MKNK15].

Constrained cryptographic primitives. Constrained pseudorandom functions were concurrently intro-
duced in [BW13, KPTZ13, BGI14], and applied to broadcast encryption, identity-based key-exchange, or
SNARGs. One application considered by Kiayias et al. [KPTZ13] was actually searchable encryption, but
only for performance reasons: the constrained PRF is used to batch queries. Instead of transmitting to the
server many pseudo-randomly generated trapdoors, the client would transmit a constrained key allowing for
the generation of the trapdoors by the server.

Since then, new constrained PRFs have been developed, with the ability to support richer constraint
spaces [HKW15, CC17]. Unfortunately, many of these new constructions rely on indistinguishability obfus-
cation or similar techniques, and hence are not yet practical. In this work, we only require the existence of
cryptographic pairings for puncturable encryption, and pseudo-random functions.

Building on non-monotonic attribute-based encryption [OSW07], Green and Miers [GM15] proposed
puncturable encryption as a way to achieve forward secrecy for instant messaging. Their scheme modifies
the secret key every time a message is received, so that from then on the modified key can no longer decrypt
that message. Thus, in the event of a key compromise, old messages remain safe.

3

Secure deletion. In this paper, we will use puncturable encryption to securely delete entries in an en-
crypted database. Indeed, Green and Miers [GM15] mention secure deletion as another application of their
work.

Boneh and Lipton [BL96] were the first to suggest using cryptography to erase information. These
cryptographic solutions were implemented for filesystems on flash drives [RCB12]. Secure deletion and
history independence properties were also considered in oblivious RAM literature [RAC16].

3 Background
In the paper, λ is the security parameter and negl(λ) denotes a negligible function in the security parameter.

Unless specified explicitly, the symmetric keys are strings of λ bits, and the key generation algorithm
uniformly samples a key in {0, 1}λ. We only consider (probabilistic) algorithms and protocols running in
time polynomial in the security parameter λ. In particular, adversaries are probabilistic polynomial-time
(PPT) algorithms.

For a finite set X, x $← X means that x is sampled uniformly from X.

3.1 Constrained Pseudorandom Functions
The idea of constrained PRFs (CPRFs) has been introduced in concurrent work by Boneh and Waters, Boyle
et al., and Kiayias et al. [BW13, BGI14, KPTZ13]. A constrained PRF is associated with a family of boolean
circuits C. The holder of the master PRF key is able to compute a constrained key KC corresponding to a
circuit C ∈ C; the constrained key KC allows evaluation of the PRF only on inputs x for which C(x) = 1.

More formally, a constrained PRF F with respect to a circuit family C is a mapping F : {0, 1}λ×X → Y
(the PRF proper), together with a pair of algorithms (F.Constrain, F.Eval), defined as follows.

• F.Constrain(K,C) is a PPT algorithm taking as input a key K ∈ {0, 1}λ and a circuit C ∈ C. It
outputs a constrained key KC .

• F.Eval(KC , x) is a deterministic polynomial-time algorithm taking as input a constrained key KC for
circuit C, and x ∈ X. It outputs y ∈ Y .

Wherever this does not result in ambiguity, we may leave out Eval and write F.Eval(KC , x) as F (KC , x).

Correctness. A CPRF F is correct iff C(x) = 1 implies F (K,x) = F.Eval(KC , x), whereKC = F.Constrain(K,C),
for all K, x, and C ∈ C.

Security. The security game describing the security of a CPRF has three phases.

Setup Phase The challenger randomly picks a key K $← {0, 1}λ and a bit b $← {0, 1}.

Query Phase The adversary can adaptively query the oracles:

Eval(x) The challenger returns F (K,x);

Constrain(C) The challenger returns F.Constrain(K,C);

Challenge(x) If b = 0 the challenger outputs F (K,x), otherwise he returns a uniform element in Y .

Guess Phase The adversary outputs a guess b′ of b.

Let E be the set of evaluation queries, Z the set of challenge queries, L the set of constrained key queries.
The adversary wins the game if b = b′ and E ∩ Z = ∅ and C(z) = 0 ∀C ∈ L and z ∈ Z.

4

3.2 Bilinear Maps
Let G and GT be two cyclic groups of prime order p, g be a generator of G and e : G × G → GT be such
that

• e is bilinear: for all x, y ∈ G, a, b ∈ Zp, e(xa, yb) = e(x, y)ab;

• e is non-degenerate: e(g, g) 6= 1.

We consider G, GT and e such that the group operations in G and GT , and the bilinear map e are all efficiently
computable. The scheme presented in this work using pairings needs the Decisional Bilinear Diffie-Hellman
(DBDH) and Decisional Bilinear Diffie-Hellman Inversion (DBDHI) to hold (cf. [BB04]).

3.3 Symmetric Searchable Encryption
The database DB on which we wish to perform search queries is defined as: DB = {(indi,Wi) : 1 ≤ i ≤ D},
with indi ∈ {0, 1}`,Wi ⊆ {0, 1}∗, and where indi are distinct document indices, represented by `-bit strings,
and Wi is a set of keywords matching document indi, represented by binary strings of arbitrary length. Note
that we identify documents with their indices. In addition, let us define:

W = ∪Di=1Wi the set of keywords;
K = |W| the number of keywords;
D = |DB| the number of documents;
N =

∑D
i=1 |Wi| the number of document/keyword pairs.

Finally, let DB(w) denote the set of documents containing keyword w, i.e. DB(w) = {indi|w ∈Wi}.
A dynamic searchable encryption scheme Σ is a triple (Setup,Search,Update) consisting of one algorithm

and two protocols between a client and a server:

• Setup(DB) is a probabilistic algorithm that takes as input the initial database DB. It outputs a triple
(EDB,KΣ, σ), where KΣ is the master secret key, EDB is an encrypted database, and σ is the client’s
state.

• Search(KΣ, q, σ;EDB) = (SearchC(KΣ, q, σ),SearchS(EDB)) is a protocol between the client whose in-
put is the master secret key KΣ, the client’s internal state σ, and a search query q; and the server
whose input is the encrypted database EDB. In this paper, we only consider search queries restricted
to a single keyword w.

• Update(KΣ, σ, op, in;EDB) = (UpdateC(KΣ, σ, op, in),UpdateS(EDB)) is a protocol between the client
whose input is KΣ and σ as above, and an operation op with its input in, where in is parsed as an
index ind and a set W of keywords; and the server with input EDB. The update operations are taken
from the set {add, del}, meaning, respectively, the addition and the deletion of a document/keyword
pair.

An SSE scheme is said to be correct if the search protocol returns the correct result for every query,
except with negligible probability. We refer to [CJJ+14] for a formal definition of correctness.

Security The security of an SSE scheme expresses the fact that the server should learn as little as possible
about the content of the database and queries. More precisely, we do not want the adversary to learn
anything beyond some explicit leakage. This is typically captured using a real-world versus ideal-world
formalization [CGKO06, KPR12, CJJ+14]. A leakage function is used to express the information leaked
to the adversary by each SSE operation. Formally, the model is parametrized by the (stateful) leakage
function L = (LStp,LSrch,LUpdt), whose components correspond respectively to the Setup, Search, and Update
operations. The security model expresses the fact that whenever the client triggers one of these operations,
the adversary learns no more than the output of the corresponding leakage function.

Formally, the adversary’s task is to distinguish between a real word SSEReal and an ideal world SSE-
Ideal. The adversary fully controls the client, in the sense that she can trigger Setup, then Search and

5

Update queries at will, with parameters of her choosing. She then observes the execution of the scheme from
the point of view of the server. That is, the adversary is able to observe the full transcript of each operation,
i.e. the full content of the communication between client and server. In principle, she is also able to see
the server’s memory; however since the server does not see anything more of the client’s queries than the
adversary, the ability to see the server’s memory does not reveal any information about the client’s queries
beyond what can already be inferred from the transcript alone.

• In the SSEReal world, the SSE scheme is executed honestly. The adversary observes the real transcript
of each operation, and outputs a bit b.

• In the SSEIdeal world, the adversary sees a simulated transcript in place of the real transcript of
the protocol. The simulated transcript is generated by a PPT algorithm S, known as the simulator,
that has access to the leakage functions. For example, on Setup(DB), S returns a transcript from
S(LStp(DB)); and likewise for the Search and Update calls. The adversary eventually outputs a bit b.

These games are formally described in Appendix D. The scheme Σ is secure if the two worlds are indistin-
guishable.

Definition 3.1 (Adaptive security of SSE schemes). An SSE scheme Σ is L-adaptively-secure, with respect
to a leakage function L, if for any polynomial-time adversary A issuing a polynomial number of queries q(λ),
there exists a PPT simulator S such that:∣∣∣P [SSERealΣ

A(λ, q) = 1
]
− P [SSEIdealA,S,L(λ, q) = 1]

∣∣∣ = negl(λ).

3.4 Leakage Functions
In this section we define a few simple leakage functions. We begin with a common leakage function: the search
pattern [CGKO06]. Most SSE schemes leak the fact that two search queries pertain to the same keyword.
Indeed, unless some form of data-oblivious memory is used, when two searched keywords are equal, the search
token will typically prompt the server to access the same sections of the encrypted database to retrieve the
(same) document indices.

Formally, search pattern leakage is defined as follows. In its internal state, the leakage function records
the list Q of every search query, in the form (u,w), where u is the timestamp (an index starting at 0 and
increasing with every query) and w is the searched keyword. The search pattern is defined as a function
N→ P(N) with sp(w) = {u : (u,w) ∈ Q}. Thus, sp leaks which search queries relate to the same keyword.

We also define the history UpHist(w) of each keyword w, following Bost [Bos16]. The function UpHist(w)
outputs the list of all updates on keyword w: each element of the list is a tuple (u, op, ind) where u is the
timestamp of the update, op is the operation, and ind is the updated index. For example, if there are two
documents Dind1

and Dind2
matching w, such that Dind1

was inserted at update 3, Dind2
at update 7, and

then Dind2 was deleted at update 42, UpHist(w) will be [(4, add, ind1), (7, add, ind2), (42, del, ind2)].

4 Forward and Backward Privacy
Forward and backward privacy capture information leaked by a dynamic SSE scheme. At a high level,
forward privacy considers privacy of the database and earlier search queries during updates, while backward
privacy captures privacy of the database and updates to it during search queries. In this section, we formally
define these privacy properties and present a generic transformation that meets these definitions, albeit at a
cost. Our generic construction, and its instantiations with TWORAM [GMP16] and Σoφoς [Bos16], can be
seen as a baseline solution that transforms any forward-private SSE scheme to provide backward privacy, at
the cost of an additional roundtrip. We improve on the baseline solution in the following sections.

6

4.1 Forward Privacy
An SSE scheme is forward-private (or forward-secure) if Update queries do not leak which keywords are
involved in the keyword/document pairs that are being updated. Forward privacy was informally defined in
[SPS14]. Here we borrow the formal definition of [Bos16].

Definition 4.1 (Forward Privacy). A L-adaptively-secure SSE scheme is forward-private iff the update
leakage function LUpdt can be written as:

LUpdt(op, in) = L′(op, {(indi, µi)})

where the set {(indi, µi)} captures all updated documents as the number of keywords µi modified in docu-
ment indi; and L′ is stateless.

If update queries are restricted to adding or deleting a single keyword/document pair, the scheme is
forward-private iff we have LUpdt(op, w, ind) = L′(op, ind). All forward-private schemes in this paper satisfy
LUpdt(op, w, ind) = op.

4.2 Backward Privacy
Backward privacy limits the information on the updates affecting keyword w that the server can learn upon
a search query on w. Informally, an SSE scheme is backward-private (or backward-secure) if, whenever a
keyword/document pair (w, ind) is added into the database and then deleted, subsequent Search queries on w
do not reveal ind [SPS14]. Note that ind is revealed if a Search query is issued after (w, ind) is added, and
before it is deleted.

Hence, we could argue that backward-private schemes are those whose search leakage is only a (stateless)
function of DB(w), as this would only reveal information about document currently in the database (and
not the deleted ones). However, this is not enough, as, even though the search leakage is reduced to DB(w),
the update leakage could reveal the modified document/keyword pairs. A scheme with such leakage would
reveal the indices of deleted documents, as the attacker could keep track of all the updated pairs, which is
exactly what we want to prevent. As a consequence, in the security definitions, we must explicitly rule out
such update leakage.

Moreover, obtaining a scheme with leakage that depends only on DB(w) would require hiding the pattern
of updates as well as their number. Although hiding the former could be achieved, for example, using ORAM,
this would result in expensive schemes. As a consequence, we define three flavors of backward privacy of
decreasing strength, depending on how much metadata leaks about the inserted and deleted entries:

I. Backward privacy with insertion pattern:
leaks the documents currently matching w, when they were inserted, and the total number of updates
on w.

II. Backward privacy with update pattern:
leaks the documents currently matching w, when they were inserted, and when all the updates on w
happened (but not their content).

III. Weak backward privacy:
leaks the documents currently matching w, when they were inserted, when all the updates on w
happened, and which deletion update canceled which insertion update.

Let us demonstrate the differences between these notions with an example. Consider the following sequence
of updates, in the order of arrival: (add, ind1, {w1, w2}), (add, ind2, {w1}), (del, ind1, {w1}), (add, ind3, {w2}).
Let us consider the leakage for each definition after a search query on w1. The first notion reveals ind1 and
that this entry was added at time 1. It also reveals that there were a total of 3 updates for w1. The second
notion, additionally reveals that updates on w1 happened at time 1, 2, and 3. Finally, the third definition
also reveals that the index that was added for w1 at time 1 was removed at time 3.

7

In order to capture these notions, we introduce new leakage functions, starting with TimeDB. For a
keyword w, TimeDB(w) is the list of all documents matching w, excluding the deleted ones, together with
the timestamp of when they were inserted in the database. Formally, TimeDB(w) can be constructed from
the query list Q as follows:

TimeDB(w) = {(u, ind) | (u, add, (w, ind)) ∈ Q and ∀u′, (u′, del, (w, ind)) /∈ Q}.

In particular DB(w) = {ind|∃u s.t. (u, ind) ∈ TimeDB(w)}. Note that TimeDB is completely oblivious to
any document added to DB(w) that was later removed, but retains all other information. As such, TimeDB
captures a strong notion of backward privacy revealing only the time of the insertion of the documents
currently containing the search query w.

Then, we define Updates(w) which is the list of timestamps of updates on w. Formally,

Updates(w) = {u | (u, add, (w, ind)) or (u, del, (w, ind)) ∈ Q}.

Updates captures the leakage of the update pattern.
Finally, in order to capture the weakest notion of backward privacy, we use DelHist. The deletion history

DelHist(w) of w is the list of timestamps for all deletion operations, together with the timestamp of the
inserted entry it removes. Formally, DelHist(w) is constructed as:

DelHist(w) =
{

(uadd, udel) | ∃ind s.t. (udel, del, (w, ind)) ∈ Q and (uadd, add, (w, ind)) ∈ Q
}
.

With these tools, we can formally define our three notions of backward privacy.

Definition 4.2 (Backward Privacy). A L-adaptively-secure SSE scheme is insertion pattern revealing
backward-private iff the search and update leakage functions LSrch, LUpdt can be written as:

LUpdt(op, w, ind) = L′(op)

LSrch(w) = L′′(TimeDB(w), aw),

where L′ and L′′ are stateless.
A L-adaptively-secure SSE scheme is update pattern revealing backward-private iff the search and update

leakage functions LSrch, LUpdt can be written as:

LUpdt(op, w, ind) = L′(op, w)

LSrch(w) = L′′(TimeDB(w),Updates(w)),

where L′ and L′′ are stateless.
A L-adaptively-secure SSE scheme is weakly backward-private iff the search and update leakage functions

LSrch, LUpdt can be written as:

LUpdt(op, w, ind) = L′(op, w)

LSrch(w) = L′′(TimeDB(w),DelHist(w)),

where L′ and L′′ are stateless.

We can clearly see that backward privacy with insertion pattern implies update pattern revealing back-
ward privacy, which itself implies weak backward privacy. Also observe that an insertion pattern revealing
backward-private scheme has to be forward-private, and that if a scheme is both forward-private and weakly
backward-private, then the leakage of update queries cannot depend on either the updated keyword (by
definition of forward privacy) or the updated document index (by definition of weak backward privacy), so
the leakage must be limited to the nature of the operation. This will indeed be the case for all schemes
considered in this article.

8

Algorithm 1 Generic backward-private scheme B(Σ) where Σ is an arbitrary SSE scheme and F is a PRF.
Setup(DB) :

1: Σ.Setup(DB), KΣ
$← {0, 1}λ

Search(KΣ, w, σ;EDB)

1: Client and Server run Σ.Search(w), the client gets the list of results R.
Client :

2: Kw ← F (KΣ, w)
3: Decrypt R as (EKw(ind1, op1), . . . , EKw(indn, opn))
4: Return {ind : ∃i, (indi, opi) = (ind, add) ∧∀j > i, (indj , opj) 6= (ind, del)

}
Update(KΣ, add, w, ind, σ;EDB)

1: Client: Kw ← F (KΣ, w)
2: Client and Server run Σ.Update(add, w,EKw

(ind, op))

4.3 A Generic Two-Roundtrip Backward-Private Scheme
In this section, we show how to build a simple backward-private SSE scheme B(Σ) starting from an arbitrary
SSE scheme Σ. We start with a basic solution for clarity, then improve on it.

We alter Σ as follows. Instead of storing a document index ind, the client uploads a ciphertext EKw
(ind, op),

where EKw
is a secret-key encryption scheme and op ∈ {add, del}. The key Kw is specific to keyword w

and is chosen by the client. The server sees only the resulting ciphertexts as Kw’s are never revealed to it.
The scheme Σ otherwise runs as normal. In particular, Search queries return the set of matching encrypted
document indices EKw

(ind, op). The client can then decrypt this set, remove deleted indices, and obtain the
final set of document indices matching w.

A description of B(Σ) is provided in Algorithm 1. Letting I denote the set of document indices, we
assume I × {add, del} embeds into the plaintext space of EK , and we use the ciphertext space of EK as the
set of document indices for Σ. Note that Σ only needs to support add queries. The scheme B(Σ) achieves
update pattern revealing backward privacy, as Σ can leak any information about the modified keyword
during updates, and some access pattern information during search. However, if Σ does not reveal any
information about the past updates (i.e., if Σ does not leak UpHist(w) but only DB(w)), we can show that
B(Σ) guarantees backward-privacy with insertion pattern. Unfortunately, the only dynamic schemes which
do not reveal UpHist(w) are based on ORAM, such as TWORAM [GMP16].

The B(Σ) scheme, as described so far, has two drawbacks. The first drawback is that the server does
not learn document indices in the clear and, hence, cannot return the matching documents. This is fine for
a result-hiding scheme. However, a common use case of SSE schemes is to return actual documents, which
are stored separately in an encrypted form. B(Σ) can support this case with an additional roundtrip as
follows. After the client computes the result of a search query, she sends document indices in the clear to the
server. The server is then able to send the documents to the client. Hence, B(Σ) is two-roundtrip protocol,
assuming Σ requires a single roundtrip for its queries.

The second drawback of B(Σ) is that deleted elements are never deleted on the server side. Moreover,
since deleted elements are returned to the client on each search query, this also affects the communication
cost and the amount of work necessary on the client side. We notice that this overhead can be avoided in
the common scenario outlined above where the client sends cleartext document indices back to the server.
In particular, it suffices for the client to send, together with the list of cleartext indices, an encryption of the
same indices with a new key. Recall, that this list contains only the relevant indices with deleted elements
removed by the client. Hence, the server can delete the old encrypted entries in the database and insert the
updated ones. Essentially we are piggybacking a cleanup procedure on top of the Search protocol.

We denote a generic solution based on the above idea as B′(Σ) and describe it in Algorithm 2. In B′(Σ),
the client keeps track of the number of times each keyword w has been queried in table T. Each time a
search query is issued, results are re-encrypted using a fresh key derived from w and T[w]. Keywords w in Σ
are replaced by w||T[w], where || denotes concatenation. In line 7 of the algorithm, re-encrypted indices are
sent as Update queries for the sake of having a generic solution. However, typical SSE schemes would allow

9

Algorithm 2 Improved backward-private scheme B′(Σ).
Setup(DB) :

1: T[w]← 0 for all w, KΣ
$← {0, 1}λ

2: DB′ ← DB where keywords w are replaced by w||0
3: Σ.Setup(DB′)

Search(KΣ, w, σ;EDB)

1: Client: Kw ← H(KΣ, w,T[w])
2: Client and Server run R← Σ.Search(w||T[w]) . Server can erase all retrieved elements from memory

Client:
3: Decrypt R as (EKw

(ind1, op1), . . . , EKw
(indn, opn))

4: R′ ← {ind : ∃i, (indi, opi) = (ind, add) ∧∀j > i, (indj , opj) 6= (ind, del)
}

5: Send R′ to Server
6: T[w]← T[w] + 1
7: for all ind ∈ R′ do . In parallel
8: Run Update(KΣ, add, w, ind, σ;EDB)
9: end for

Update(KΣ, add, w, ind, σ;EDB)

1: Client: Kw ← H(KΣ, w,T[w])
2: Client and Server run Σ.Update(add, w||T[w], EKw

(ind, op))

all updates to be performed at once in a single roundtrip. We also expect that concrete choices of Σ may
allow further optimisations. For example, directly using a result-hiding scheme for Σ would avoid having to
encrypt the (ind, op) pairs before inserting them in Σ.

The scheme B′(Σ) is intuitively backward-private since the server learns document indices only after the
client has removed deleted indices. Moreover, since document indices are re-encrypted after each search, it
achieves the notion of update pattern revealing backward privacy in the sense of Definition 4.2. We note
that B′(Σ) may achieve a stronger definition if one makes further assumptions on how updates are carried
out in Σ. In particular, we name the B′(TWORAM) instantiation Moneta. Moneta achieves backward
privacy with insertion pattern, but at a very high computational and communicational cost due to the use
of TWORAM.

4.4 Fides: A Baseline Forward and Backward Private SSE Scheme
In this section, we briefly describe Fides, the instantiation of B′ using Σoφoς [Bos16] (recall that Σoφoς is
forward-private, but not backward-private). Fides guarantees forward privacy and update pattern revealing
backward privacy. The former is due to the underlying SSE scheme, Σoφoς, being forward-private, while the
latter is the result of the B′ construction. The formal statement on Fides’ security is given by Theorem 1.

Theorem 1. Define LFides as:

LUpdt
Fides(op, w, ind) = ⊥

LSrch
Fides(w) = (DB(w),Updates(w)).

Fides is LFides-adaptively-secure.

Let us analyze Fides’ performance. Recall that Σoφoς is optimal for search and updates in terms of com-
putation and communication. In contrast, Fides takes two rounds during search and has O(aw) computation
and communication complexity, where aw is the total number of update entries matching w. The cost of
O(aw) is the worst case scenario since this cost can be amortized over all search queries for w. Similar to
Σoφoς, the updates in Fides are optimal (constant communication and computation).

Fides can be seen as a baseline for forward- and backward-private designs: it is simple to build, offers
moderate computation overhead, and achieves a good level of security. In the next sections, we will propose

10

Algorithm 3 FS-RCPRF: Forward private SSE scheme from range-constrained PRF F̃ . H1 and H2 are
hash functions.
Setup()

1: KΣ
$← {0, 1}λ, W,EDB← empty map

2: return (EDB,KΣ,W)

Search(KΣ, w, σ;EDB)

Client:
1: Kw||K ′w ← FKΣ

(w), c←W[w] . c = nw − 1
2: if c = ⊥ then return ∅
3: ST ← F̃ .Constrain(Kw, Cc) . Cc is the

circuit evaluating to 1 on {0, . . . , c}
4: Send (K ′w, ST, c) to the server.

Server:
5: for i = c to 0 do
6: Ti ← F̃ (ST, i)
7: UTi ← H1(K ′w, Ti)
8: e← EDB[UTi]
9: ind← e⊕H2(K ′w, Ti)

10: Output each ind
11: end for

Update(KΣ, add, w, ind, σ;EDB)

Client:
1: Kw||K ′w ← F (KΣ, w), c←W[w]
2: if c = ⊥ then c← −1
3: T c+1

w ← F̃ (Kw, c+ 1), W[w]← c+ 1
4: UTc+1 ← H1(K ′w, T

c+1
w), e← ind⊕H2(K ′w, T

c+1
w)

5: Send (UTc+1, e) to the server.
Server:

6: EDB[UTc+1]← e

schemes that avoid inefficiencies such as the additional roundtrip and the high communication overhead at
the cost of being only weakly backward-private.

5 Diana: Forward-Secure SSE with Very Low Overhead
In this section, we describe a generic way to construct forward-private searchable encryption from constrained
PRFs on N with respect to the range family of circuits C = {Cc|Cc(x) = 1 ⇔ 0 ≤ x ≤ c}. We will see that
Σoφoς [Bos16] can be seen as an instantiation of this scheme, and then provide a much more efficient one
based on the GGM PRF [GGM84], which we call Diana.

5.1 FS-RCPRF: Forward-Secure SSE from Range Constrained PRFs

Let F̃ : {0, 1}λ × {0, . . . , nmax} → {0, 1}λ be a constrained PRF with respect to the class of range circuits
C defined above. Also, let F be a 2λ-bit PRF. Algorithm 3 describes FS-RCPRF, a forward-secure scheme
based on the range-constrained PRF F̃ . The simple idea behind FS-RCPRF is that update tokens for entries
matching keyword w are generated using F̃ in counter mode, where the counter is incremented every time
a new entry matching w is inserted. Then, during search, the client gives to the server the constrained
key allowing only the evaluation of F̃ on {0, . . . , nw}. The resulting scheme can be seen as a generalization
of the dynamic scheme of Cash et al. [CJJ+14], where during the search the client gives to the server the
constrained key of w instead of the master key Kw.

The intuition for the security of FS-RCPRF is simple: as the adversary only gets to see the CPRF keys
during searches for ranges corresponding to already inserted entries, she cannot predict the evaluation of the
PRF for inputs outside of these ranges, and in particular for newly inserted entries. Hence updates leak no
information. Theorem 2 states the formal security of FS-RCPRF. Its proof is deferred to Appendix A.

Theorem 2 (Adaptive security of FS-RCPRF). Define LFS = (LSrch
FS ,L

Updt
FS) as:

LSrch
FS (w) = (sp(w),UpHist(w))

LUpdt
FS (add, w, ind) = ⊥.

FS-RCPRF is LFS-adaptively-secure.

11

The adaptive security of FS-RCPRF is shown in the random oracle model (ROM), but the ROM is not
needed for non-adaptive security.

Reinterpreting Σoφoς with constrained PRFs The Σoφoς construction is based on the iteration of
a trapdoor permutation (TDP) π to generate the update tokens in a way that prevents the server from
predicting them. Σoφoς can be reinterpreted using our framework by constructing a TDP-based range-
constrained PRF F̃Σ (in the following paragraph, we re-use the notation of [Bos16], which overrules our
own).

The master key F̃Σ is composed of an RSA key SK and an element ST0 ∈ ZN where each can be pseudo-
randomly generated from a random λ-bit key. F̃ ((SK, ST0), c) = π−cSK(ST0) where π−c is the c-fold iteration
of π−1. The constrain algorithm will then be the following (we identify the circuit constraining to the range
{0, . . . , n} with the integer n):

F̃ .Constrain((SK, ST0), n) = (PK,π−nSK (ST0), n) = (PK, STn, n).

Finally, the constrained evaluation function is

F̃ .Eval((PK, STn, n), c) = πn−c
PK (STc).

We can easily reduce the constrained-PRF security of F̃ to the hardness of the RSA assumption, and directly
deduce the security of Σoφoς from Theorem 2.

5.2 Diana, a GGM instantiation of FS-RCPRF
In this section we present a range-constrained PRF and then use it to instantiate FS-RCPRF.

We can easily construct a simple and efficient range-constrained PRF from the tree-based GGMPRF [GGM84].
This instantiation has been described by Kiayias et al. [KPTZ13] and is called best range cover (BRC).

Let G : {0, 1}λ → {0, 1}2λ be a pseudo-random generator (PRG), G0(k) and G1(k) be the first and
second half of G(k). The GGM PRF on n-bit integers is defined as FK(x) = Gxn−1(. . . (Gx1(Gx0(K))))
where xn−1 . . . x0 is the binary representation of x. The leaves of the tree are the output values of F , and
they can be labeled according to the corresponding input, and the partial evaluation of F (i.e. the iterated
evaluation of G, but only on the first ` < n bits) are the inner nodes of the tree.

To constrain F to the input range [0, c− 1], we generate the nodes of the tree covering exactly the leaves
with labels in [0, c− 1]. In practice if the binary representation of c is cn−1 . . . c0, the punctured key would
be
{
G0(Gci−1(. . . (Gc0(K)))

}
for i such that ci = 1.

We use the above range CPRF to instantiate FS-RCPRF and call this instantiation Diana. Note that,
Diana is almost identical to the ARX-EQ scheme [PBP16]. However ARX-EQ was not formally proven, and
FS-RCPRF provides a more general framework on how to construct forward-private SSE schemes.

Let us analyze the efficiency of Diana. Updates need O(log nmax) computation, where nmax is the maxi-
mum number of entries matching a keyword: CPRF computes a tree’s leaf from its root. Similarly, during
search, the server has to compute all the leaves of the tree within a given range. This can be done effi-
ciently in O(nw) calls to the PRG, where nw is the number of matches on search keyword w: there are
O(nw) tree nodes to compute in total and each node can be generated using a single PRG call. In terms
of communication complexity, Diana is optimal for updates, and sends O(log nw) tree nodes during a search
query.

In theory, this is worse than Σoφoς’ optimal computational and communication complexity, but, as we
will see in Section 7.1, Diana uses symmetric primitives that are much faster than Σoφoς’ RSA. Also, since
nodes in the tree will be 128-bit keys, we can set nmax to 232 and still have search tokens only twice as big
as Σoφoς’ 2048-bit tokens.

12

5.3 Dianadel: Backward-Secure SSE from Range-Constrained and Puncturable
PRFs

The FS-RCPRF construction, and its instantiation Diana, do not support deletions. Schemes of this type
can be extended to support deletions by letting the client and the server maintain two instances of the
construction, one for insertions and one for deletions. Then, during a search query, the server can compute
the difference between the two result sets to compute the list of documents matching the query (i.e., without
the deleted entries). This solution, however, is not backward-private as the server trivially learns the deleted
entries. To this end, we propose FS-RCPRFdel, which also uses two SE instances but exploits constrained
PRFs to guarantee weak backward privacy.

The key idea behind FS-RCPRFdel is to extend the set of constraints supported by the underlying
constrained PRF used in Section 5.1. In order to support backward privacy, we make use of constrained
PRF F̃ that is not only range-constrained (for forward privacy) but is also punctured on the deleted entries
(for backward privacy). Hence, the constrained key of F̃ enforces the predicate Cc,x1,...,xn

(x) = 1 iff x ∈
[0, c] and ∀i, x 6= xi. The values x1, . . . , xn correspond to deleted entries that the server should not learn.
Unfortunately, a naive implementation of F̃ requires the client to store all deleted entries x1, . . . , xn since
the order of deletions and insertions can be arbitrary. Our construction avoids this storage overhead on the
client’s side by letting the server store the deleted entries in an encrypted form.

We now combine the above ideas and describe FS-RCPRFdel. The client and the server maintain two
forward-private SE instances: one for insertions and one for deletions. Every time the client wants to insert
(w, ind) with the counter c, it proceeds as in FS-RCPRF and inserts the pair in the first SE instance, as in
Algorithm 3. In addition, it also pushes the pair (F ′(Kw, (w, ind)), EncK′(c)), where F ′ and Enc are a PRF
and a CPA encryption scheme, to the server who stores these pairs in a map. In order to delete (w, ind), the
client inserts the entry (w,F ′(Kw, (w, ind))) in the second SE instance. Then, during search query for w,
the client proceeds as follows. It requests a search for w on the second SE instance (i.e., the one that stores
deleted entries). As a result, the server gets the associated tags F ′(Kw, (w, ind)) for the deleted entries, uses
them to retrieve encrypted xi’s from the map, and sends them back to the client. The client then constrains
the PRF using xi’s and uses it to run a search on the first SE instance. Note that this solution assumes that
the same index ind is never reused: once the entry (w, ind) has been deleted, it can no longer be re-added.

The above solution is not ideal as it requires an additional roundtrip with large communication from
the server to the client. Also, it can only guarantee weak backward privacy, as the server learns when the
deletions occurred.

Similar to FS-RCPRF, we instantiate FS-RCPRFdel with the GGM PRF and call the resulting scheme
Dianadel. The constrained key, instead of consisting of the covering nodes of the full range as in Section 5.2,
will be constructed as the set of nodes covering the ranges [0, x1−1], [x1 +1, x2−1], . . . , [xn+1, c] (assuming
that xi’s are in increasing order). This approach will result in large keys when the number of deletions is
large: the number of tree nodes to be sent will be in the order of dw · log(nw/dw). (assuming uniformly
distributed deletions).

6 Janus: Weak Backward Security from Puncturable Encryption
The solutions presented in Section 5.3 suffer from high inefficiencies, by requiring either client storage linear
in the number of deletions, or multiple roundtrips with high communication complexity. In this section,
we show how to achieve (weak) backward security in a single roundtrip, using puncturable encryption with
incremental punctures.

6.1 Puncturable Encryption
A puncturable encryption (PE) scheme is a public-key encryption scheme that allows to puncture the se-
cret key to prevent the decryption of some messages. More precisely, for such schemes, the plaintexts are
encrypted and attached to a tag, and the secret key is punctured on a set of tags so that decryption of

13

ciphertexts attached to those tags is impossible. Puncturable encryption has been introduced by Green and
Miers as a way to achieve forward security in an asynchronous setting [GM15]. We adopt the same formalism
and definitions, except we fix the number of tags per message to 1.

A puncturable encryption scheme PPKE with message spaceM and tag space T is a triple of algorithms
(KeyGen,Encrypt,Puncture,Decrypt) with the following syntax:

• KeyGen(1λ) outputs a public key PK and an initial secret key SK0.

• Encrypt(PK,M, t) outputs the encryption CT of M ∈M attached to the tag t ∈ T .

• Puncture(SKi, t) outputs a new secret key SKi+1 able to decrypt any ciphertext SKi can decrypt, except
for ciphertexts encrypted with the tag t.

• Decrypt(SKi, CT, t) outputs a plaintext M or ⊥ if the decryption fails.

Correctness is achieved if a plaintext M encrypted with tag t decrypts back to M when using the secret
key punctured on any set of tags that does not contain t.

The IND-PUN-ATK security games – with ATK ∈ {CPA,CCA} – capture the security of puncturable
encryption. We recall the IND-PUN-CPA game (we will not use CCA security in this work) in a simplified
version.

Definition 6.1 (Security of puncturable encryption). Let PPKE be a puncturable encryption scheme. The
game IND-PUN-CPAPPKE,A with adversary A is defined using three phases as follows:

Setup Phase The challenger initializes two empty sets P,C, T , a counter n to 0, and runs (PK,SK0) ←
PPKE.KeyGen(1λ). Finally, he randomly picks b $← {0, 1}.

Query Phase The adversary can adaptively issue the following queries:

Puncture(t) The challenger increments n, computes SKn ← PPKE.Puncture(SKn−1, t) and adds t to
P .

Corrupt() The first time the adversary issues this query, if T ⊆ P , the challenger returns the most
recent secret key SKn, and sets C ← P . All subsequent queries return ⊥.

Challenge(M0,M1, t) If the adversary previously issued a Corrupt query and t /∈ C, the challenger
rejects the challenge. Otherwise, the challenger returns CT ← PPKE.Encrypt(PK,Mb, t) to the
adversary and adds t to T .

Guess Phase The adversary outputs a guess b′ of b.

The game ensures that the adversary can get challenge ciphertexts only for tags on which the secret key has
been punctured.

We say that PPKE is IND-PUN-CPA secure if for all polynomial-time adversaries A:

Advpun−cpa
PPKE,A (λ) =|P[IND-PUN-CPAPPKE,A(λ) = 1]

− P[IND-PUN-CPAPPKE,A(λ) = 0]|
≤ negl(λ).

In the Janus construction, described in Section 6.3, we will encrypt the document indices using punc-
turable encryption, with tags that are pseudo-randomly generated from the document-keyword pairs. There
will be a different key for each keyword, and when we want to delete an entry for a specific keyword, we will
puncture the associated key on the tag derived from the document-keyword pair. Upon a search query, the
client will give to the server the associated punctured secret key, with which he will only be able to decrypt
non-deleted entries.

In this paper, we will use the Green-Miers puncturable encryption scheme [GM15], described in Ap-
pendix C.

14

6.2 Incremental Puncture
The punctured keys will (often) grow with the number of punctures (or be very large), and it will be
impractical to store them on the client side. To avoid this issue, we use an additional feature of the Green-
Miers scheme, which we call incremental puncture.

In our setting, we will see that it is very handy to be able to express the Puncture algorithm as a function
of a constant-sized fraction of the secret key. The secret key of the Green-Miers puncturable encryption
scheme is, after n punctures, SKn = (sk0, sk1, . . . , skn), and the puncture algorithm is such that

Puncture(SKn, t) = (sk′0, sk1, . . . , skn, skn+1)

where (sk′0, skn+1) = IncPuncture(sk0, t).

By using this PE scheme, the client will only have to store the sk0 part of the secret key, and outsource
the rest to the server. The client’s storage will stay linear in the number of keywords, and most of the storage
burden will still be born by the server.

6.3 The Janus Construction
Janus, similar to the constructions in Section 5.3, uses two forward-secure searchable encryption instances:
Σadd to store the newly inserted indices encrypted with the puncturable encryption scheme (the insertion
instance), and Σdel to store the punctured key elements (the deletion instance). There is a different encryption
key for each keyword and the client stores the sk0 part of each key locally. During the search for w, the
client sends the associated key part and runs the search protocol of the SE scheme for both instances. As a
result, the server obtains the encrypted indices from the insertion instance and all the remaining key parts
from the deletion instance. She will then be able to decrypt all the non-deleted (i.e. not punctured) indices.

Still, there is an important problem to tackle: once the secret key for w has been revealed to the server, it
can no longer be used by the client to encrypt the index of the documents matching w that will be inserted
in the future. As a consequence, we need to change the encryption key after every search. Yet, we do not
need to re-encrypt the already revealed indices (a.k.a. the result indices) with the new key: the adversary
already learned them, and, as the Σadd and Σdel schemes used in practice will leak the search pattern, she
can keep track of the results over repeating search queries.

So, in the first version of our construction, the server will explicitly keep the results in a cache. This cache
is also interesting from a performance point of view: each matching index will be decrypted at most once,
and all the results from previous searches on a given keyword can be stored close to each other, increasing
storage locality.

Description of Janus Janus is described in Algorithm 4. It uses two response-revealing (insertion-only)
dynamic SSE schemes Σadd and Σdel. Σadd and Σdel might be different for efficiency or security purposes,
but in the proof, we will assume that they are forward-secure. Janus also uses a PRF F and an incremental
puncturable encryption scheme PPKE.

The client stores locally a table containing for each keyword w the initial key share sk0[w] of a PE
(WLOG we can assume that this key share contains the public key). To insert a new entry (w, ind), the
client encrypts it with the PE scheme with the key sk0[w], using a pseudo-random value F (w, ind) as a tag.
He then inserts this ciphertext as a new entry matching w in Σadd. To delete the entry (w, ind), the client
computes the tag t = F (w, ind) and (incrementally) punctures sk0[w] on this tag. He then updates the
initial key share of w and pushes the new key element skt to the server by inserting the entry (w, skt) in
Σdel. Finally, to search, the client runs a search on w for both Σadd and Σdel. The server now has access
to the ciphertexts encrypting the inserted indices and to the key elements necessary to decrypt them. Note
that she will only be able to decrypt the ciphertexts for which the key has not been punctured, i.e. the non
deleted entries.

After a search query on w, the same encryption key cannot be used to encrypt new entries matching w:
the server can reuse the old key to decrypt even the newly deleted entries since the key would not have been

15

Algorithm 4 Janus: weakly backward-secure SSE.
Setup()

1: (EDBadd,Kadd, σadd)← Σadd.Setup()
2: (EDBdel,Kdel, σdel)← Σdel.Setup()
3: Ktag,KS ← {0, 1}λ, PSK,SC,EDBcache ← empty map
4: return ((EDBadd,EDBdel,EDBcache), (Kadd,Kdel,Ktag,KS), (σadd, σdel,PSK,SC))

Search(KΣ, w, σ;EDB)

Client :
1: i← SC[w].
2: if i = ⊥ return ∅
3: Send sk0 = PSK[w] to the server.
4: PSK[w]← PPKE.KeyGen(1λ), SC[w]← i+ 1.
5: Send tkn← F (KS , w) to the server.

Client (C) & Server (S):
6: C and S run Σadd.Search(Kadd, w||i, σadd;EDBadd).

The server gets a list ((ct1, t
add
1), . . . , (ctn, t

add
n) of

ciphertexts and tags.
7: C and S run Σdel.Search(Kdel, w||i, σdel;EDBdel).

The server gets a list ((sk1, t
del
1), . . . , (skm, t

del
m))

of key elements.
8: S decrypts the ciphertexts with SK =

(sk0, sk1, . . . , skm), and obtains the list
NewInd = ((ind1, t1), . . . , (ind`, t`)).
Server:

9: OldInd← EDBcache[tkn]
10: Remove from OldInd the indices whose tags are

in {tdelj }.
11: Res← OldInd ∪NewInd, EDBcache[tkn]← Res
12: return Res

Update(KΣ, add, w, ind, σ;EDB)

1: t← FKtag
(w, ind)

2: sk0 ← PSK[w], i← SC[w]
3: if sk0 = ⊥ then
4: sk0 ← PPKE.KeyGen(1λ), PSK[w]← sk0

5: i← 0, SC[w]← i
6: end if
7: if op = add then
8: ct← PPKE.Encrypt(sk0, ind, t)
9: Run Σadd.Update(Kadd, add, w||i, (ct, t), σadd;EDBadd)

10: else . op = del
11: (sk′0, skt)← PPKE.IncPuncture(sk0, t)
12: Run Σdel.Update(Kdel, add, w||i, (skt, t), σdel;EDBdel)
13: PSK[w]← sk′0
14: end if

punctured on the corresponding tags. Janus avoids this by requiring the client to generate a new key for
w after a search and encrypt new entries of w using this key. As discussed earlier, the server can keep the
results of previous search queries and retrieve them the next time w is searched. This does not affect the
security of the scheme since the server has already learnt earlier search results on w.

Security of Janus Janus is a forward-private and weakly backward-private SSE scheme. The former comes
directly from the forward security of Σadd and Σdel. Let us consider backward security. The server has access
to the decryption key of w’s entries only during the search query for w. Moreover, this key allows her to
decrypt only the entries that have been added since the last search for w and have not yet been deleted.
Hence, the deleted indices remain hidden. Note that weak backward security is the strongest definition we
can achieve with Janus as the server can determine which of the inserted queries were later deleted as well
as the timestamps of these events. Also note that Janus does not allow re-insertion of document/keyword
pairs that were previously deleted.

The formal security claim is given in Theorem 3, and its proof is postponed to Appendix B.

Theorem 3 (Adaptive Security of Janus). If Σadd and Σdel are two LFS-adaptively-secure SSE schemes,
PPKE is IND-PUN-CPA secure, and F is a PRF, then Janus is LwBS-adaptively secure, with LwBS =
(LSrch

wBS ,L
Updt
wBS) defined as

LSrch
wBS(w) = (sp(w),TimeDB(w),DelHist(w))

LUpdt
wBS(op, w, ind) = op.

16

Note that in this theorem, LFS specifically refers to the leakage of a forward-secure scheme as defined in
Theorem 2.

Efficiency The computational and communication complexity of Janus can easily be derived from Σadd

and Σdel. In particular, it has the same complexity for insertion (resp. deletion) updates as Σadd (resp.
Σdel). To analyze search queries, let Tadd(n) and Tdel(n) be the computational complexities of the search
protocols of Σadd and Σdel, respectively, where n is the size of a result set. Then, Janus’ search complexity
for a keyword w with aw insertions, dw deletions, and nw = aw − dw non-deleted matching results, is
Tadd(aw) + Tdel(dw) + O(nw · dw). The last term comes from the fact that a decryption of the PE scheme
has complexity linear in the number of punctures. When instantiated with Diana or Σoφoς, Janus thus has
search complexity O(aw + dw + nw · dw) = O(nw · dw).

In terms of communication for search queries, Janus also inherits from the complexity of Σadd, and Σdel.
Let Cadd(n) and Cdel(n) be the communication complexities of search protocols of Σadd and Σdel, respectively,
for a keyword that was inserted n times. Then, the communication complexity CJanus(aw, dw) for a keyword
that was inserted aw times and deleted dw times is Cadd(aw)+Cdel(dw). Also, the number of roundtrips is the
maximum number of roundtrips between Σadd and Σdel. Hence, when instantiated either with Σoφoς or Diana,
Janus has single-roundtrip search and updates protocols. In the case of Σoφoς, the search communication
complexity is optimal (constant), and for Diana, it is O(log(aw) + log(dw)).

6.4 Reducing Storage Overhead
In practice, the storage overhead of Janus is quite high: the client needs to store 3 group elements (at least
256 bits each) for every keyword, while each ciphertext on the server side consists of the masked index, two
group elements and the tag, and 3 group elements and a tag for each key share. To reduce the overhead at
the client, we use a trick similar to the one used in Σoφoς : we pseudo-randomly generate the encryption
scheme’s parameters and key elements ski from a master key and the number of punctures done on the secret
key. The client does not need to store the public key as he can directly encrypt the plaintext indices from the
scheme’s parameters (and this will actually be faster). As a result, the client has to store only the number
of deleted entries for each w, which he does already if Σdel is instantiated with Diana. This modification is
described in detail in Algorithm 11 (Appendix C).

A similar trick can be used to reduce the storage on the server side. Indeed, one of the three group
elements stored for each entry is a random blinding element, which can be generated pseudo-randomly using
a PRF applied on the keyword/document pair (w, ind) to be encrypted. As the blinding element is part of
the ciphertext, and as it is now a (deterministic) function of the pair (w, ind), the tag is now redundant an
can be omitted. This modification is also described in Algorithm 11.

6.5 Security of Janus Against Weaker Adversaries
We showed that Janus protects against persistent adversaries (e.g., a malicious server) and guarantees both
forward and backward privacy. In this section, we analyze its resistance against weaker adversaries. First,
we consider a snapshot adversary who is able to see the encrypted database at one (or more) instant – e.g. in
case of a disk theft or subpoena. Then, we consider the security of Janus against a late-persistent adversary
that obtains control over the server sometime after the client has outsourced his data and, possibly executed
some queries — e.g. in case of malware.

Janus, as is, does not protect against a snapshot adversary since the cached results are kept in plaintext on
the server side. Beside trivially revealing the cached content, this can also lead to the recovery of some of the
queries. This, in turn, can be used for leakage-abuse attacks in the manner of file injections attacks [ZKP16]
adapted to using a single (or multiple) snapshot of EDB (and in particular of EDBcache).

To fix this problem, we propose to encrypt EDBcache using a key that is not permanently stored at the
server and maintain EDBcache in a history-independent (HI) data structure as follows. In particular, the
content of EDBcache relevant to w is encrypted using a keyword-specific symmetric key Kw. To this end, we
modify line 5 of Algorithm 4 to tkn||Kw ← F (KS , w) where the client also sends Kw to the server. Then

17

Table 2 – Size of the databases used in the evaluation, and the amount of storage needed for W and EDB

K N W EDB
222 · 103 1.9 · 107 4.6 MB 615 MB
2.68 · 106 1.9 · 108 46 MB 6.3 GB
21.8 · 106 1.9 · 109 365 MB 47 GB
42.9 · 106 3.8 · 109 720 MB 95 GB

the server uses Kw to decrypt and re-encrypt EDBcache as needed, using an IND-CPA-secure secret-key
encryption scheme EKw

. Once the Search query is processed, the server discards Kw; in particular it must
not be stored in EDB.

Unfortunately, encryption alone is not sufficient as the implementation of EDBcache could leak additional
information, such as the time of insertion/modification of data, or the size of previous, now discarded,
values. To this end, we rely on history-independent (HI) data structures [NT01] whose goal is to hide exactly
this kind of side-channel information. Note that if Σadd and Σdel are instantiated with existing forward-
secure schemes (SPS [SPS14], Σoφoς [Bos16], or Diana), history-independence is not an issue as the snapshot
adversary learns at most the update leakage, reduced to the list (opi) with opi = add if the i-th update was
an insertion, and opi = del otherwise. Though HI data structures come with an additional overhead, the
state-of-the-art constructions are practical [BS13].

The security of the above approach relies on cooperation from the server who is required to use encryption
and HI structures for EDBcache and erase Kw from memory once he finishes en/de-crypting EDBcache. Note
that snapshot attacks are essentially attacks against the server, more so than against the client: we are
protecting from the attacker information learned by the server.

Despite the assumptions we have just outlined, it is clear that storing the cache in encrypted form is a
vast improvement over storing this information in cleartext. It is also a cheap solution: symmetric encryption
is extremely fast on modern processors, especially in the presence of specialized instructions such as AES-NI.
Encrypting EDBcache would not significantly impact performance, relative to the decryption of punctured
encryption schemes, or running the two SSE schemes Σadd and Σdel.

Let us now consider Janus against late-persistent adversaries. In this case, we strive to obtain the following
backward privacy: even if a deleted entry matched a search query processed before the corruption, it should be
infeasible for the adversary to recover the associated document index. Symmetrically encrypting EDBcache,
as in the case of the snapshot adversary, is no longer sufficient as the encryption key Kw will eventually be
revealed. Instead, we require that the server encrypt results with the PE scheme, using the public key for
the newly generated secret key (line 4 in Algorithm 4).

7 Performance Evaluation
We implemented and evaluated some of the schemes presented in this paper. The PRF has been instantiated
with HMAC, and we chose Blake2b as the underlying hash function. For the GGM range-constrained PRF
F̃ , we used AES in counter mode for the pseudo-random generator G. The keyed hash function H used in
Diana is the AES block cipher used in Matyas-Meyer-Oseas mode [PGV94].

The code was written in C/C++, with many of the symmetric cryptography function implemented in
assembly, in particular using AES-NI for the AES-based primitives. The code is OpenSource and freely
accessible [Bos17].

We ran our experiments on a desktop computer with a single Intel Core i7 4790K 4.00GHz CPU (with
8 logical cores), 16GB of RAM, and a 250 GB Samsung 850 EVO SSD dedicated to the experiment. The
key-value store is implemented with RocksDB [Fac].

7.1 Performance of Diana

Our evaluation of Diana uses 4 different, synthetically generated, data sets, each of different size. A quick
summary of the statistics of the data sets, the size of the resulting encrypted databases, and the size of the

18

0.0001

0.001

0.01

0.1

10 100 1000 10000 100000 1× 106

Se
ar
ch

ti
m
e
pe

r
m
at
ch
in
g
en
tr
y
(m

s)

Number of matching documents

Diana – N = 1.9e7
Diana – N = 1.9e8

Diana – N = 1.9e9
Diana – N = 3.8e9

Σoφoς – N = 1.4e7
Σoφoς – N = 1.4e8

Figure 1 – Diana and Σoφoς search performance. log-log scale.

client stored tables W is given in Table 2.
The performance results of keyword searches are presented in Figure 1, together with the ones of Σoφoς

(taken from [Bos16]). The timings include only the server’s work, and focus on the core performance of the
scheme, i.e. we do not time the deserialization of the queries and serialization of the results, nor the RPC
infrastructure.

We observe an important performance discrepancy between the two smallest and two largest databases:
searching is up to 200 times slower on the larger ones. This is explained by the time difference when
retrieving data from different hierarchies of memory. The SE version of each of the two smaller datasets
fits entirely in RAM and the operating system is able to put a very large part of it in cache. This makes
the storage accesses very fast, even when SE was not optimized for locality. However, in general secure SE
schemes with reasonable storage overhead have bad storage locality: the entries to be accessed need to be
randomly scattered in the encrypted database (see [CT14] for a lower bound on locality). This issue can be
circumvented using specialized caching (cf. [MM17]), but this breaks forward security strictly speaking – it
is unclear what kind of attacks could arise because of this – and it only reduces the locality by a constant
factor.

It is also interesting to notice that, for small databases (i.e., the ones held in RAM), Diana is ten times
faster than Σoφoς on datasets of similar size. This is clearly due to the use of RSA in Σoφoς, while Diana
uses (hardware accelerated) AES as its cryptographic building block. On the other hand, for larger datasets,
Σoφoς would encounter similar IO bottleneck, and would perform (almost) as well as Diana on large inputs.
Hence, for large datasets IO costs outweigh the cost of cryptographic primitives, making the latter “almost
free”.

7.2 Performance of Janus

As Janus is a composition of any forward secure scheme and the adapted Green-Miers puncturable encryption
scheme, here we focus on the performance of this scheme once tweaked to reduce the storage overhead.

For the bilinear maps, we used a Type-3 pairing (cf. [GPS06]) on Barreto-Naehrig curves [BN06]. We
modified Miers’ implementation of the Green-Miers PE scheme of libforwardsec [Mie], which is itself

19

Table 3 – Performance of the puncturable encryption scheme used in Janus. Means are taken over 400
iterations.

Encrypt IncPuncture SK0Gen Decrypt (d punctures)
1.699 ms 1.386 ms 1.396 ms (d+ 1)× 2.345 ms

based on the RELIC pairing library [AG], to fit our usage.
We end up having 74-byte ciphertexts (for 8-byte indices), and 200-byte key shares. The computational

performance of the scheme is given in Table 3. SK0Gen is the procedure used to generate the first key share
sk0 of the punctured secret key from the number of punctures. Note that these are single-core timings.
While encryption, puncture and first key share generation are fast enough to yield a reasonably practical
scheme, decryption does not scale well as the number of punctures grows. In particular, Janus would not
support more than a few hundreds deletions per keyword in practice, for both computational and storage
overhead reasons.

Designing puncturable encryption with smaller keys or better computational efficiency is an open problem,
and Janus would immediately benefit from any improvement in this area.

Acknowledgments
The authors thank Olivier Sanders for interesting discussions on how to construct efficient multiple-puncturable
PRFs from standard assumptions, Britta Halle for updates on puncturable encryption, Ian Miers for making
his puncturable encryption code public, and anonymous reviewers for helpful comments. The second author
was supported by EPSRC Grant EP/L018543/1.

References
[AG] Aranha, D.F. and Gouvêa, C.P.L. RELIC is an Efficient LIbrary for Cryptography. https:

//github.com/relic-toolkit/relic.

[BB04] Boneh, D. and Boyen, X. Efficient selective-ID secure identity based encryption without random
oracles. In: C. Cachin and J. Camenisch (eds.), EUROCRYPT 2004, LNCS, vol. 3027, pp.
223–238. Springer, Heidelberg (May 2004).

[BGI14] Boyle, E., Goldwasser, S., and Ivan, I. Functional signatures and pseudorandom functions. In:
H. Krawczyk (ed.), PKC 2014, LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (Mar. 2014).

[BL96] Boneh, D. and Lipton, R.J. A revocable backup system. In: Proceedings of the 6th
USENIX Security Symposium, San Jose, CA, USA, July 22-25, 1996. USENIX Associa-
tion (1996). URL https://www.usenix.org/conference/6th-usenix-security-symposium/
revocable-backup-system.

[BN06] Barreto, P.S.L.M. and Naehrig, M. Pairing-friendly elliptic curves of prime order. In: B. Preneel
and S. Tavares (eds.), SAC 2005, LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (Aug.
2006).

[Bos16] Bost, R. Σoφoς: Forward secure searchable encryption. In: E.R. Weippl, S. Katzenbeisser,
C. Kruegel, A.C. Myers, and S. Halevi (eds.), ACM CCS 16, pp. 1143–1154. ACM Press (Oct.
2016).

[Bos17] Bost, R. Implementation of Σoφoς, Diana and Janus (2017). URL https://github.com/
OpenSSE/opensse-schemes.

[BS13] Bajaj, S. and Sion, R. HIFS: history independence for file systems. In: A.R. Sadeghi, V.D.
Gligor, and M. Yung (eds.), ACM CCS 13, pp. 1285–1296. ACM Press (Nov. 2013).

20

https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://www.usenix.org/conference/6th-usenix-security-symposium/revocable-backup-system
https://www.usenix.org/conference/6th-usenix-security-symposium/revocable-backup-system
https://github.com/OpenSSE/opensse-schemes
https://github.com/OpenSSE/opensse-schemes

[BW13] Boneh, D. and Waters, B. Constrained pseudorandom functions and their applications. In:
K. Sako and P. Sarkar (eds.), ASIACRYPT 2013, Part II, LNCS, vol. 8270, pp. 280–300. Springer,
Heidelberg (Dec. 2013).

[CC17] Canetti, R. and Chen, Y. Constraint-hiding constrained prfs for nc1 from lwe. In: EURO-
CRYPT 2017, LNCS. Springer, Heidelberg (2017).

[CGKO06] Curtmola, R., Garay, J.A., Kamara, S., and Ostrovsky, R. Searchable symmetric encryption:
improved definitions and efficient constructions. In: A. Juels, R.N. Wright, and S. Vimercati
(eds.), ACM CCS 06, pp. 79–88. ACM Press (Oct. / Nov. 2006).

[CGPR15] Cash, D., Grubbs, P., Perry, J., and Ristenpart, T. Leakage-abuse attacks against searchable
encryption. In: I. Ray, N. Li, and C. Kruegel: (eds.), ACM CCS 15, pp. 668–679. ACM Press
(Oct. 2015).

[CJJ+13] Cash, D., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.C., and Steiner, M. Highly-scalable
searchable symmetric encryption with support for Boolean queries. In: R. Canetti and J.A.
Garay (eds.), CRYPTO 2013, Part I, LNCS, vol. 8042, pp. 353–373. Springer, Heidelberg (Aug.
2013).

[CJJ+14] Cash, D., Jaeger, J., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.C., and Steiner, M. Dy-
namic searchable encryption in very-large databases: Data structures and implementation. In:
NDSS 2014. The Internet Society (Feb. 2014).

[CK10] Chase, M. and Kamara, S. Structured encryption and controlled disclosure. In: M. Abe (ed.),
ASIACRYPT 2010, LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg (Dec. 2010).

[CT14] Cash, D. and Tessaro, S. The locality of searchable symmetric encryption. In: P.Q. Nguyen
and E. Oswald (eds.), EUROCRYPT 2014, LNCS, vol. 8441, pp. 351–368. Springer, Heidelberg
(May 2014).

[Fac] Facebook, Inc. RocksDB: A Persistent Key-Value Store for Flash and RAM Storage. http:
//rocksdb.org.

[GGM84] Goldreich, O., Goldwasser, S., and Micali, S. How to construct random functions (extended
abstract). In: 25th FOCS, pp. 464–479. IEEE Computer Society Press (Oct. 1984).

[GM15] Green, M.D. and Miers, I. Forward secure asynchronous messaging from puncturable encryption.
In: 2015 IEEE Symposium on Security and Privacy, pp. 305–320. IEEE Computer Society Press
(May 2015).

[GMP16] Garg, S., Mohassel, P., and Papamanthou, C. TWORAM: Efficient oblivious RAM in two rounds
with applications to searchable encryption. In: M. Robshaw and J. Katz (eds.), CRYPTO 2016,
Part III, LNCS, vol. 9816, pp. 563–592. Springer, Heidelberg (Aug. 2016).

[GO96] Goldreich, O. and Ostrovsky, R. Software protection and simulation on oblivious RAMs. Journal
of the ACM (JACM), vol. 43(3):(1996), pp. 431–473.

[GPS06] Galbraith, S., Paterson, K., and Smart, N. Pairings for cryptographers. Cryptology ePrint
Archive, Report 2006/165 (2006). http://eprint.iacr.org/2006/165.

[HKW15] Hohenberger, S., Koppula, V., and Waters, B. Adaptively secure puncturable pseudorandom
functions in the standard model. In: T. Iwata and J.H. Cheon (eds.), ASIACRYPT 2015, Part I,
LNCS, vol. 9452, pp. 79–102. Springer, Heidelberg (Nov. / Dec. 2015).

[KM17] Kamara, S. and Moataz, T. Boolean searchable symmetric encryption with worst-case sub-linear.
In: EUROCRYPT 2017, LNCS. Springer, Heidelberg (2017).

21

http://rocksdb.org
http://rocksdb.org
http://eprint.iacr.org/2006/165

[KP13] Kamara, S. and Papamanthou, C. Parallel and dynamic searchable symmetric encryption. In:
A.R. Sadeghi (ed.), FC 2013, LNCS, vol. 7859, pp. 258–274. Springer, Heidelberg (Apr. 2013).

[KPR12] Kamara, S., Papamanthou, C., and Roeder, T. Dynamic searchable symmetric encryption. In:
T. Yu, G. Danezis, and V.D. Gligor (eds.), ACM CCS 12, pp. 965–976. ACM Press (Oct. 2012).

[KPTZ13] Kiayias, A., Papadopoulos, S., Triandopoulos, N., and Zacharias, T. Delegatable pseudorandom
functions and applications. In: A.R. Sadeghi, V.D. Gligor, and M. Yung (eds.), ACM CCS 13,
pp. 669–684. ACM Press (Nov. 2013).

[Mie] Miers, I. Libforwardsec. Forward secure encryption for asynchronous messaging. https://
github.com/imichaelmiers/libforwardsec.

[MKNK15] Meng, X., Kamara, S., Nissim, K., and Kollios, G. GRECS: Graph encryption for approximate
shortest distance queries. In: I. Ray, N. Li, and C. Kruegel: (eds.), ACM CCS 15, pp. 504–517.
ACM Press (Oct. 2015).

[MM17] Miers, I. and Mohassel, P. IO-DSSE: Scaling dynamic searchable encryption to millions of
indexes by improving locality. In: NDSS 2017. The Internet Society (2017).

[Nav15] Naveed, M. The fallacy of composition of oblivious RAM and searchable encryption. Cryptology
ePrint Archive, Report 2015/668 (2015). http://eprint.iacr.org/2015/668.

[NT01] Naor, M. and Teague, V. Anti-presistence: History independent data structures. In: 33rd ACM
STOC, pp. 492–501. ACM Press (Jul. 2001).

[OSW07] Ostrovsky, R., Sahai, A., and Waters, B. Attribute-based encryption with non-monotonic access
structures. In: P. Ning, S.D.C. di Vimercati, and P.F. Syverson (eds.), ACM CCS 07, pp.
195–203. ACM Press (Oct. 2007).

[PBP16] Poddar, R., Boelter, T., and Popa, R.A. Arx: A strongly encrypted database system. Cryptology
ePrint Archive, Report 2016/591 (2016). http://eprint.iacr.org/2016/591.

[PGV94] Preneel, B., Govaerts, R., and Vandewalle, J. Hash functions based on block ciphers: A syn-
thetic approach. In: D.R. Stinson (ed.), CRYPTO’93, LNCS, vol. 773, pp. 368–378. Springer,
Heidelberg (Aug. 1994).

[RAC16] Roche, D.S., Aviv, A.J., and Choi, S.G. A practical oblivious map data structure with secure
deletion and history independence. In: 2016 IEEE Symposium on Security and Privacy, pp.
178–197. IEEE Computer Society Press (May 2016).

[RCB12] Reardon, J., Capkun, S., and Basin, D. Data node encrypted file system: Efficient secure deletion
for flash memory. In: Presented as part of the 21st USENIX Security Symposium (USENIX
Security 12), pp. 333–348. USENIX, Bellevue, WA (2012). URL https://www.usenix.org/
conference/usenixsecurity12/technical-sessions/presentation/reardon.

[SPS14] Stefanov, E., Papamanthou, C., and Shi, E. Practical dynamic searchable encryption with small
leakage. In: NDSS 2014. The Internet Society (Feb. 2014).

[SWP00] Song, D.X., Wagner, D., and Perrig, A. Practical techniques for searches on encrypted data. In:
2000 IEEE Symposium on Security and Privacy, pp. 44–55. IEEE Computer Society Press (May
2000).

[ZKP16] Zhang, Y., Katz, J., and Papamanthou, C. All your queries are belong to us: The power of
file-injection attacks on searchable encryption. In: 25th USENIX Security Symposium, USENIX
Security 16, Austin, TX, USA, August 10-12, 2016., pp. 707–720 (2016).

22

https://github.com/imichaelmiers/libforwardsec
https://github.com/imichaelmiers/libforwardsec
http://eprint.iacr.org/2015/668
http://eprint.iacr.org/2016/591
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/reardon
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/reardon

A Proof of Theorem 2
Theorem 2 (Adaptive security of FS-RCPRF). Let F be a pseudo-random function, F̃ a constrained pseudo-
random function with respect to the circuit family C = {Cc|Cc(x) = 1⇔ 0 ≤ x ≤ c}, and H1 and H2 two hash
functions modeled as random oracles outputting respectively µ and λ bits. We define LFS = (LSrch

FS ,L
Updt
FS)

as:

LSrch
FS (w) = (sp(w),UpHist(w))

LUpdt
FS (add, w, ind) = ⊥.

FS-RCPRF is LFS-adaptively-secure.

Proof. The proof proceeds using a hybrid argument, by game hopping, starting from the real-world game
SSERealFS−RCPRFA (λ).

Game G0 This game is exactly the real world SSE security game SSEReal.

P[SSERealFS−RCPRFA (λ) = 1] = P[G0 = 1]

Game G1 In this game, we replace the calls to the PRF F by picking new random output every time a
previously unseen keyword is used. These strings are stored in a table to be reused every time F is again
queried on w. The adversarial distinguishing advantage between G0 and G1 is exactly the distinguishing
advantage for the PRF F : we can build a reduction B1 making at most W calls on F such that

P[G0 = 1]− P[G1 = 1] ≤ Advprf
F,B1

(λ).

Game G2 In G2, the update tokens UT are generated as random strings, instead of using H1. These
strings will then be programmed in the random oracle to ensure that H1(Kw, Tc(w)) = UTc(w).

Algorithm 5 formally describes G2, together with the intermediate game G̃2, by including the additional
boxed lines. The calls to the random oracle H1 are explicited, and the game keeps track of these using the
table H1. It allows us to program the RO during the Search algorithm (cf. line 6). Note that, for the table
Key, if an entry is accessed for the first time, a new random value is picked and placed in the table.

Also G2 and G̃2 make some bookkeeping of the tokens Tc. This bookkeeping allows to exactly program
H1 when it is queried by the adversary on a valid (K ′w, T

c
w) couple, at line 5.

Hence, H1’s behavior in G̃2 and G1 are perfectly indistinguishable, and:

P[G̃2 = 1] = P[G1 = 1].

To find the distinguishing advantage between G̃2 and G2, we use the identical-until-bad approach: G̃2

and G2 are identical until the flag bad is set to true:

P[G̃2 = 1]− P[G2 = 1] ≤ P[bad is set to true in G̃2].

We are going to show that when the adversary is able to set bad at true, she will break the CPRF security
game, by constructing a reduction B2 from a distinguisher A inserting N keyword/document pairs in the
database. B2 first guesses the pair (w∗, c∗) for which bad will be set to true for the first time, by querying H1

on (K ′w∗ , Tc∗) (i.e. by pre-computing UT[w∗, c∗]), among the N possible pairs. For all keyword w ∈W \{w∗},
B2 behaves exactly as game G̃2. Note that if w∗ has been correctly guessed, then it means that B2 behaves
exactly as game G2 for these keywords. For w∗, B2 will call its CPRF oracles to F̃ to generate the tokens
as follows:

Ti(w
∗)← Eval(Kw, i) for 0 ≤ i < c∗,

Ti(w
∗)← Challenge(Kw, i) for i ≥ c∗,

ST (w∗)← Constrain(Cnw∗).

23

Algorithm 5 Games G2 and G̃2 Boxed code is included in G̃2 only.
Setup()

1: bad← false
2: W,EDB← empty map
3: return (EDB,K,W)

Search(w, σ;EDB)

Client:
1: Kw||K ′w ← Key[w]
2: (T0, . . . , Tc, c)←W[w]
3: if (T0, . . . , Tc, c) = ⊥ then return ∅
4: [(u0, ind0), . . . , (uc, indc)]← UpHist(w)

. In the order of updates
5: for i = 0 to c do
6: H1(K ′w, Ti)← UT[w, i]
7: end for
8: ST ← F̃ .Constrain(Kw, Cc)
9: Send (K ′w, ST, c) to the server.

Server:
10: for i = c to 0 do
11: Ti ← F̃ (ST, i)
12: UTi ← H1(K ′w, Ti)
13: e← EDB[UTi]
14: ind← e⊕H2(K ′w, STi)
15: Output each ind
16: end for

Update(add, w, ind, σ;EDB)

Client:
1: Kw||K ′w ← Key[w]
2: (T0, . . . , Tc, c)←W[w]
3: if c = ⊥ then c← −1
4: T c+1

w ← F̃ (Kw, c+ 1)
5: W[w]← (T0, . . . , Tc, Tc+1, c+ 1)
6: UTc+1 ← {0, 1}λ
7: if H1(K ′w, Tc+1) 6= ⊥ then
8: bad← true, UTc+1 ← H1(K ′w, Tc+1)

9: end if
10: UT[w, c+ 1]← UTc+1

11: e← ind⊕H2(K ′w, T
c
w)

12: Send (UTc+1, e) to the server.
Server:

13: EDB[UTc+1]← e

H1(k, t)

1: v ← H1(k, t)
2: if v = ⊥ then
3: v

$← {0, 1}λ
4: if ∃w, c s.t k = Key[w] and t = Tc ∈ W[w]
then

5: bad← true, v ← UT[w, c]

6: end if
7: H1(k, st)← v
8: end if
9: return v

By closely looking at G2’s code, we see that bad is set to true only if H1 is queried on (K ′w∗ , Tc) for a value c
that has never been queried to Eval, and for which there is no Cc′ with c′ ≥ c on which Constrain has been
queried. It implies that all the queries to Challenge are valid, and that the value Tc∗ raising bad to true is
indistinguishable from random by definition of CPRF security. Also, if A makes q queries to the random
oracle (apart from the ones already needed by the execution of the game), as Tc∗ is uniformly random, the
probability H1 was called on (K ′w∗ , Tc) is q · 2−λ. Hence,

P[bad is set to true in by querying (K ′w∗ , Tc∗)] ≤

Advcprf

F̃ ,B2
(λ) +

q

2λ
,

and, as guessing the pair (w∗, c∗) implies a N loss in the advantage of the reduction from distinguishing G2

and G̃2 to the game of setting bad to true,

P[G1 = 1]− P[G2 = 1] = P[G̃2 = 1]− P[G2 = 1]

≤ N ·Advcprf

F̃ ,B2
(λ) +

Nq

2λ
.

24

Game G3 In game G3, we do exactly as in G2, but for H2:

P[G2 = 1]− P[G3 = 1] ≤ N ·Advcprf

F̃ ,B2
(λ) +

Nq

2λ
.

Algorithm 6 Game G4.
Setup()

1: u← 0
2: W,EDB← empty map
3: return (EDB, ∅,W)

Search(w, σ;EDB)

Client:
1: Kw||K ′w ← Key[w]
2: c←W[w]
3: [(u0, ind0), . . . , (uc, indc)]← UpHist(w)
4: if c = ⊥ then return ∅
5: for i = 0 to c do
6: Program H1 s.t. H1(Kw, F̃ (Kw, i))← UT[ui]

7: Program H2 s.t. H2(Kw, F̃ (Kw, i)) ← e[ui] ⊕
indi

8: end for
9: ST ← F̃ .Constrain(Kw, Cc)

10: Send (K ′w, ST, c) to the server.

Update(add, w, ind, σ;EDB)

Client:
1: UT[u]

$← {0, 1}µ

2: e[u]
$← {0, 1}λ

3: Send (UT[u], e[u]) to the server.
4: u← u+ 1

Game G4 Game G4, (cf. Algorithm 6) keeps track of the randomly generated string UT and e in dedicated
tables: each time an update is performed, new randomness is appended to the tables and then returned to
the server. Then, in Search, the random oracles are programmed as in G3, so to have consistent results. To do
so, G4 uses the information from UpHist(w) to know which update corresponds to which keyword-document
pair.

We got rid of the server’s part is the protocols as it is unchanged: these are single roundtrip protocols
and the removed lines do not influence the client’s transcript. Finally, we have

P[G3 = 1]− P[G4 = 1] = 0.

The Simulator The simulator can directly be derived from G4’s code. We just have to replace direct
uses of the searched keyword w by min sp(w). G4 and SSEIdealS,LΣ will then be identical games, the only
difference being that, instead of the keyword w, S uses the counter w = min sp(w) uniquely mapped from w
using the leakage function.

P[G4 = 1]− P[SSEIdealFS−RCPRFA,S,LFS
(λ) = 1] = 0.

Conclusion By combining all the contributions from all the games, there exists 2 adversaries B1 and B2

such that

P[SSERealFS−RCPRFA (λ) = 1]− P[SSEIdealFS−RCPRFA,S,LFS
(λ) = 1]

≤ Advprf
F,B1

(λ) + 2N ·Advcprf

F̃ ,B2
(λ) +

2Nq

2λ
.

25

B Proof of Janus (Theorem 3)
Theorem 3. If Σadd and Σdel are two LFS-adaptively-secure SSE schemes, PPKE is IND-PUN-CPA secure,
and F is a PRF, then Janus is LwBS-adaptively secure, with LwBS = (LSrch

wBS ,L
Updt
wBS) defined as

LSrch
wBS(w) = (sp(w),TimeDB(w),DelHist(w))

LUpdt
wBS(op, w, ind) = op.

.

Proof. Again, we proceed by game hops.

Game G0 This game is the real world SSE security game SSEReal.

P[SSERealJanusA (λ) = 1] = P[G0 = 1]

Game G1 In this game, we replace the calls to the PRF F with key KS (resp. Ktag) by picking new
random outputs every time a previously unseen keyword (resp. document-keyword pair) is used. These
strings are stored in a table to be reused every time F is again queried on w (resp. (w, ind)). Replacing F
with key KS this way induces a distinguishing advantage equal to the PRF distinguishing advantage for an
adversary making W calls to F . Doing the same for F with key Ktag induces a distinguishing advantage
equal to the PRF distinguishing advantage for an adversary making N calls to F . Hence, the adversarial
distinguishing advantage between G0 and G1 is exactly twice the distinguishing advantage for the PRF F :
we can build a reduction B1 making at most N calls on F such that

P[G0 = 1]− P[G1 = 1] ≤ 2 ·Advprf
F,B1

(λ).

Game G2 This game replaces real calls to Σadd and Σdel by calls to the simulators. Yet, to do so, the game
needs to keep track of all the updates as they come: it can no longer rely on the server to store them. So
G2 makes some bookkeeping during the updates, and postpones all encryptions and key punctures to the
subsequent Search query. We are able to do this only because both Σadd and Σdel are forward-secure: the
updates leak no information on their content.

G2 is precisely described in Algorithm 7. One very important thing is the way the lists Ladd and Ldel are
created and used. Ladd contains the encryption of the result indices for the search query, with their associated
tag, and the insertion timestamp u. Similarly Ldel is the list of key elements, associated tags and deletion
timestamp. As such, Ladd (resp. Ldel) corresponds to the update history on w for the scheme Σadd (resp.
Σdel), and is used as such by the simulator Sadd (resp. Sdel).

From this, we can easily bound the distinguishing advantage between G1 and G2. There exist two
polynomial type adversaries Badd and Bdel against Σadd and Σdel respectively, making at most N insertions,
and two associated simulators Sadd and Sdel such that

P[G1 = 1]− P[G2 = 1] ≤ Advsse,LFS

Σadd,Badd,Sadd
(λ) + Advsse,LFS

Σdel,Bdel,Sdel
(λ).

Game G3 Game G3 replaces the indices of the deleted documents by 0 when encrypting with the punc-
turable encryption scheme. Because we do this only for ciphertexts with punctured tags, the IND-PUN-CPA
security of PPKE tells us that G3 is indistinguishable from G4. There exist a reduction B3 such that

P[G2 = 1]− P[G3 = 1] ≤ Advpun−cpa
PPKE,B3

(λ).

26

Algorithm 7 Game G2.
Setup()

1: EDBadd ← Sadd.Setup(), EDBdel ← Sdel.Setup()
2: Tags, Tokens, Updates← empty map
3: u← 0, s← 0
4: SC,EDBcache ← empty map
5: return ((EDBadd,EDBdel,EDBcache),

(Tags, Tokens), (u, Updates,SC))

Search(K,w, σ;EDB)

Client :
1: i← SC[w].
2: if i = ⊥
3: return ∅
4: sk0 ← PPKE.KeyGen(1λ)
5: Ladd, Ldel initialized to empty lists.
6: for all (uj , op, indj) ∈ Updates[w] do
7: tj ← Tags[w, indj]
8: if op = add then
9: ctj ← PPKE.Encrypt(sk0, indj , tj)

10: Append (uj , (ctj , tj)) to Ladd
11: else
12: (sk0, skj)← PPKE.IncPuncture(sk0, tj)
13: Append (uj , (skj , tj)) to Ldel
14: end if
15: end for
16: Send sk0 to the server.
17: SC[w]← i+ 1.
18: Send tkn← Tokens[w] to the server.

Client & Server :
19: Run the simulator Sadd.Search(s, Ladd). The

server gets a list ((ct1, t
add
1), . . . , (ctn, t

add
n) of ci-

phertexts and tags.
20: Run the simulator Sdel.Search(s, Ldel). The server

gets a list ((sk1, t
del
1), . . . , (skm, t

del
m)) of key ele-

ments.
21: S decrypts the ciphertexts with SK =

(sk0, sk1, . . . , skm), and obtains the list
NewInd = ((ind1, t1), . . . , (ind`, t`)).
Server:

22: OldInd← EDBcache[tkn]
23: Remove from OldInd the indices whose tags are

in {tdelj }.
24: Res← OldInd ∪NewInd, EDBcache[tkn]← Res
25: return Res

Update(K, op, w, ind, σ;EDB)

1: Append (u, op, ind) to Updates[w]
2: Run Sop.Update(⊥)

Game G4 Game G4 (cf. Algorithm 9) explicitly uses the Updates table to compute the leakage information
TimeDB and DelHist. Then, it uses this information to construct the lists Ladd and Ldel that will be passed
to the simulator. Also, note that the tags, previous generated and stored from the document-keyword pair,
are now generated on the fly, and not stored anymore. We can do that because we supposed that every
document index was added a most once and deleted at most once. Tags cannot repeat and do not have to
be stored to ensure consistency.

27

Algorithm 8 Game G3. Only Search is modified from G2

Search(K,w, σ;EDB)

Proceed as in G2 until line 5
6: for all (uj , op, indj) ∈ Updates[w] do
7: tj ← Tags[w, indj]
8: if op = add then
9: if ∃u′ s.t. (u′, del, indj) ∈ Updates[w] then . This entry has been deleted.

10: ctj ← PPKE.Encrypt(sk0, 0, tj)
11: else
12: ctj ← PPKE.Encrypt(sk0, indj , tj)
13: end if
14: Append (uj , (ctj , tj)) to Ladd
15: else
16: (sk0, skj)← PPKE.IncPuncture(sk0, tj)
17: Append (uj , (skj , tj)) to Ldel
18: end if
19: end for

Proceed as in G2 from line 16

Algorithm 9 Game G4. Only Search is modified from G3

Search(K,w, σ;EDB)

Proceed as in G3 until line 0
6: TimeDB, DelHist initialized to empty lists.
7: for all (uj , add, indj) ∈ Updates[w] do
8: if ∃u′ s.t. (u′, del, indj) ∈ Updates[w] then . This entry has been deleted.
9: Append (uj , u

′) to DelHist

10: else
11: Append (uj , indj) to TimeDB

12: end if
13: end for
14: for all (uaddj , udelj) ∈ DelHist sorted by increasing udelj do
15: tj ← {0, 1}λ
16: ctj ← PPKE.Encrypt(sk0, 0, tj)
17: Append (uaddj , (ctj , tj)) to Ladd
18: (sk0, skj)← PPKE.IncPuncture(sk0, tj)
19: Append (udelj , (skj , tj)) to Ldel
20: end for
21: for all (uj , indj) ∈ TimeDB do
22: tj ← {0, 1}λ
23: ctj ← PPKE.Encrypt(sk0, indj , tj)
24: Append (uj , (ctj , tj)) to Ladd
25: end for

Proceed as in G3 from line 19

G4 is pure rewriting of G3, and
P[G3 = 1]− P[G4 = 1] = 0.

Simulator The last thing remaining to build a simulator for Janus from G4 is to replace the explicit use
of w to generate the token tkn. This can trivially be done using the search pattern sp(w): we replace w by
min sp(w). Also, S directly uses the leakage TimeDB(w) and DelHist(w) given as input of Search to generate

28

Ladd and Ldel, and thus no longer needs to keep track of the updates, as in G4 (the leakage function LwBS
does that for him). Finally,

P[G4 = 1]− P[SSEIdealJanusA,S,LwBS
(λ) = 1] = 0.

Conclusion By combining all the contributions from all the games, there exists 4 adversaries B1, Badd,
Bdel, and B3 such that

P[SSERealJanusA (λ) =1]− P[SSEIdealJanusA,S,LFS
(λ) = 1]

≤ Advprf
F,B1

(λ) + Advsse,LFS

Σadd,Badd,Sadd
(λ)

+ Advsse,LFS

Σdel,Bdel,Sdel
(λ) + Advpun−cpa

PPKE,B3
(λ).

C Full Description of the Green-Miers Encryption Scheme
Algorithm 10 gives the complete description of the Green-Miers puncturable encryption scheme. We refer
the reader to [GM15] for a complete explanation and proof of security of the scheme.

Algorithm 10 The Green-Miers puncturable encryption scheme, for message of m bits
KeyGen(1λ)

1: Choose a group G of prime order p and generator g, and the hash functions H : {0, 1}∗ → Zp,
H ′ : GT → {0, 1}m.

2: α, β, γ, r
$← Zp. g1 ← gα, g2 ← gβ .

3: Define q(x) = β + γ · x and V (x) = gq(x).
4: Let t0 be a distinguished tag, not to be used.
5: return PK = (g, g1, g2, g

q(1)), SK0 = [sk
(1)
0 = gα+r

2 , sk
(2)
0 = V (H(t0))r, sk

(3)
0 = gr, t0].

Encrypt(PK,M, t) (M ∈ {0, 1}m, t 6= t0)

1: s
$← Zp

2: return (ct(1) = M ⊕H ′ (e(g1, g2)s) , ct(2) = gs, ct(3) = V (H(t))s)

Puncture(SKi, t) (t 6= t0)

1: Parse SKi as [sk0, sk1, . . . , ski], and sk0 as (sk
(1)
0 , sk

(2)
0 , sk

(3)
0 , t0)

2: λ, r0, r1
$← Zp

3: Compute sk′0 ← (sk
(1)
0 · gr0−λ

′

2 , sk
(2)
0 · V (H(t0))r0 , sk

(3)
0 · gr0 , t0)

4: Compute ski+1 ← (·gλ
′+r1

2 , V (H(t))r1 , gr1 , t)
5: return [sk′0, sk1, . . . , ski, ski+1]

Decrypt(SKi, CT, t)

1: Parse CT as (ct(1), ct(2), ct(3)), SKi as [sk0, sk1, . . . , ski].
2: For j = 0, . . . , i, parse skj as (sk

(1)
j , sk

(2)
j , sk

(3)
j , tj)

3: Compute ωj , ω′j s.t. ω′j · q(H(tj)) + ωj · q(H(t)) = q(0) = β

4: Zj ←
e(sk

(1)
j ,ct(2))

e
(
sk

(3)
j ,(ct(3))ωj

)
·e
(
sk

(2)
j ,ct(2)

)ω′
j

5: return ct(1) ⊕H ′
(∏i

j=0 Zj

)
Also, Algorithm 11 presents the modifications we brought in order to be able to pseudo-randomly generate

all the parameters and exponents used in the algorithms. The function ParamGen(KGM
w) re-generates all

29

the parameters of the scheme from the master secret key KGM
w . IncPuncture(KGM

w , i, t) generates the key
share corresponding to the i-th puncture, on tag t. Finally, SK0Gen(KGM

w , i) computes the first key share
sk0 after i punctures. Note that Decrypt remains unchanged.

Algorithm 11 uses the PRF Fp : {0, 1}∗ → Zp with some prefix to ensure domain separation. This prefix
is prepended to the function’s input.

Algorithm 11 Our adaptation of Green-Miers scheme for pseudo-random generation of parameters and
randomness from a master secret key KGM

w . We suppose that the group G and the functions H and H ′ are
picked externally. Fp : {0, 1}∗ → Zp is a PRF.
ParamGen(KGM

w)

1: α← Fp(K
GM
w , alpha), β ← Fp(K

GM
w , beta), γ ← Fp(K

GM
w , gamma), r ← Fp(K

GM
w , r0||0).

2: g1 ← gα, g2 ← gβ .
3: return (α, β, γ, r, g1, g2).

Encrypt(KGM
w ,M, t) (M ∈ {0, 1}m, t 6= t0)

1: (α, β, γ, r, g1, g2)← ParamGen(KGM
w).

2: s
$← F (KGM

w , s||w||ind)
3: f ← gs, h← H(t)
4: return

(
ct(1) = M ⊕H ′

(
e(g1, f

β)
)
, ct(2) = f, ct(3) = fβ+h·γ)

IncPuncture(KGM
w , i, t)

1: (α, β, γ, r, g1, g2)← ParamGen(KGM
w).

2: h← H(t)
3: r1 ← Fp(K

GM
w , r1||i)

4: `i ← Fp(K
GM
w , l||i), `i−1 ← Fp(K

GM
w , l||(i− 1))

5: f ← gr1

6: return
(
gβ·(`i−`i−1+r1), fβ+h·γ , f, t

)
SK0Gen(KGM

w , i)

1: (α, β, γ, r, g1, g2)← ParamGen(KGM
w).

2: h0 ← H(t0)
3: if i = 0 then
4: f ← gr

5: return
(
gβ·(r+α), fβ+h0·γ , f

)
6: else
7: r0 ← Fp(K

GM
w , r0||i)

8: `i ← Fp(K
GM
w , l||i)

9: f ← gr0

10: return
(
gβ·(r0−`i), fβ+h0·γ , f

)
11: end if

D SSE Security Games
In this appendix, we recall the security games SSEReal and SSEIdeal used to define the security of SSE
schemes. The games are formally described in Algorithm 12

30

Algorithm 12 SSEReal and SSEIdeal security games. Boxes highlight the differences in the games.
SSErealΣ

A(λ, q)

1: DB← A()

2: (EDB, σ)← Setup(DB)

3: Transcript← (DB,EDB)
4: for k = 1 to q do
5: Qk = (typek, paramk)← A(Transcript)
6: if typek = Update then
7: Rk ← Update(σ, paramk;EDB)

8: else
9: Rk ← Search(σ, paramk;EDB)

10: end if
11: Append (Qk, Rk) to Transcript
12: end for
13: b← A(Transcript)
14: return b

SSEidealA,S,L(λ, q)

1: DB← A()

2: EDB← S(LStp(DB))

3: Transcript← (DB,EDB)
4: for k = 1 to q do
5: Qk = (typek, paramk)← A(Transcript)
6: if typek = Update then

7: Rk ← S(LUpdt(paramk))

8: else
9: Rk ← S(LSrch(paramk))

10: end if
11: Append (Qk, Rk) to Transcript
12: end for
13: b← A(Transcript)
14: return b

31

	Introduction
	Related Work
	Background
	Constrained Pseudorandom Functions
	Bilinear Maps
	Symmetric Searchable Encryption
	Leakage Functions

	Forward and Backward Privacy
	Forward Privacy
	Backward Privacy
	A Generic Two-Roundtrip Backward-Private Scheme
	Fides: A Baseline Forward and Backward Private SSE Scheme

	Diana: Forward-Secure SSE with Very Low Overhead
	FS-RCPRF: Forward-Secure SSE from Range Constrained PRFs
	Diana, a GGM instantiation of FS-RCPRF
	Dianadel: Backward-Secure SSE from Range-Constrained and Puncturable PRFs

	Janus: Weak Backward Security from Puncturable Encryption
	Puncturable Encryption
	Incremental Puncture
	The Janus Construction
	Reducing Storage Overhead
	Security of Janus Against Weaker Adversaries

	Performance Evaluation
	Performance of Diana
	Performance of Janus

	Proof of Theorem 2
	Proof of Janus (Theorem 3)
	Full Description of the Green-Miers Encryption Scheme
	SSE Security Games

