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Abstract

Outsourcing data to third-party services, most commonly public cloud providers, has become
a default practice by individuals and organizations alike. By using a cloud environment, users
can access their data at any time and from anywhere without having to invest in a private
infrastructure. However, as soon as data is inside a cloud provider the user loses all control.
The user becomes powerless to decide which security mechanics are used to prevent data
from being disclosed. Cryptographically protected databases address this issue by encrypting
data before it leaves the user’s control. Nonetheless, classical symmetric schemes cannot be
used without limiting the database functionality and performance. To circumvent this limitation,
existing systems leak some partial information to process simple key-value queries as well rich
relational queries over ciphertext. But this approach is exploitable as the information disclosed is
susceptible to statistical attacks that can be used to reconstruct sensitive plaintext values.

In this dissertation we focus on the challenges of storing sensitive data on untrusted third-
parties, processing database queries over encrypted data and exploring novel trade-offs between
privacy, performance and security. Within the spectrum of possible trade-offs our goal is to
propose novel systems that minimize the information disclosed and maximize the computation
outsourced. Our first contribution, SafeFS, is a new multi-layer user-space encrypted file system.
This solution stores the contents of a database system to a third-party service by intercepting
file system requests and processing data in a pipeline of configurable layers that can encrypt,
replicate and compress information. The following contribution, d’Artagnan, outsources data as
well as the database engine by decentralizing information across multiple cloud providers. With
this contribution, a single cloud breach and data disclosure does not impact the systems security.
Furthermore, this system can process any database query and scale horizontally to leverage the
cloud resources. Our third and final contribution, CODBS, presents a novel oblivious index scan
scheme to search optimized index data structures on relational databases. This construction
hides the access patterns disclosed by databases searches, preventing the adversary from
learning when database records are accessed, how many times a database record is accessed
and the size of a query result set. This construction has twice the throughput of state-of-the-art
constructions. All of our contributions are experimentally evaluated with standard database
benchmarks.
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Resumo

A metodologia atual das organizações que procuram tornar a sua informação constantemente
acessível é delegar o armazenamento e processamento para infraestruturas externas. Este
processo de externalização é tipicamente feito para ambientes na nuvem. Todos os dados
armazenados na nuvem são guardados em bases de dados que carecem de mecanismos de
segurança. Para além disso, assim que os dados se encontram na nuvem, o utilizador deixa de
ter controlo sobre os mesmos. Os dados podem ser copiados, divulgados ou propositadamente
extraviados por um agente malicioso. Para mitigar este problema foram propostos sistemas de
bases de dados criptográficos que cifram os dados antes de serem transmitidos para a nuvem.
Contudo, os esquemas clássicos de cifras simétricas não podem ser utilizados sem limitar a
funcionalidade e desempenho das bases de dados. Atualmente, a solução mais utilizada para
quebrar esta tensão entre desempenho, segurança e funcionalidade é libertar propositadamente
alguma informação parcial sobre os dados. Porem, a informação libertada é suscetível a ataques
de inferência estáticos capazes de reconstruir os dados originais.

Esta dissertação debruça-se sobre os desafios de processar questões sobre texto cifrado
e explora novos compromissos entre funcionalidade, segurança e desempenho. Dentro do
espectro possível de soluções, o nosso objetivo é propor novos sistemas que minimizam
a informação revelada durante o processamento de questões e maximizam a computação
delegada para a nuvem. A nossa primeira contribuição é SafeFS, um sistema de ficheiros com
múltiplas camadas dentro do espaço do usuário. Este sistema intercepta os pedidos ao sistema
de ficheiro e, dependendo da configuração, pode replicar, cifrar ou comprimir os dados antes
de serem reencaminhados para a nuvem. A segunda contribuição delega toda a computação
e armazenamento para serviços de terceiros. Nesta contribuição propomos d’Artagnan, um
sistema de base de dados NoSQL descentralizado que reparte os dados sensíveis em vários
segredos. Os segredos são dispersados por várias nuvens independentes, assegurando que
uma violação de segurança numa das infraestruturas não compromete a privacidade de todo
o sistema. Na última contribuição apresentamos um novo esquema criptográfico que permite
fazer pesquisas em base de dados relacionais sem revelar os padrões de acesso do sistema.
Mais concretamente a construção proposta protege os registos acedidos, a ordem e número
de acessos. O desempenho assimptótico e prático desta construção é duas vezes superior ao
estado da arte. Todos os sistemas propostos foram validados experimentalmente.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Global production of data and consumption of information has far exceeded the computational
resources of endpoint devices (e.g.: smart-phones, tables and laptops). Data is generated by a
multitude of different sources, including personal interactions and professional transactions which
have been digitalized and enhanced through email, messaging services and video conferencing.
This digitalization process has extended to almost every major human activity, from production
of resources, to retail and even the financial sector. It is expected that at 2025, 75 % of the
global population will interact with data every 18 seconds. Each of these interactions is likely to
increase the total amount of data available to 90ZB [RGR18]. The overlap of the real-world with
the digital world created the expectation of immediate and on-demand access to online products
and goods. This expectation, shared by the majority of users of online services, leads to an
increasingly interconnected world where messages are constantly transmitted. However, this
frenetic exchange of information cannot be sustained only by private consumer devices even
despite the most recent technological advancements.

To handle the ever-increasing demand for data and information online services rely on cloud
providers. In the cloud paradigm, physical computational resources such as data storage and
computation are made available as a utility through an abstract concept of virtual resources.
Individuals and organizations alike can allocate these resources at will without having to invest a
large capital to acquire hardware and software infrastructure. Additionally, there is no need to
pre-emptively plan how many resources need to be allocated as they can be seamlessly scaled.
Public clouds providers such as Amazon, Google and Microsoft have allured a large number of
clients by providing affordable storage and application hosting as well cloud-based products with
high-availability and high-performance [AFG+09].

One salient issue of the cloud paradigm is the implicit assumption that users have to relinquish
control over their data and entrust their privacy to the provider [CGJ+09]. As soon as data is
stored on the cloud there is no guarantee that the provider will not do an unsolicited back-up,
analyse the data or remove it on requested. This concern is further aggravated when the
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end-user of online services is unaware that their data is controlled by multiple entities that can
be compromised. In fact, several reports exposed malicious system administrators that use their
elevated privileges within an organization to disclose large quantities of data such as financial
or medical records [FW19]. Even simple mistakes as invalid configurations or displacement
of credential management can result in leaks of private sensitive information [Bri18, Gar19].
Besides the threat of internal administrators there are always malicious external attackers that
seek to exploit any security vulnerability in the cloud infrastructure to gain privileged access and
steal valuable information such as user accounts, passwords, emails and credit cards [Hau19].
Governments and national intelligence agencies are also interested in obtaining confidential
information and legally force technological companies to either explicitly disclose the user’s
information or install backdoors in their services [Gre14].

To protect the end user’s privacy, data must be encrypted at all times. New regulations
have been issued to shift control away from online services and back to the end users. A prime
example is the General Data Protection Regulation in the European Union which mandates
applications to explicitly state all of data they collect, how this data is used and stored [EUd18].
These regulations further incentivize applications to encrypt data as much as possible by
lowering the accountability of a company if only encrypted data is leaked. While there are
efficient cryptographic protocols that protect the user’s confidentiality by encrypting data in
transit, when messages are exchanged between users and applications, and at rest, when data
is persisted in long term storage, the same does not hold when data has to be processed. As
such, online services resort to database management systems with minimal privacy mechanisms
that store and process unencrypted data [FVY+17], often hosted in public cloud environments.

Classical database systems are optimized to search data efficiently and are not suited to
process encrypted data. The main goal of these systems is to provide a general purpose
datastore that processes queries efficiently [Sto10]. Data is always handled as plaintext and the
only existing security safeguards in place are identity and access management mechanisms.
However, these safeguards are not sufficient to protect the user’s confidentiality as any cloud
administrator can simply access the database storage directly. Even a single data dump could
be useful to malicious external attackers. Ideally, the data stored and used in a database should
be encrypted to provide better security guarantees. One possible naive approach is to encrypt
the database as a single file on the client side before storing it on a third-party service. This
approach does not require any modification to the database engine and the client only has to
manage its own private encryption keys. But clearly this solution limits the databases ability to
process queries. Database queries cannot be processed on the server side as the database
engine is not capable of inferring any information from the encrypted data. To process a query
the client would have to download the entire database, which is in most cases prohibitively slow,
i.e., any query is evaluated in linear time to the database size. Additionally, client’s endpoint
devices have limited computational power and storage capacity.
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More refined solutions have proposed to use searchable encryption schemes [BHJP14].
These schemes store data in index data structures that map encrypted keywords to documents.
The documents as well as queries are encrypted on a trusted site, the client, before being
uploaded to an untrusted third-party. Using cryptographic tokens generated by the client, the
server can search the index for a set of matching records and output the set of correct results.
The results can only be decrypted by the client which keeps a small state containing a secret key.
One appealing feature of searchable encryption schemes is the provable security approach used
to formally define the security guarantees, the trust model where the guarantees hold and even
what a malicious attacker is allowed to do and learn. However, any operation in a searchable
encryption index has an associated leakage that enables the server to evaluate queries. This
leakage may for instance disclose the number of results and the records that satisfy a query,
but never the plaintext value of a record. However, the information disclosed is still useful for a
malicious attacker to learn sensitive information. While these schemes can search encrypted
data in sub-linear time, the set of queries supported is restricted to simple key-based searches.

To expand the set of queries supported, Cryptographically Protected Databases (CPD)
have been proposed as a more general solution. Instead of using only searchable encryption
schemes, these systems use a specific scheme for each database operator [FVY+17]. To sort
or join data, property-preserving schemes such as order-preserving encryption can be used.
These encryptions schemes generate ciphertexts that maintain the total order of the plaintexts
and enable the database to compare values without decrypting them. Arithmetic operations,
such as multiplication and addition, can also be calculated over ciphertext by using partially
homomorphic encryption schemes. Similar to searchable encryption schemes, data is encrypted
on the client side before it is stored on the server and queries are also evaluated without any
client-side help. The main problem of this approach is the combination of multiple encryption
schemes often without considering their security models which enables malicious attackers to
gain access to several sources of information leakage. The combination of all of the leakages
results in disclosing more information than any individual protocol [NKW15].

1.1 Problem statement and objectives

New CPD systems need to supersede classical databases that lack the security mechanisms
to protect its data confidentiality in increasingly complex technological environments. Existing
solutions to address this security gap fall within a spectrum of possible approaches. The
spectrum ranges from systems that prioritize security over performance to systems that value
practical application and performance over security guarantees. At the security extreme of
the spectrum there are homomorphic encryption schemes capable of evaluating any arbitrary
function over encrypted text and ensure semantic security, i.e., an untrusted third-party does not
learn any information about plaintexts from encrypted data besides its size. However, existing
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constructions have a significant performance overhead and are not suitable for production
databases. As we move away from this extreme, we find cryptographic schemes with controlled
leakage that disclose partial information to obtain increasingly efficient solutions. At the middle
of the spectrum there are searchable encryption schemes that support a subset of database
operators with limited performance overhead and data leakage. Individually, a cryptographic
scheme is not sufficient to satisfy a full fledge database requirements, either due to performance
or functional limitations. By moving further into the opposite extreme, we have CPDs that use
multiple cryptographic schemes, often irreconcilable, to support a complete set of database
operations. At this extreme, there are systems such as CryptDB [PRZB11] that are capable
of supporting several relational queries with minimal performance overhead. However, these
solutions reveal some information about the encrypted data such as the equality, order and range
of values. As such, these systems should not be applied as general solutions and must carefully
consider the security model assumed. Even though leaking some information is unavoidable, we
aim to address the following research question in this dissertation:

Can we identify new practically-relevant intermediate trade-offs between security
and performance?

Our main goal in this dissertation is to explore novel trade-offs between performance and
privacy in the spectrum of cryptographic protected databases. We split these goal in in tree
parts. First, our objective is to design a modular encrypted file system that uses interchangeable
security layers. This solution is intended for the most risk adverse applications that need to
analyse data with expressive queries (e.g.: medical or financial applications). With this solution,
queries should be processed on the client-side, but the data should be stored remotely on a
third-party without requiring any database modification or downloading the entire database. Our
second objective is to create a secure database system that decentralizes confidential data by
dividing it in multiple secrets stored across multiple independent cloud providers. This approach
should process queries with minimal client-side processing and prevent a security exploit in a
single provider from compromising the entire system. The third and final objective is to take a
more intrusive, bottom-up approach to relational database systems to construct an optimized
secure index data structure. In this last objective we seek to optimize data structures in classical
databases while leaking minimal information.

1.2 Contributions

Our contributions can be framed in the general problem of secure computation and storage
outsourcing. In this setting, a client that wants to offload storage as well as computation to
an untrusted site. The client resides on a trusted site that is assumed to be secure but has
limited storage and computational resources. In contrast the untrusted site has virtually unlimited
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resources but is susceptible to malicious attacks. Considering this setting, the contributions of
this dissertation are the following.

Our first contribution keeps the computation on the client-side and is an encrypted remote
file system that is placed as a middleware between the database engine and the untrusted
party. A few similar solutions have been proposed in the literature, but existing systems are
monolithic and support a limited set of cryptographic schemes. We designed and implemented
SafeFS, a multi-layer encrypted file system optimized for private databases. Layers in SafeFS are
configurable and compose to provide the trade-off between security and performance fine-tuned
to an application requirements and workloads. The system has layers to encrypt, compress and
replicate data through multiple third-party infrastructure. New layers can be integrated to extend
the features of the file system through a plug-in system.

In our next contribution we propose a new system that moves some computation to the
server side with a decentralized approach. Whereas cryptographically protected database
systems rely on property-preserving schemes, we design a distributed database that leverages
Secure multiparty computation (SMPC) [Gol04]. Our contribution is d’Artagnan, a trusted NoSQL
database on untrusted clouds. In this solution, the untrusted site contains multiple independent
clouds each storing only a part of the sensitive information. Contrary to property-preserving
schemes, a single multiparty construction can be used to evaluate any query and the corruption
of a subset of parties does not compromise the entire system. Furthermore, the trusted site
does not need to process any part of the queries and only stores the credentials to the cloud
providers. However, our current implementation is limited to NoSQL systems and the set of
supported queries is restricted to key-value searches, including range queries.

Our third and final contribution tackles the challenge of supporting secure query processing
on relational database. One of the critical sources of leakages in existing systems are the access
patterns and the result size of queries evaluated on the server-side [IKK12]. To address these
sources of leakage we propose CODBS, a cryptographic scheme that builds oblivious searches
from the ground. Similar to searchable encryption schemes our scheme uses a secure index
data structure. However, instead of integrating a new data structure as a black box in a relational
database our construction is based on existing indexes optimized for relational queries. Our
scheme addresses the existing sources of leakage by using Oblivious Random Access Machine
(ORAM) schemes that hide the access patterns of remote accesses to an untrusted storage
device. We additionally use trusted hardware that provides a secure execution environment that
can evaluate our construction isolated from any external intrusion.

1.3 Results

The first two contributions of this dissertation, SafeFS and d’Artagnan, have been published
as scientific papers in peer-reviewed conferences. Our last contribution, CODBS, is in the
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submission process.

[PMPV16] SafeRegions: Performance Evaluation of Multi-party Protocols on HBase

R. Pontes, F. Maia, J. Paulo, R. Vilaça SRDS Workshop ’16

This paper presents an initial prototype of d’Artagnan in the setting of NoSQL databases
without any optimizations and support for only exact match queries. d’Artagnan extends
upon this work by adding support for range queries, decoupling the secure multiparty
protocols from the database architecture and with a system design that scales horizontally.

[PBM+17] SafeFS: A Modular Architecture for Secure User-Space File Systems: One
FUSE to Rule Them All

R. Pontes, D. Burihabwa, F. Maia, J. Paulo, V. Schiavoni, P. Felber, H. Mercier, R. Oliveira
SYSTOR ’17

This paper presents SafeFS, the design principles behind the system and the its architec-
ture. The main results of this publication are our encrypted file system and the validation
of the multi-layer approach with a practical experimental evaluation. The evaluation shows
that stacking multiple logical layers, to ensure privacy and provide high-availability, has
a minimal performance overhead over native file systems. This work was developed in
the context of SafeCloud 1, an European research project, and the resulting framework is
public available 2.

[PMVM19] d’Artagnan: A Trusted NoSQL Database on Untrusted Clouds

R. Pontes, F. Maia, R. Vilaça, N. Machado SRDS ’19

This paper presents d’Artagnan, the first privacy-aware multi-cloud NoSQL database frame-
work. The main result of this publication is a framework that decentralizes sensitive data
over multiple independent cloud providers, preventing a single breach from compromising
the entire system. This framework evaluates queries with optimized secure multiparty
protocols but is designed to support the integration of new protocols with different security
models. The framework was experimentally validated in private clusters as well as in public
clouds. This project was also developed in the context of the SafeCloud project and is also
publicly available 3.

Building oblivious search from the ground up

1https://www.safecloud-project.eu
2https://github.com/safecloud-project/safefs
3https://dbr-haslab.github.io/tools/dartagnan/
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R. Pontes, M. Barbosa, B. Portela, R. Vilaça (In Submission)

In this paper the authors propose CODBS, an oblivious search protocol for relational
databases. The main result of this paper is an ORAM-based cryptographic construction that
replaces classical index data structures used in relational databases. The resulting scheme
can search the database efficiently with minimal information leakage and has a better
asymptotic performance than state-of-the-art solutions. This performance improvement
is experimentally validated with the integration of the protocol on PostgreSQL, one of the
most widely used open-source databases. The results of this contributions are public
available 4.

Beside the core results of this dissertation, the author collaborated on additional novel
research on storage and database security. These collaborations resulted in conference publi-
cations that are not included in the main contributions of the dissertation but were nonetheless
instrumental in defining our research approach. Some of these publications report preliminary
work while others explore trade-offs in different database systems.

[BPF+16] On the Cost of Safe Storage for Public Clouds: An Experimental Evaluation

D. Burihabwa, R. Pontes, P. Felber, F. Maia, H. Mercier, R. Oliveira, V. Schiavoni, J. Paulo
SRDS ’16

This paper presents a testbed and an extensive evaluation of cryptographic schemes that
can be efficiently used to outsource sensitive data to the cloud. The evaluation considered
a single-cloud and a multi-cloud setting. This work was a first step towards SafeFS.

[PPB+17] Performance trade-offs on a secure multi-party relational database

R. Pontes, M. Pinto, M. Barbosa, R. Vilaça, M. Matos, R. Oliveira SAC ’17

In this paper, the idea of a multiparty database is explored in the setting of relational
databases. The main contribution of this paper is a performance optimization on the
protocols to lower the overall query bandwidth and improve query latency. This optimization
is integrated on the d’Artagnan framework.

[MPP+17] A Practical Framework for Privacy-Preserving NoSQL Databases

R. Macedo, J. Paulo, R. Pontes, B. Portela, T. Oliveira, M. Matos, R. Oliveira SRDS ’17

4https://github.com/rogerioacp/SOE
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This paper proposes a modular and extensible encrypted NoSQL data store that can use
multiple cryptographic schemes to store sensitive data and process queries. Whereas the
majority of existing research was focused on relational databases, this paper addresses
the challenges of designing a highly-scalable, high-performance cryptographic protected
NoSQL database.

[CCP+20] On the trade-offs of combining multiple secure processing primitives for data
analytics

H. Carvalho, D. Cruz, R. Pontes, J. Paulo DAIS ’20

This paper presents an initial prototype of a privacy-aware data analytical engine. This pro-
totype is used to quantitatively measure in an experimental evaluation which cryptographic
schemes, including trusted hardware, provide the best trade-offs between performance
and security in a data analytics setting that process mostly arithmetic and aggregation
queries.

1.4 Outline

The remainder of this dissertation is organized as follows:

• Chapter 2 defines the correctness and security model of the fundamental cryptographic
schemes relevant to this dissertation.

• Chapter 3 surveys the related work on encrypted file systems as well as CPD.

• Chapter 4 presents the first contribution of this dissertation SafeFS, a multi-layer file
system for CPD.

• Chapter 5 presents the design, implementation and system evaluation of d’Artagnan, the
second contribution of this dissertation on cryptographic protected databases.

• Chapter 6 presents CODBS, our third contribution, a novel cryptographic scheme for
oblivious searches as well as its practical evaluation.

• Chapter 7 concludes this dissertation by discussing the main contributions and presenting
a few interesting open research paths.
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Chapter 2

Preliminaries

The security of CPD is based on a set of fundamental cryptographic primitives. These building
blocks are independent cryptographic systems with precise security grantees proven within a
trust model that requires a thorough understanding to ensure their correct application. This
chapter provides an overview of the main primitives crucial to this thesis and the related work.

This chapter has the following structure: Section 2.1 provides the classical definition of
symmetric encryption and pseudo-random functions; Section 2.2 presents security definitions of
encryption schemes that can evaluate a limited set of functions over encrypted data by disclosing
some partial information; Section 2.3 describes cryptographic mechanisms capable of evaluating
any function over encrypted data, each one with a distinct execution and trust model.

2.1 Classic cryptographic primitives

2.1.1 Symmetric encryption

Symmetric encryption is a cryptographic scheme that provides confidentiality to two independent
parties in a symmetric setting. In this setting, parties are interconnected over an insecure
channel controlled by an eavesdropper. Parties can send and receive messages through the
channel but want to ensure the messages remain confidential and the eavesdropper does not
learn the messages contents. This can be accomplished with a symmetric encryption scheme,
assuming that both parties share a secret key sk that is never disclosed to the eavesdropper.
How the parties agree upon a common secret key is outside of the scope of the scheme. To
exchange message securely, a party uses a symmetric encryption scheme to encrypt a plaintext
message m and obtain a resulting ciphertext c. The ciphertext is sent over the network and
the receiving party executes the inverse process to decrypt c and obtain the original plaintext
message m.
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Oracle Encryptb(msg0, msg1)

if |msg0| 6= |msg1| do

return ?

return Enc(sk,msgb)

Figure 2.1: Game definition of symmetric encryption scheme security.

Definition 2.1.1 (Symmetric Encryption Scheme). A symmetric encryption scheme E = (KGen,Enc,Dec)

is defined by the following three Probabilistic Polynomial Time (PPT) algorithms:

KGen(1
�
)! sk: Probabilistic key generation algorithm that given as input the security parameter

1
�, outputs a new secret key sk sampled from a distribution underlying the scheme.

Enc(sk,m)! c: Probabilistic encryption algorithm that takes as input a secret key sk and a
plaintext message m 2 {0, 1}⇤. It outputs a ciphertext c 2 {0, 1}⇤.

Dec(sk, c)! m: Deterministic algorithm that takes as input a secret key sk and a ciphertext
c 2 {0, 1}⇤. The result of this algorithm is a decrypted plaintext message m 2 {0, 1}⇤.

A symmetric encryption scheme must satisfy a correctness property. This property ensures
that the decryption of a ciphertext with a legitimate secret key returns a valid plaintext message.
A scheme is said to be correct if for every secret key sk $KGen(1

�
) sampled from the key

generation algorithm and for every input message m, it holds that:

m = Dec(sk,Enc(sk,m))

The goal of a symmetric encryption scheme is to ensure message confidentiality. This
security guarantee is captured by the security game Indistinguishability under chosen-plaintext
attack (IND-CPA), defined in Figure 2.1. TheIND-CPA game consists of an adversary that
runs in one of two distinct experiments. The adversary A is an algorithm that does not have
access to the experiment internal actions and can only interact with the experiment through
an oracle Encryptb. The oracle is a block box function that given as input a tuple of plaintext
messages (msg0,msg1), it chooses a single message to encrypt and outputs a ciphertext. In
the experiment IND-CPA

0

E,A, the oracle always encrypts the first message msg0. In experiment
IND-CPA

1

E,A the choice is reversed. The game is initialized by sampling a random bit b $ {0, 1}

that determines the oracle choice without the adversary knowledge. Additionally, a secret key sk

is sampled by the experiment and is made available to the oracle but it is never accessible to the
adversary. After the initialization the choice of which message is encrypted never changes. The
adversary proceeds by requesting a polynomial number of messages. After each message it
can dynamically adjust its attack strategy based on the oracle output. In the end, the adversary
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guesses which one of the experiments it was playing against by outputting a bit b0. The adversary
wins the game if the guess is correct (b=b’).

Definition 2.1.2 (IND-CPA security). Let E = (KGen,Enc,Dec) be a symmetric encryption
scheme and A a PPT adversary with access to oracle Encryptb. The IND-CPA advantage of A
is defined as follows:

Adv
IND-CPA

E,A (�) = Pr
⇥
IND-CPA

0

E,A(1
�
) = 1

⇤
� Pr

⇥
IND-CPA

1

E,A(1
�
) = 1

⇤

An encryption scheme E is IND-CPA secure if for all efficient adversaries A and the
negligible function negl(�), the adversary advantage is

Adv
IND-CPA

E,A (�) < negl(�)

Definition 2.1.2 measures the adversaries’s change of behavior from one experiment to the
other.

2.1.2 Pseudorandom functions

A Pseudorandom Function (PRF) is a fundamental building block of cryptographic protocols. By
itself a PRF does not ensure confidentiality but is used to analyse the security guarantees of
more intricate protocols, such as key derivation, symmetric encryption schemes and message
authentication. The prevailing approach in the provable-security paradigm is to analyse the
security properties of a cryptographic system assuming the existence of a truly random function,
i.e., a function chosen at random from a family of functions. Afterwards, the goal is to replace the
random function with a function sampled from a family of functions that maintains similar security
guarantees. The last step is possible using a PRF, a family of keyed function F : K ⇥D ! R

where K = {0, 1}k is the set of all keys with size k, D = {0, 1}l is the set of all possible l-bit
strings messages and R = {0, 1}L is the set of all possible output L-bit strings.

For a family of functions to be considered pseudorandom it has to satisfy two properties,
efficient computation and security. A function can be efficiently computed if there is a polynomial
algorithm that given as input a sk 2 K and a message m 2 D it computes F (sk,m). A PRF is
secure if it’s indistinguishable from a random function. Intuitively, an adversary has access to a
black-box that can not be inspected but can be queried. Given an input message the box outputs
a random element, independent of any point in the function range. The only constraint is if the
same input is provided multiple times than the same output must be returned. The adversary
should not be able to discern if the output values are computed by a PRF or a random function.
Formally, this definition is captured by a security game defined in Figure 2.2.

The security game considers an adversary that plays one of two possible experiments.
Similar to the symmetric setting, the experiment is fixed by a random coin flip b  {0, 1} not
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Experiment PRF0
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Figure 2.2: Game definition of pseudorandom function security.

disclosed to the adversary. Additionally, the adversary can query an oracle with a polynomial
number of messages m 2 D and receives an output o 2 R for each query. However, in
experiment PRF0

F,A the oracle computes the query result with a random instance of the F family
by sampling a key sk from a key generation algorithm KGen. The key is never disclosed to the
adversary and the oracle access is denoted as AFsk . In experiment PRF1

F,A the oracle uses
a random function g sampled from FUNC(D, R), the family of all functions from D to R. The
oracle access is denoted as A

g. Eventually, the adversary outputs a bit b that determines its
guess on which experiment was executed.

Definition 2.1.3 (PRF Security). Let F be a pseudorandom function, g a random function and
A a PPT adversary. The PRF advantage of A is defined as follows:

Adv
PRF

F,A (�) = Pr
⇥
PRF

0

F ,A(1
�
) = 1

⇤
� Pr

⇥
PRF

1

F ,A(1
�
) = 1

⇤

A PRF is said to be secure if for all efficient adversaries A and the negligible function
negl(�), the adversary advantage is

Adv
PRF

F,A (�) < negl(�)

2.2 Symmetric property-preserving encryption schemes

2.2.1 Deterministic encryption

A Deterministic Encryption Scheme (DET) is used to enable efficient, confidential searches in a
two-party setting. In this setting, a storage party has an encrypted database of documents where
each document is indexed with a unique tag. A client party wants to search for a exact match of
a document indexed by a specific keyword from the storage party. However, the search has to
be made in constant-time and the storage party cannot learn the contents of the keyword sent
by the client party. Deterministic encryption schemes solve this problem by always outputting
the same ciphertext for every encryption of a given plaintext message and secret key. Using
this scheme, documents tag as well as keyword in client queries are encrypted under the same
secret key. It is assumed the secret key is never disclosed to the storage party. If this assumption
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return ?
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Figure 2.3: Game definition of deterministic encryption scheme security. This game is similar to the
IND-CPA, but in this experiment the encryption scheme E is deterministic. Furthermore, the adversary
must send sequences of not repeatable messages.

holds, then the client sends a ciphertext to the storage party which only has to search for the
document indexed by a tag equal to the client’s ciphertext.

More precisely, a symmetric encryption scheme E = (KGen,Enc,Dec) is a deterministic
encryption scheme if the encryption algorithm Enc(sk, ·) is a deterministic function for all keys
sampled by the key generation algorithm sk $KGen(1

�
). A function f : D ! R is a determinis-

tic function if 8i, j,2 D, f(i) == f(j)$ i = j. A deterministic encryption scheme must also
satisfy the correctness property of a symmetric encryption scheme.

Security is defined by the security game Indistinguishability under distinct chosen-plaintext
attack (IND-DCPA) [BKN04] defined in Figure 2.3. Similar to the IND-CPA game, the adversary
interacts with an oracle that hides the computation of the encryption scheme. But in IND-DCPA
the oracle uses a deterministic encryption scheme to encrypt one of two input messages.
Furthermore, the adversary has its powers limited and can only query the oracle with non
repeatable messages. More precisely, a sequence of queries with size N sent to the oracle
(m1

0
,m1

1
), . . . , (mN

0
,mN

1
) by the adversary A must have equal length |m0| = |m1| messages

and satisfy the following message uniqueness property:

8i, j, 0  i, j  N, mi

0 6= mj

0
^mi

1 6= mj

1

Definition 2.2.1 (IND-DCPA Security). Let E = (KGen,Enc,Dec) be a deterministic encryption
scheme and A a PPT adversary with access to oracle Encryptb. The IND-DCPA advantage of
A is defined as follows:

Adv
IND-DCPA

E,A (�) = Pr
⇥
IND-DCPA

0

E,A(1
�
) = 1

⇤
� Pr

⇥
IND-DCPA

1

E,A(1
�
) = 1

⇤

An encryption scheme E is IND �DCPA secure if for all efficient adversaries A and the
negligible function negl(�), the adversary advantage is

Adv
IND-DCPA

E,A (�) < negl(�)
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2.2.2 Order-preserving encryption

An Order Preserving Encryption (OPE) scheme considers a two-party setting similar to determin-
istic encryption schemes. However, the client party wants to search for a range of documents
instead of a single exact document. Furthermore, the encryption scheme must also enable
efficient searches in the storage party. Efficiency in this context is defined in logarithmic time, or
sub-linear at least, in proportion to the number of stored documents. While neither deterministic
or classic symmetric encryption schemes can satisfy these requirements, order-preserving
encryption schemes address this issue by preserving the numerical order of the plaintext space
in encrypted ciphertexts [Bol09].

The formal definition of an order-preserving scheme is related to the definition of an order-
preserving function. For a numerical domain A and a numerical range B, such that A,B 2 N and
|A|  |B| a function f : A! B is said to be order-preserving if 8i, j, f(i) > f(j)$ i > j. A
symmetric encryption scheme E = (KGen,Enc,Dec) is an order-preserving encryption scheme if
the encryption algorithm Enc(sk, ·) is an order-preserving function for all secret keys sk sampled
by the key generation algorithm sk $KGen. Order-preserving schemes are also correct in the
sense of symmetric encryption schemes.

An order-preserving encryption scheme can not be considered secure in standard security
notions, such as IND-CPA or IND-DCPA, as the order between plaintexts is leaked. Instead, we
present the security definition proposed by Boldyreva et al. [Bol09] for stateless order-preserving
schemes. This security definition is more closely related to the security definitions of PRF,
where an adversary has to distinguish between a real execution of an encryption scheme and an
idealized order-preserving function. However, the security definition is slightly more powerful
than the PRF definition, as the adversary has access to either the decryption algorithm or an
inverse function of the order-preserving function. This definition is captured by the security game
Pseudorandom order-preserving function against chosen-ciphertext attack (POPF-CCA) defined
in Figure 2.4.

The security game of POPF-CCA consists on an adversary A that interacts with one of two
experiments. The game starts by flipping a coin b $ {0, 1} that fixes one of the experiments.
In experiment POPF-CCA

0

E,A, the experiment starts by sampling a secret key sk using a key
generation algorithm KGen from the order preserving encryption scheme E . Afterwards, the
adversary can send a polynomial number of queries to either an encryption oracle Encsk or a
decryption oracle Decsk. The encryption oracle encrypts plaintext messages with the secret
key sk and outputs ciphertext messages; The decryption oracle does the reverse process. In
experiment POPF-CCA

1

E,A, the experiment does not sample a secret key but instead samples
a pair of ideal order-preserving functions g, g�1 from the set of all order-preserving functions
OPF(D, E) with domain D and range E . The functions are exposed to the adversary as oracles
A

g and A
g
�1

that can be queried similarly to the previous experiment. At the end of the game
the adversary outputs its guess on which experiment was fixed as a bit b0.
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Experiment POPF-CCA
0

E,A(1
�
)

sk $KGen(1
�
)

b $A
Encsk,Decsk

return b

Experiment POPF-CCA
1

E,A(1
�
)

g, g�1
 $OPF(A,B)

b $A
g,g�1

return b

Figure 2.4: Game definition of order-preserving encryption scheme security.

Definition 2.2.2 (POPF-CCA Security). Let E = (KGen,Enc,Dec) be a symmetric order-
preserving encryption scheme and A a PPT adversary. The POPF-CCA advantage of A is
defined as follows:

Adv
POPF-CCA

E,A (�) = Pr
⇥
POPF-CCA

0

E,A(1
�
) = 1

⇤
� Pr

⇥
POPF-CCA

1

E,A(1
�
) = 1

⇤

An encryption scheme E is POPF-CCA secure if for all efficient adversaries A and the
negligible function negl(�), the adversary advantage is

Adv
POPF-CCA

E,A (�) < negl(�)

2.2.3 Searchable encryption

Symmetric searchable encryption (SSE) schemes consider a trusted client that wants to out-
source a private database of documents to an untrusted server without limiting its ability to query
the data. Additionally, the untrusted server should not be able to infer the contents of the stored
data or the queries issued. This problem closely resembles the issue addressed by DET and
OPE schemes but SSE focus on defining encrypted indexes and search algorithms instead of
proposing only algorithms for encryption and decryption. An SSE scheme creates specialized
indexes that map keywords to documents. All of the contents of the index are encrypted and
can be stored on the server side. The client can retrieve a subset of documents by sending a
query to the server. However, the server can only correctly scan the index if the client generates
trapdoors that disclose some information about the query and the documents.

There are two possible approaches to build the secure index: i. ) a static secure index
that cannot be updated once initialized. ii. ) a dynamic secure index that supports inserts and
deletions of documents and can be queried at any moment. An index may also support different
types of queries, either single keyword search or multi-keyword boolean queries. We present a
formal definition based on Bost et al. [BMO17] that captures the most general case of a dynamic
searchable encryption scheme that supports multi-keyword boolean queries.

A plaintext searchable encryption database DB is defined as DB = {(indi,Wi) : 1  i  D}

where D = |DB| is the number of documents in the database. Each document is indexed by
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a pair of document indices indi 2 {0, 1}l, represented by l-bit strings, and a set of keywords
Wi in the document indi. Each keyword is a binary string of variable length. Each document is
identified by its indice and an actual document is abstracted as an arbitrary bitstring. A database
query is a boolean predicate composed by multiple keywords denoted by ⌧ . A database search
DB(⌧) returns the set of documents satisfying the query DB(⌧) = {indi : ⌧(Wi) = 1}.

Definition 2.2.3 (Searchable Symmetric Encryption Scheme). A searchable symmetric encryp-
tion scheme SE = (Setup, Search,Update) is defined by the following three PPT algorithms:

Setup(DB)! (EDB, sk,↵): Probabilistic algorithm that takes as input a plaintext database DB.
It outputs an encrypted database EDB, a secret key sk and a client internal state ↵.

Search(sk,↵, ⌧,EDB)! (Iw,EDB
0
): Search protocol between the client and the untrusted

server. The client takes as input a secret key sk, its internal state ↵ and a database
query ⌧ . The untrusted server takes as input the encrypted database EDB. The protocol
returns a list of document identifiers Iw and an updated encrypted database EDB

0.

Update(sk,↵, op, in,EDB)! EDB
0: Update protocol between the client and the untrusted

server. The client takes as input a secret key sk, its internal state ↵, an operation
op and an input in. The operation is either the insertion of a new document or the removal
of an existing one op 2 {Add,Delete}. The input contains a document index ind and a
set of indexed keywords W . The server takes as input an encrypted database EDB. The
protocol output is an updated encrypted database EDB

0.

The execution of a searchable encryption scheme starts with the client initializing its internal
state and outsourcing the plaintext database to the untrusted server with the Setup algorithm.
Afterwards, the client can either search for a subset of documents or update the encrypted
database at will. A SSE is correct if for every client query ⌧ and for every database DB the
following condition holds true

Search(sk,↵, ⌧,EDB) = DB(⌧)

and the secret key sk, encrypted database EDB and client internal state ↵ are initialized by
the Setup protocol.

A secure SSE scheme minimizes the information disclosed by client queries, but there is an
explicit assumption that some information is leaked. A leakage free construction can be obtained
albeit at a significant performance cost. The security of a SSE scheme is captured in real-world
versus ideal-world game. The security game includes leakage functions that precisely define
the information disclosed by to the server. Intuitively, an adversary has to distinguish between a
real-world and the ideal-world. In both worlds, the adversary can activate the client functions at
will and learn the information disclosed by each operation.
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Experiment REAL
E
A(1

�, q)

DB A()

(EDB, sk,↵) Setup(DB)

Transcript (DB,EDB)

for k = 1..q do

Qk = (typek, paramk) A(Transcript)

if typek = Update

Rk  Update(sk,↵, paramk,EDB)

else

Rk  Search(sk,↵, paramk,EDB)

Append (Qk, Rk) to Transcript

b A(Transcript)

return b

Experiment IDEAL
E
A,S,L(1

�, q)

DB A()

(EDB, sk,↵) S(LSetup
(DB))

Transcript (DB,EDB)

for k = 1..q do

Qk = (typek, paramk) A(Transcript)

if typek = Update

Rk  S(LUpdate
(paramk))

else

Rk  S(LSearch
(paramk))

Append (Qk, Rk) to Transcript

b A(Transcript)

return b

Figure 2.5: Game definition of SSE security.

Formally, the security game is defined by the real world experiment REAL
E
A and the ideal

world experiment IDEAL
E
A,S,L where the adversary is denoted by A and there is a simulator

denoted by S. The adversary has complete control of the query inputs and can observe the
entire history of requests between the client and the server. Additionally, the adversary can also
observe the server’s internal state such as memory contents, access as well as the storage
I/O. In the real world, the adversary observes an honest execution of the SSE scheme. In the
ideal world, the experiment is parameterized by leakage functions L = (LSetup, LSearch, LUpdate)
which correspond to the real world protocols, Setup, Search and Update. In this world, the
transcript of message is generated by the simulator S which is a PPT algorithm. The inputs to
the simulator are the result of the respective leakage function when provided the client input,
e.g.: S(LSetup

(DB)). In both worlds, the adversary can adapt its attack strategy according to
the results of previous queries. After a polynomial number of queries the adversary outputs a
guessing bit b. If the adversary cannot distinguish between both worlds, then the SSE scheme is
secure. The formal definitions of the experiments are defined in Figure 2.6.

Definition 2.2.4 (Adaptive security of SSE schemes). A symmetric searchable encryption
scheme SE = (Setup, Search,Update) is L-adaptive-secure if for every PPT adversary A that
issues a polynomial number of queries q(�) there exists a PPT simulator S such that

��Pr
⇥
REAL

E
A(�, q) = 1

⇤
� Pr

⇥
IDEAL

E
A,S,L(�, q) = 1

⇤ �� = negl(�)
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2.3 Secure function evaluation

2.3.1 Homomorphic encryption

Homomorphic encryption schemes enable the computation of functions on encrypted data
without access to the secret key. We consider a setting where a trusted party outsources some
computation to an untrusted party. The trusted party can send inputs to the untrusted party,
which evaluates the outsourced computation. However, the trusted party wants to ensure that
no information regarding the input values, the computation result or any intermediate result is
disclosed to the untrusted party. There are two solutions that fall within the class of homomorphic
encryption, partial homomorphic encryption schemes and fully homomorphic schemes. The
first class of encryption schemes only supports the computation of a subset of functions [Pai99]
while the latter can evaluate any function. We use the standard definition of fully homomorphic
computation proposed by Gentry [Gen09] where functions are defined as arithmetic circuits.
This definition considers a public-key setting with a trusted party that generates a pair of keys, a
secret key and a public key. The trusted party shares with the untrusted party the public key, a
circuit and inputs encrypted with the private key. The untrusted party can evaluate the circuit
with the encrypted circuit using the public key and obtains an encrypted result. The scheme is
secure as long as the secret key is never disclosed to the untrusted party.

Definition 2.3.1 (Homomorphic Encryption Scheme). An asymmetric fully homomorphic en-
cryption scheme E = (KGen,Enc,Dec,Evaluate) is defined by the following four PPT algorithms:

KGen(1
�
)! (sk, pk): Probabilistic key generation algorithm that given as input the security

parameter 1� outputs a new secret key sk and a public key pk. The public key defines the
plaintext space P and ciphertext space C.

Enc(sk,m)! c: Probabilistic encryption algorithm that takes as input a secret key sk and a
plaintext message m 2 P . It outputs a ciphertext c 2 C.

Dec(sk, c)! m: Deterministic algorithm that takes as input a secret key sk and a ciphertext
c 2 C. The result of this algorithm is a decrypted plaintext message m 2 P .

Evaluate(pk, C, �)! c: Probabilistic algorithm that takes as input a public key pk, a circuit
C 2 CE and a tuple of L ciphertext � = hc1, . . . , cLi. The evaluation of the circuit results in
a ciphertext c 2 C.

For an encryption scheme to be fully homomorphic it must ensure three properties: cor-
rectness, compact evaluation and security. Informally, a correct c Evaluate(pk, C, �) function
returns the encryption of evaluating a circuit C with some plaintext inputs, i.e., c  Enc(sk,
C(h(m1, . . . ,mLi). However, this property alone is not sufficient to exclude trivial schemes that
may simply compute the circuit in the Dec algorithm instead of the Evaluate algorithm. As such,
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Encrypt0(1
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Experiment IND-CPA
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�
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�
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return A
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Oracle Encryptb(msg0, msg1)

if |msg0| 6= |msg1| do

return ?

return Enc(sk,msgb)

Figure 2.6: Game definition of public key homomorphic encryption security.

a fully homomorphic scheme must have a compact evaluation, meaning that the Dec algorithm is
upper-bounded to a polynomial size that depends on the security parameter. We formally define
these properties as follows:

Definition 2.3.2 (Correctness). A homomorphic encryption scheme E is correct for any circuit
c 2 CE , for any pair of keys generated by the key generation algorithm (sk, pk) $KGen(1

�
), for

any L�tuple of plaintexts hm1, . . . ,mLi where mi 2 P and any ciphertexts hc1, . . . , cLi such
that ci  Enc(sk,mi),

c Eval(pk, C, hc1, . . . , cLi) =) Dec(sk, c) = C(hm1, . . . ,mLi)

Definition 2.3.3 (Compact Homomorphic Encryption). A homomorphic encryption scheme E is
compact if for every security parameter 1�, the decryption algorithm Dec can be expressed as a
circuit DE upper-bounded by the polynomial function f(1�).

Definition 2.3.4 (Fully homomorphic encryption). A homomorphic encryption scheme is fully
homomorphic if its correct and compact for every circuit c 2 CE .

The security of homomorphic encryption schemes is defined by a Indistinguishability under
chosen-plaintext attack (IND-CPA) in a public-key setting, defined in Figure 2.6. This game is
mostly similar to the symmetric indistinguishability game but has two main differences. First,
the experiments samples a pair of private and public keys, and shares the public key with the
adversary. Secondly, with access to the public key the adversary can run the Evaluate algorithm
at will, for any circuit and sequence of ciphertexts. Besides these two changes the adversary still
has access to an oracle that hides the encryption of plaintexts messages and it has to distinguish
between the execution of two experiments.

Definition 2.3.5 (Homomorphic Encryption Security). A public-key homomorphic encryption
scheme E = (KGen,Enc,Dec,Evaluate) is IND-CPA secure if for all efficient adversaries A and
the negligible function negl(�), the adversary advantage is

Adv
IND-CPA

E,A (�) < negl(�)
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2.3.2 Secure multiparty protocols

Secure multiparty computation (SMPC) considers a setting of multiple independent parties that
want to compute an agreed function. Each party is willing to provide a private input to the
computation, but they do not want to disclose their input to other parties. This privacy condition
must hold even in the presence of malicious parties that may try to learn the private inputs.
Furthermore, honest parties also want the computation output to be correct. A trivial solution to
this problem is rely on a trusted third-party and use secure channels to send the inputs. The
trusted third-party computes the agreed function and broadcasts the correct result. However,
assuming the existence of a trusted third-party is not always feasible. As such, SMPC protocols
address this problem without using a trusted third-party and remains secure even if there is a
subset of corrupted parties.

SMPC is defined by a set of N parties P = {P1, P2, . . . , PN}, a vector of private inputs
{x1, . . . , xN}, a function f and a distributed protocol ⇡. Each party Pi holds a single private
input xi and wants to compute the function f(x1, . . . , xN ) = (y1, . . . , yN ) such that each party
Pi learns yi, but nothing else. The protocol ⇡ is a distributed computation that describes the
steps each party takes to globally evaluate f and securely obtain its results. Protocols with more
than two parties are usually generated by compiling a function f into either a boolean circuit or
an arithmetic circuit which is evaluated at run-time by the parties. A circuit consists of multiple
gates that are evaluated either with local steps or distributed computations. Regardless of the
gate, the information processed by the circuit is always encrypted and only the function result is
disclosed to the parties.

Security. The security of SMPC is analysed in a real world versus ideal world. Intuitively,
the ideal world that captures the highest level of security and functionality by executing the
computation in an trusted third-party. In the real world the trusted party does not exist and the
desired functionality is computed by a distributed protocol ⇡. A protocol ⇡ is said to be secure if
an adversary cannot distinguish between the execution of both worlds. In more detail, we present
a security definition of multi-party protocols in a semi-honest model [CD05, EKR18, Gol04]. The
number of parties in the model is fixed and does not change between its execution. An adversary
can corrupt a subset I ⇢ P of parties and learn everything each party views during its execution.
The set of corrupted parties is defined before the protocol starts and does not change during
its execution. In this model we consider a passive adversary that only observes the protocols
execution and does not (cannot) force a party to deviate from its execution.

In the ideal world, every party sends its own input xi to a trusted third-party, which evaluates
the desired function f(x1, . . . , xN ) = (y1, . . . , yN ). The output result yi is sent securely from the
trusted third-party to each party Pi. In this world there is a simulator S that is given the inputs
and outputs of the corrupted parties. This simulator captures the information that an adversary
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learns during a protocol execution. The ideal-world is defined by the following distribution of
random variables:

IDEALI,⇡,S(x1, . . . , xN ) = (S({(i, xi, yi)}i2I), f(x1, . . . , xN ))

In the real world the parties evaluate a protocol ⇡ and each party has a view that is defined
by its private input xi, its random tape ri and the sequence of all the messages exchanged mi.
The adversary also has its own view which is defined by the union of the views of all of the
corrupted parties. Everything the adversary learns in the real-world must be efficiently computed
from its view. Formally, we define the real-world by the following distribution of random variables:

REALI,f (x1, . . . , xN ) = ({(i, xi, yi,msgi; ri)}i2I , f(x1, . . . , xN ))

Definition 2.3.6 (Semi-honest security). We say that a protocol ⇡ securely computes f if for all
inputs xi, . . . , xn, for every PPT adversary A, for all I ⇢ P there is a PPT simulator S such that:

IDEALI,⇡,S(x1, . . . , xN ) ⇡ REALI,f (x1, . . . , xN )

where ⇡ denotes that the two distributions can either be computationally indistinguishable,
statistically indistinguishable or identical, i.e., the protocol is perfectly secure. If the real-world
execution can be simulated from only the inputs and outputs of the corrupted parties, then the
adversary does not learn any more information from the real-world than from an ideal execution.
This security definition also implicitly captures the correctness property of SMPC protocols as it
requires that the output of the real world to be equal to the ideal world. Otherwise, the adversary
can trivially distinguish between both worlds.

Sharemind protocols for addition and multiplication

We now provide a better intuition on how complex Secure multiparty computation (SMPC) can be
constructed by presenting two atomic components of a concrete Secure multiparty computation
(SMPC) framework. More concretely, we describe the addition and multiplication gates of the
Sharemind framework [Bog13]. These atomic operators are extensively used to build protocols
that compare the equality and order of private information. These protocols are limited to three
parties and consider a semi-honest adversary that can corrupt at most a single party.

The Sharemind framework, similar to existing work in the state-of-the-art, uses a secret
sharing scheme as the main tool to build the protocols. A secret sharing scheme is a crypto-
graphic protocol that splits a private input in N shares, such that each share does not disclose
any information on the private input. The original private input can only be reconstructed if
more than t shares are brought together in a single party. Formally, a secret sharing scheme
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S = (Encode,Decode) is defined by two PPT algorithms. The Encode(m) ! (s1, . . . , sN )

algorithm takes as input a plaintext message m and outputs a n�tuple of shares. The
Decode(s1, . . . , sN ) ! m is the inverse function, it takes as input an n�tuple of shares and
outputs a plaintext message m. A secret sharing scheme S is correct if the following condition
holds m = Decode(Encode(m)).

Sharemind uses an additive secret sharing scheme over the finite ring Z232 . We denote by
u 2 Z232 a private input message and by ū = (u1, u2, u3) a tuple with the shares of u, such that
the share si is held by the party Pi.

One of the advantages of using additive secret sharing is the computation of the addition
gates, which does not require any communication between the parties. Given two private inputs
u and v, and its shares ū and v̄, each party Pi has access to the share ui and vi. To evaluate
the addition gate, each party only needs to do a local computation and sum its shares. As such,
the addition gate can be defined as follows:

ū+ v̄ =
P

3

i
ui + vi mod 2

23

The evaluation of the multiplication gate requires a few extra steps and parties have to
exchange messages. Intuitively, the multiplication of two secret shared u and v is the dot product
of its shares such that w = u · v = (u1 + u2 + u3) · (v1 + v2 + v3). By expanding the dot product,
it’s clear that each share ui multiplies with every share vi. However, for the protocol to be secure
the parties can’t simply send all their shares to each other as it would allow the corrupted party
to disclose the input values. Instead, the Sharemind protocols forwards a single secret ui and vi

to the next party P(i+1 mod 3) and locally computes wi as follows:

wi = ui · vi + ui · v(i+2 mod 3) + u(i+2 mod 3) · vi

2.3.3 Isolated execution environments

An Isolated Execution Environment (IEE) is an abstraction that captures the security properties
of trusted hardware solutions such as Intel SGX and Trust Zone [MAB+13]. These systems
address a problem similar to homomorphic encryption, where a trusted party wants to outsource
the computation of some function to an untrusted party without compromising its confidentiality.
However, in this setting the function is a stateful program and the untrusted party provides access
to an IEE. The IEE can execute any program within a protected environment and ensure the
integrity and confidentiality of the program’s internal state. The following definitions are based on
the formal treatment of secure outsourced computation proposed by Barbosa et al. [BPSW16].

The problem of outsourcing computation to a trusted hardware is defined by a program P

executed in a machine M. The program is a transition function that is activated with a state
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st and an input i and returns an output o. Furthermore, the program can also take as input
a source of randomness r. A sequence of program activations is denoted as (o1, . . . , on)  

P [st; r](i1, . . . , in) and TraceP [st;r](i1, . . . , in) denotes the I/O trace of a program execution
(i1, o1, . . . , in, on). The machine M is a Random Access Machine (RAM) with its behavior
defined by the program execution and its inputs. The internal state of the machine is inaccessible
to any external programs and the only information disclosed are its inputs and outputs.

Definition 2.3.7 (IEE Machine). An IEE Machine M is defined by the following interface:

Init(1
�
)! prms: Procedure that initializes the machine security hardware. It takes as input the

security parameter and outputs some global public parameters prms.

Load(P )! hdl: Procedure that initializes a single IEE instances with a program P . It outputs
an IEE handle that is used to send inputs to a specific running instance.

Run(hdl, i)! o: Procedure that activates a program being executed in an IEE with the handle
hdl. The input i is passed on the program within the IEE which returns an output o.

By itself, an IEE is not sufficient to protect the confidentiality of a program’s remote execution.
It only provides a strict isolation between functions running in different IEEs as well from any
other external context in a machine. However, it does not provide any confidentiality or integrity
of the inputs and outputs of the execution.

Secure Outsourced Computation

For a program P to be securely evaluated in a remote machine M it needs to satisfy the security
definition of Secure Outsourced Computation (SOC) protocols. Intuitively, a program is securely
evaluated on a remote machine if the remote view of the IEE is identical to a local execution
and the messages exchanged between the client and the remote machine are confidential. In
fact, a SOC protocol is not limited to IEEs and instead builds on the general notion of attested
computation where a trusted party has to attest that a program P is running on a trusted
environment and that the remote I/O trace of P execution matches the I/O trace of an honest
execution. If a remote machine provides attestation than a key exchange protocol can be used
to establish a secure communication channel with the trusted environment (e.g.: an IEE) that
protects the confidentiality of inputs and outputs.

Definition 2.3.8 (Secure Outsourced Computation). A secure outsourced computation scheme
E = (Compile,BootStrap,Verify,Encode,Attest) for a remote machine M is defined by the
following PPT algorithms:

Compile(prms, P, id)! (P ⇤, st): Compilation algorithm that takes as input the public param-
eters prms, the program P and party identified id. It returns a client side state st and a
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Figure 2.7: Input privacy of SOC scheme.

compiled program P ⇤ instrumented with a remote key attestation algorithm. The trusted
client sets an initial flag st.accept = ?.

BootStrap(prms, o, st)! i: Trusted party initialization algorithm that takes as input the public
parameters prms, output o and an local state st. It runs a local key exchange algorithm
that returns the next input of the bootstrap phase i to be delivered to the IEE. Bootstrap is
complete when the st.accept = true.

Encode(prms, i, st)! (i⇤, st0): Trusted party encoding algorithm that takes as input the public
parameters prms, the local state st and an input i for a program P . It outputs an encrypted
input i⇤ for program P ⇤ as well as an updated state st0.

Attest(prms, hdl, i⇤)! o⇤: Untrusted party attestation algorithm that takes as input the public
parameters prms, the program handle hdl and a program input i⇤. It invokes the machine
M.Run(hdl, i) and outputs an attested output o⇤.

Verify(prms, o⇤, st)! b: Trusted party verification algorithm that is given as input the public
parameters prms, the local state st and an attested output o⇤. It validates the authenticity
of the output and returns a boolean result b.

To outsource a program P , the trusted party starts by compiling the program and obtaining
a program P ⇤ to be loaded on to a machine M. After loading the program, the trusted party
cannot immediately activate it with new inputs. Instead, there is a bootstrap phase between both
parties which consists of an attested key exchange protocol. If the bootstrap phase is successful,
then the trusted client shares a secret state with the program P ⇤ loaded on a trusted IEE. The
trusted client can then activate P by encoding the messages and sending them using the Attest

protocol. The authenticity of the activation output is verified with Verify protocol.

An SOC scheme is secure if it ensures input integrity and input privacy. Intuitively, the input
integrity property states that the local view of a trusted party and the remote view of a program
P ⇤ must coincide. The views can only differ in the last message which might not have been
delivered.
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Definition 2.3.9 (Input Integrity). A SOC scheme E satisfies input integrity if for every program
P and input i the remote I/O trace T is equal to the local I/O trace T 0,

 (T, T 0) := T = T 0 _ 9o.(T = o :: T 0)9i.(T 0 = i :: T )

The input privacy property defines that an untrusted party can not disclose the contents of
the trusted party inputs. Similar to symmetric encryption schemes, input privacy is defined with
an indistinguishability game PRIV where an adversary is given access to an oracle that returns
the encryption of one message from a pair of inputs. An SOC scheme is considered secure if an
adversary cannot distinguish which message was encrypted. The indistinguishability game is
formally defined in Figure 2.7.

Definition 2.3.10 (Input Privacy). Let, E be secure outsourced computation scheme, M and A

a PPT adversary. Input privacy is defined as follows:

��Pr
⇥
PRIV

0

E ,A(�) = 1
⇤
� Pr

⇥
PRIV

1

E,A(�) = 1
⇤ �� = negl(�)

Definition 2.3.11 (SOC Security). A secure outsourced computation scheme is secure if it
satisfies input privacy and input integrity.

2.4 Summary

The problem of outsourcing private data and computation requires a thorough analysis of the
existing cryptographic schemes and their security properties. In this section we reviewed a few
cryptographic building blocks that ensure data confidentiality and secure function evaluation.
Conceptually, these schemes can be combined to provide a general solution to the problem of
CPD. In a two-party setting it is viable to store sensitive data on an untrusted by encrypting data
with a symmetric encryption scheme and use one of the secure function evaluation techniques
to extract some information. In fact, existing similar state-of-the-art solution follow a similar
approach albeit at significant performance cost that requires either compromising some partial
information and/or limit the computation that can be evaluated on the untrusted side. These
trade-offs are explored in the following chapters.
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Chapter 3

Related work

The existing work towards cryptographic protected databases has been a gradual process with
roots on system research and cryptography. In this chapter we overview the main contributions
that have merged both research fields, starting on secure data storage solutions and moving
to general-purpose CPD. For each class of system presented we also outline the functionality
supported and the expected performance (asymptotic or practical). However, before we present
the state-of-the-art, we detail different types of threat models which are used by the systems to
capture the powers of an adversary and the information the system aims to protect.

3.1 Adversary model

CPDs are generally modeled in a two-party setting where one party is corrupted by an adversary.
In this setting, one party is a client residing on a trusted site and the other is a backend service
hosted on an untrusted site. The client captures a party that either owns a private dataset or is
responsible for assuring its confidentiality. The client leverages the storage and computational
resources provided by the backend service. Conceptually, both parties can be as powerful or as
thin as necessary. Furthermore, there is no restriction on the number of nodes that constitute
a party as they can scale horizontally as necessary. For instance, one possible system has
a thin client where all of the data storage and processing is offloaded to a third-party service
such as a cloud provider. Conversely, it is also feasible to have a system where the client is a
private cluster with sufficient resources to handle high-throughput workloads and the backend is
a public-cloud service used exclusively for replicated or archival storage.

The adversary corrupts the untrusted party to learn the data stored as well as the computation
evaluated by the backend service. Systems can tolerate some adversaries and remain secure
even after the untrusted party become corrupted. The type of attacker supported by a CPD is
defined by the adversary model that defines the methods used to corrupt the untrusted site, the
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power of the attacker and its actions after a successful corruption. The method used to corrupt
the backend defines the adversary as either an internal attacker or an external attacker. An
internal attacker has explicit access and control over the backend service, similar to a cloud
or database administrators. The external attacker does not have direct access to the backend.
Instead, the adversary attempts to either compromise the communication between the client and
the backend or gain access to the backend service by exploring any existing vulnerabilities.

A system with a corrupted backend can still be secure depending on the assumed adversary
power, i.e., the actions taken by the adversary to extract relevant information from a cryptographic
protocol. Some systems only consider adversaries that passively observe messages exchange
and data stored while other systems are secure against active attempts to modify the protocol
execution. Depending on its power, an adversary can be classified as follows:

Semi-honest adversary: Attempts to compromise the protocol’s privacy by only gathering
information during the execution of the protocol. The adversary does not attempt to modify
or hide messages exchanged between the parties.

Active adversary: Takes active actions such as sending messages that differ from an honest
protocol execution or corrupt the messages received by a party in an attempt to learn
some additional information.

The backend service can have a single or multiple nodes, each storing and processing only
a subset of the total data. Even if the adversary gains control over subset of nodes it does not
necessary imply that the system’s confidentiality is compromised. For instance, SMPC protocols
are designed to remain secure until the number of corrupted nodes reaches an established
threshold, for instance the majority of the nodes. After the threshold of corrupted parties, a
protocol no longer guarantees privacy. The adversary model also defines when parties become
corrupted and how the set of corrupted parties changes during a protocol execution [Gol04]:

Static: The adversary corrupted a fixed (arbitrary) set of nodes before the protocol execution
start. No additional nodes can be corrupted or become honest after the initialization.

Adaptive: The adversary has the power to corrupt any node during the execution of the protocol
using the information it gathers. However, the number of corrupted nodes has to be within
the upper bound and a corrupted party cannot become honest.

Mobile: Similar to an active adversary however, the set of nodes corrupted changes dynamically
during the execution, i.e., a corrupted node can become honest.
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3.2 Remote encrypted file systems

A straightforward solution to safely store sensitive data on an untrusted site is to use remote
encrypted file systems. These systems abstract a remote storage service by exposing a local
file system interface identical to a native file system. On the trusted site, client applications can
relay requests to the remote storage service on an untrusted site by interacting with the abstract
local interface. However, before a request is sent from the trusted site to the untrusted site they
are protected. More concretely, every write request is intercepted and the plaintext data in the
request is encrypted with a symmetric encryption scheme. Read requests are also intercepted
and the data contents decrypted before being displayed to the client. Database systems can
leverage remote encrypted file systems to outsource data and fetch only the data necessary to
process queries without having to manage remote connections, file system logic or explicitly
encrypting data. Most remote encrypted file systems in the related-work do not explicitly define
the adversary model but the untrusted site is assumed to be corrupted by a semi-honest, static
adversary. While there a few systems that support active adversaries by either using integrity
checks (checksum) such as SUNDR or authenticated encryption such as SafeSky [KM17], the
main goal of remote encrypted file systems is to ensure data confidentiality.

One of the main challenges of encrypted file systems is finding the appropriate abstraction
level to intercept the client I/O requests on the trusted site. Existing systems assume the trusted
site has a modern operating system architecture divided between the kernel space and the user
space [SGG12]. The access to a storage device is abstracted by a virtual file system in the
kernel space. Client applications reside on the user space and cannot send requests directly to
the virtual file system. Instead, applications in the user space access the underlying storage
by issuing system calls that forward requests to the kernel space. With this division, there are
two approaches in the related work. One approach is to push down and delegate the encryption
process to the operating system. Client applications can use the underlying file system without
any modification besides some initial configuration. However, this approach requires client
applications to relinquish some flexibility and control over how data is protected. The other
option, in the opposite direction, is to move the encryption process as close as possible to the
client application. Applications are no longer bound by the security guarantees provided by
the operating system and can use a cryptographic system suitable to their use-case. However,
custom solutions are prone to security vulnerabilities if not implemented correctly.

Kernel space solutions. Encrypted file systems embedded at the operating system level
rely on a vnode interface to intercept I/O requests to physical files. This interface is a Unix
kernel space abstraction that is placed between the virtual file system and a physical file system,
such as ext4. A single vnode is a logical representation of an active open file, directory or
socket that encapsulates the low-level file system details from higher-level operating system
components. During a system execution, system calls are translated into virtual file system calls
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which forwards them to a specific vnode invocation. Kernel space solutions add an additional
layer between the virtual file system and the physical file system vnode.

Kernel space solutions have several advantages in terms of security, performance and
interoperability. One immediate advantage is the transparent integration with the operation
system from the client application perspective as system calls and the virtual file system interface
is not modified. Furthermore, these systems are also portable as they can leverage the vnodes
interface of different physical file systems. Regarding performance, one clear advantage is the
file-level granularity which can be used to encrypt only a subset of sensitive data instead of the
entire file system. There is also is no overhead on context switch between user space and kernel
space. Finally, the kernel-space is protected from user space applications which cannot gain
direct access to its internal memory.

CryptFS [ZBS98] was the first system to propose a kernel space solution. This system
can be mounted as directory of the file system such that any file stored in the mount point is
transparently encrypted before being stored. The system only supports a single encryption
scheme, Blowfish [Sch93], and has a limited key management. Both eCryptFS [Hal10] and
NCryptFS [WMZ03a] improve upon these limitations and extend CryptFS functionality. In
particular, eCryptFS extends CryptFS with encryption polices and a key management that
associate cryptographic meta-data (encryption keys) to each file instead of an entire mount point.
Additionally, it leverages an IEE to bind a set of files to a specific machine and securely manage
secret keys. NCryptFS provides a more general solution than CryptFS by supporting multiple
users, multiple encryption schemes and authentication methods.

User space solutions. User space file systems can be implemented at two different levels of
the I/O stack. The first option is to intercept an application request before leaving the application
logic by swapping the standard shared I/O library with a secure library that has the same
interface. In this approach, data is encrypted before leaving the application and a system call
is made. However, files are encrypted on a per application basis and not every application
interacts with the file system through a shared library. The second option is to intercept requests
in the kernel space and redirect them back to a user space file system framework. Generally,
the framework eases the development and prototyping of novel file systems. This class of
frameworks have a kernel space component that redirect virtual file system requests to a user
space daemon. The user space daemon implements the logic of the encrypted file system. This
division between components isolates the user space daemon from the low-level details of the
physical file systems but require multiple context switches between the user space and kernel
space. Currently there are two main frameworks that follow this approach, the Network File
System (NFS) [SGK+85] and Filesystems in Userpace (Fuse) [Mik05].

User space file systems have one clear advantage over kernel space file systems, a faster
development cycle and a wider range of standard libraries. Kernel space encrypted file systems
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are limited to encryption services provided by the kernel. Even though it is conceptually possible
to migrate a user space library to the kernel it is in practice a complex task, often prohibitive due
to security concerns. A single bug is sufficient to freeze the entire execution of the system. User
space file systems have none of these limitations, a software error only stops the execution of
single process, and there is a wide range of standard cryptographic libraries (e.g.: OpenSSL,
PGP), debug and profiling tools available. Cloud services further enhance the demand of user
space encrypted file systems as the only way for applications to interact with cloud environments
is through user space middleware libraries.

Encrypted file systems first started with a user space approach, CFS [Bla93]. This system
was limited to single host, a local encrypted file system, and used a redirection approach
based on NFS. Client applications used a regular NFS client to interact with the file system
but when a requested reached the kernel space they were redirected through the localhost
network interface back to a user space NFS server daemon. This NFS server was extended to
encrypt all of the files under a single directory with the same cryptographic key. TCFS follows a
similar approach to CFS but supports remote encrypted file systems and has an extended key
management [CCSP01]. One of the main drawbacks of NFS based user space file systems is
the overhead of unnecessary network requests on a single host. The Fuse framework provides
an optimized solution for user space file system by providing an in-kernel driver that is registered
with the virtual file system as a regular physical file system. However, I/O requests to the Fuse
driver are forwarded back to a user space daemon through system calls. This framework has
been widely used to develop over 100 systems [TGS+15], prototypes and complete remote
encrypted file systems such as EncFS [enc], CryFS [cry] and LessFS [les]. Both NFS and Fuse
as well as shared libraries have been used to outsource storage to cloud environments with
systems such as BlueSky [VSV12] and SCFS [BMO+14] that abstract the underlying cloud,
ensuring strong consistency and high-availability. These guarantees are provided even in multi-
client environments that share the same cloud service. Depsky [BCQ+13] goes a step further
with dependable storage in a cloud-of-clouds setting which leverages multiple clouds to prevent
loss and data corruption, system downtime and avoid vendor lock-in.

Data encryption at rest. Clearly, databases deployed on a private client infrastructure can
use encrypted file system to transparently outsource private data to a remote untrusted server.
However, it is important to mention that enterprise-grade database systems provide an alternative
solution, encryption at rest. MySQL [mys] and Oracle [ora] are two of the leading commercial
databases that provide this feature. With this solution, client applications transmit their data as
plaintext to the database. Usually, data is only encrypted when persisted on the file system and
is decrypted back to the main memory to process queries. A semi-honest adversary with access
to the database engine can intercept client requests and learn sensitive information. As such,
this solution only provides security in case the storage device is stolen or its contents leaked.
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3.3 Encrypted indexes with controlled leakage

Encrypted databases can offload both data storage and query computation to an untrusted
backend service by using searchable encryption schemes. The state-of-the-art is brimming with
novel constructions that cover divergent security requirements. This section focus on the single
writer, single reader setting as it is the best fit for encrypted databases and has seen the highest
number of contributions [KS14b]. In this setting, the client is the sole owner of the database and
it is the only party that can send queries. As defined in Section 2.2.3, SSE schemes encrypt
the data on the client side before storing it on a server (backend service). To search for a query,
the client generates trapdoors that disclose some private information and enables the server to
search the encrypted data. Servers are often capable of satisfying queries without client-side
support and the interaction between both parties is reduced to sending a query and retrieving
the results.

One of the main goals of searchable encryption schemes is to provide efficient searches.
To improve query latency, the server stores the database data in specialized data structures
(indexes). Some constructions are static and build the index on the client side with an initialization
phase. Once the index is stored on the server it can not be updated. Other schemes are dynamic
and can insert, update and delete documents dynamically. One of the drawbacks of grouping
related data in a data structure and using trapdoors to enable efficient server-side computation
is the information disclosed. The adversary is generally static with access to all of the data and
queries but can either be semi-honest or active. We mainly consider SSE schemes that are
concerned with protecting the data confidentiality but the client is willing to disclose some partial
information, a controlled leakage, in exchange of improved performance. As such, the security
definitions of SSE schemes are parameterized by leakage functions that formally define the
exact information revealed to the adversary. Overall, the leakage functions frequently followed in
the state-of-the-art are summarized in the following list, with each function disclosing increasingly
more information:

Index Information: One common leakage of SSE schemes is the correlation between the
documents and the keywords which is preserved by the index stored in the server. For
instance, a construction may disclose the size of the database, the number of documents,
number of keywords and how many documents match a keyword.

Search Patterns: The leakage associated with queries is captured by the search patterns, i.e.:
the set of tokens used by the client to search the for keywords in the untrusted server,
index entries accessed by the server and the order in which an index is accessed during
a query search. If the adversary can observe that two identical trapdoors or the same
index entries are accessed for two distinct queries, then it can use statistical analysis to
determine crucial information about the database keywords [KPT19, LMP18].
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Backward Privacy: SSE schemes that support dynamic insertion and deletion of new
documents on the index data structure can disclose the interleaving of these oper-
ations. A SSE scheme is said to be backward private if it does not disclose when
keyword/document pairs are added and deleted, or which deletion cancels a prior
insertion operation [BMO17].

Forward Privacy: Dynamic SSE schemes are said to be forward private if an update
operation does not disclose the relation between a new document and the keywords
stored on the index. [BMO17].

Access Pattern: The set of resulting records of a query define the access pattern leakage.
The volume leakage is also associated to the access pattern and is defined as the size
of the result set. This leakage as shown to be sufficient to reconstruct plaintext data on
encrypted databases [GLMP18, GLMP19].

One of the first SSE scheme ever proposed (Song et al. [DWP00]) did not use an index but
instead tagged every keyword in the database with a deterministic ciphertext. This approach
only supports exact match queries, i.e.: search the documents that contain a single keyword. To
evaluate a query, the client starts by generating deterministic a trapdoor from an input keyword.
The trapdoor is sent to the server which scans over all of the keywords and documents stored in
the database. For every trapdoor that matches a deterministic tag, the document identifier is
returned to the client. This solution has limited performance with a linear time search over all
keywords in all documents. Furthermore, it also has limited query expressiveness. Subsequent
work has improved the performance of exact match queries considerable and expanded the set
of supported queries to include boolean and range queries.

Exact Match Queries. Forward indexes provided the first solution to improve the asymptotic
performance of exact math search queries. In these data structures, the index entry is an
encrypted document identifier pointing to filter. The filter enables the server to test in constant
time if a document contains a keyword given an input trapdoor. As such, the server evaluates
queries by scanning the entire index and returning the documents containing the input keyword.
The construction proposed by Eu-Jin Goh [Goh03] uses one bloom filter per document to test
the membership of a keyword while the construction proposed by Chang et al. [CM05] uses
a custom bit array data structure. Both constructions support dynamic indexes, but the latter
construction assumes a fixed size set of keywords. However, the search time of forward indexes
is far from optimal as it is linear to the number of documents.

The performance of search queries is improved even further by using inverted indexes. In
an inverted index, each entry is an encrypted trapdoor that points to one or multiple documents
containing a keyword. Constructions that use this index reduce the search space to the set of
documents containing a keyword, resulting in sublinear search time. The first construction using
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this approach was proposed by Curtomla et al. [CGKO11] and consists of an index where each
entry is a keyword pointing to a list of documents containing the keyword. The documents as well
as the keywords are encrypted, and a query is only satisfied if the server receives a trapdoor for
the head of a specific list. This scheme is however limited to a static set of documents and cannot
update the index by adding or removing documents. Subsequent work has proposed novel
construction with support for dynamic operations [KPR12], improved performance of update
queries by using a secondary index as a cache and lower search pattern leakages by leveraging
ORAM constructions [SPS14]. The work of Cash et al. [CJJ+14] simplified existing constructions
and presents a practical approach to process large datasets with parallel operations.

Extended Queries. SSE queries that only support exact match queries are essential but have
a narrow applicability. Applications want to offload as much computation as possible to the
database. Additionally, applications expect databases to support at least boolean queries that
filter a set of documents by composing conjunctions and disjunctions of keywords. A naive
approach to tackle this problem is to reduce a boolean query to multiple independent single
keyword queries and aggregate the results on the client. This is not only inefficient but also leaks
more information than necessary. Cash et al. proposed a more efficient solution with a query
search time proportional to the least frequent keyword, i.e., the keyword with the least number of
matching documents. This solution leverages two data structures, an exact match query SSE
scheme which maps keywords to documents and a set data structure similar to a forward index.
To search for a query, the client generates trapdoors for every keyword but generates a tag for
the least frequent keyword. The server uses the tag in the the inverted index to obtain a list of
documents. The resulting list is pruned by matching the document identifiers with the keyword
tokens in the set data structure. However, this solution assumes a static index and is limited to
conjunctive boolean queries. This work is extended and improved by Faber et al. to support
queries that select a subset of documents between two keywords with a lexicographic order
(range queries), queries that select documents based on a substring of a keywords and queries
with a string combined with wildcard charactres, i.e., arbitrary characters. Kamara et al. [KM17]
proposed an novel construction with a narrower set of queries but was the first construction to
support disjunctive boolean queries and dynamic updates. The Recent work of Bernardo et
al. [FPO+19] explored IEE technology and proposed a novel scheme that supports conjunctive
and disjunctive boolean queries with forward and backward privacy [FPO+19].

3.4 General-purpose encrypted databases

Completely moving a production database to an untrusted third-party service while safeguarding
the users confidentiality requires more than just SSE schemes. Relational Database Manage-
ment Systems (RDBS) process rich queries with relational binary operators such as projections,
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selections, joins and aggregations that slice, transform and otherwise process data into valu-
able information. Furthermore, the data types are not limited to keywords and also include
numerical data as well as geographical and temporal data. Even key-value NoSQL databases
that exchange the relational model for a stricter, specialized data model still support range
queries, arithmetic operators and even aggregations. To preserve the same functionality, keep
the server-side data encrypted and outsource as much computation as possible to the backend,
novel solutions in the state-of-the-art coalesce a multitude of cryptographic techniques in a
single system. Included in these techniques are Property Preserving Encryption (PPE) schemes,
multiparty protocols and trusted hardware (IEE). The majority of these systems assume a
semi-honest, static adversary.

Property-preserving databases. Conceptually, the idea of property-preserving databases is
to encrypt plaintext data with multiple encryption schemes, each providing a different functionality.
For instance, consider a database column with numerical attributes that is simultaneously queried
to i) find the largest value and ii) sum two specific values. The column is encrypted with an
OPE scheme to generate ciphertexts which can satisfy query i) and it is also encrypted with
partial homomorphic encryption to satisfy query ii). At runtime, the database engine choses
which ciphertext to use according to the input query. CryptDB [PRZB11] was the first system
to propose and apply this idea using adjustable query-based encryption. The database client
encrypts each table record item with onions of encryption, i.e., increasing stronger layers of
encryptions stacked on top of each other. Database items are encrypted with a different secret
key per item and the outermost onion layer is encrypted with a symmetric encryption scheme.
The inner layers can be any combination of deterministic encryption, order preserving encryption,
partial homomorphic encryption and even SSE schemes. With each query, the database adjusts
the confidentiality of an item by peeling the outer layers as necessary. This adjustment process
requires disclosing the decryption key for the server and permanently leaking the inner layers to
the server. However, the secret key of the innermost layer that encrypts the plaintext is never
disclosed to the server and is only used by client to decrypt query results.

CryptDB is one of the most influential systems in the literature and several solution have
since improved on its contributions. Monomi [TKMZ13] builds on CryptDB and focus on analytical
workloads. Its main contribution is a hybrid system with a split client/server query execution
model. In this model, a query is optimized to execute all of the relational operators on the
server side modulus the operators that cannot be efficiently computed over ciphertexts. For the
latter operators the encrypted data is forwarded back to the client, decrypted and processed.
Additionally, this system also fine tunes the cryptographic schemes by choosing more space
efficient constructions to lower the overall storage and bandwidth usage. One common pitfall of
both CryptDB and Monomi is the statistical information disclosed by queries that use the DET
and OPE encryption schemes. Naveed et al. have showed that in specific application contexts
(e.g.: medical field) this leakage is susceptible to frequency analysis attacks [NKW15] that can
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successfully reconstruct plaintext values.

To mitigate this leakage some systems trade-off storage and performance overhead for
security. Antonis et al. [MR92] proposed Seabed, a system that addresses frequency analysis
attacks for the particular case of query aggregations. The system disperses the values of
an attribute through multiple columns and also adds dummy values to the inserted records.
The goal of these two mechanisms is to manipulate the frequency histogram of a column to
have a uniform distribution. However, it requires a prior knowledge of the database queries
as well as every possible combination of column aggregation. Additionally, the dummy values
have a non-negligible storage overhead. The work of Timon et al. [TH20] extends the previous
contribution and proposes SAGMA, a system that supports filter operators in aggregation queries.
Conceptually, SAGMA transforms database tables in matrices. The values stored in the matrix
are encrypted with a partial homomorphic scheme that provides semantic security and queries
are evaluated as linear algebra operations that naturally touch every matrix element (e.g.: matrix
multiplication), thus hiding the frequency distribution. However, this transformation requires
assigning numerical value to non-numerical attributes and keeping this relation in an SSE
scheme.

The main ideas behind PPE protected databases have also been applied to NoSQL
databases. Xingliang et al. [YWW+16] were the first to consider the problem of data local-
ity in distributed key-value databases. In these systems, data is partitioned horizontally in
multiple regions and stored in a distributed file system. If there is a mismatch between the
storage node holding a region and the database node that processes queries over a region,
then an additional network request is necessary to transfer the data between the nodes. To
mitigate this issue, the authors propose a framework with a novel data partitioning algorithm
that uses a PRF to ensure that each region is consistently hashed to the correct storage and
database node. Zhen et al. [ZLP+17] address a different problem, the incompatibility between
compression and encryption. NoSQL databases handle large amounts of data by compressing
data to improve bandwidth usage and fit more information in the main memory. However, if
data is encrypted then the compression algorithm cannot achieve high compression ratios. The
authors proposed MiniCrypt, a system that joins multiple records together in individual packs.
Each pack is assigned a unique identifier and its contents are compressed and encrypted.
Both of these systems disclose statistical information susceptible to frequency analysis attacks.
Arx [PBP19] is the first system proposed to address this issue in NoSQL databases by using
SSE that ensure semantically security. However, this approach needs to re-encrypt part of the
database after every query, resulting in a significant network bandwidth overhead.

Multiparty databases. Whereas PPE cryptographically protected databases rely on multiple
encryption schemes, multiparty protocols can be used to compute any function using a single
scheme. However, the practical applicability of these protocols has been lacking and mostly
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focused on the the classical setting where independent parties want to compute a common
function. In this setting, Sharemind [BLW08] provides one of the most stable, flexible and industry
proven frameworks. But in the setting of CPD, Wai et al. [WKC+14] were the first to explore
these approach by proposing a two-party SQL database. In this system, one of the parties is the
database client and the other is the database server. Data is encrypted with a secret sharing
scheme in such a way that the majority of the data is stored on the server, but a few secrets
have to be kept on the client side to prevent an adversary from reconstructing the plaintext
values. Queries are processed by novel two-party composable protocols that support a subset of
SQL operators: selection, projection, joins, addition and multiplications. Besides the client-side
information these protocols also require the client to take part on the protocol evaluation and
don’t completely offload the computation to the server.

Trusted hardware databases. Trusted hardware modules, an IEE in Section 2.3.3, can sig-
nificantly enhance cryptographic schemes by processing plaintexts on the server side. At the
core of trusted hardware is the ability to allocate secure memory regions that are inaccessible
by any external environment, including the operating system, hypervisors and even hardware
directly connected to the system buses. Applications can load sensitive data as well as arbitrary
programs on to a secure memory region only through a public interface protected by the hard-
ware. All of unauthorized accesses to read or modify the contents inside the secure memory
regions are refused. Programs loaded on to a trusted hardware can generate a proof of integrity.
This proof enables client applications to verify that programs have been correctly loaded on to a
trusted hardware and that the hardware is genuine, i.e., it is not a third-party emulating a trusted
hardware. With these security guarantees, software running inside the secure memory regions
can process data as plaintexts. However, all of the sensitive data outside the secure memory
regions still needs to be encrypted. Including the data that is loaded on to the secure memory
regions. This data can only be decrypted once inside the trusted hardware. An adversary can
observe all requests made from the external environment on to the secure memory regions as
well as any request on the opposite direction. Current trusted hardware has some technical
limitations, the size of the secure memory regions is small and the execution of software inside
these regions has some performance overhead. Additionally, these systems are vulnerable to
side-channel attacks and there are a few security exploits that have successfully extracted secret
keys which compromise the overall system security [BMW+18, BSN+19].

Trusted hardware provides, at least theoretically, a simple solution for CPD. However, a
database engine cannot simply be deployed inside an IEE due to memory constrains, perfor-
mance overhead, technical and security limitations. TrustDB [BS11] overcame these restrictions
in relational databases with a split-execution approach that divides data in public and private
attributes. Public attributes are stored as plaintext and can be processed by the database engine
without any modification. Private attributes are encrypted with an IND-CPA scheme and any
operations over these attributes is executed inside an IEE. This solution is limited to small fine-
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grain relational operators and only protects a fraction of a database engine. EnclaveDB [PVC18]
widens the set of database components protected by an IEE to the query engine and the trans-
action manager. Additionally, it also ensures data integrity even in the presence of an active
adversary. However, the protected database is in-memory system that assumes a fixed scheme
and queries that can not be updated after an initial setup phase. Furthermore, even though
trusted hardware such as Intel SGX provides transparent encryption of the main memory used
by an IEE, the access patterns are still disclosed to the adversary. Ankur et al. [DLP+20] and
Wenting et al. [ZDB+17] have made some progresses to address this issue in analytical and
federated databases respectively. These solutions leverage existing oblivious algorithms as well
as propose novel specialized operators to join, filter and aggregate data that does not disclose
the access patterns, albeit at a significant performance overhead.

3.5 Summary

The sum total of existing contributions in secure outsource computation amounts to offload
increasingly more computation to an untrusted server in exchange for either performance or
security. The least intrusive option is to keep the database engine in a trusted site and swap the
underlying file system for a remote encrypted file system that stores data in the untrusted site.
Currently, there are two divergent approaches of encrypted file systems based on the internal
architecture, kernel space and user space systems. Both are viable solutions, with kernel space
systems having traditionally a performance advantage due to lower number of context switches.
However, hardware improvements and optimized frameworks such as Fuse have lessened the
performance overhead and placed users space systems as a feasible approach to develop novel
efficient cryptographic file systems that can provide greater extensibility and customization than
kernel space systems.

Searchable encryption schemes provide a solution in between a client side only system and
a general server-side CPD. Research in SSE schemes is centered on data structures, forward
indexes or backward indexes, that support efficient exact match queries and even searches with
boolean formulas. However, these schemes have an associated leakage that if not thoroughly
considered can leave the database vulnerable to malicious attacks. Moreover, searching data
is only one operation of relational and NoSQL system. For this reason, PPE databases have
also leveraged additional encryption schemes such as OPE and partial homomorphic encryption
to process complex queries on the server side without any client-side support. There are
alternative solutions that do not require to use a multitude of conflicting cryptographic schemes,
each one possible introducing security exploits. Secure multiparty protocols are one alternative
that has been mostly left unexplored in the context of encrypted databases despite providing
a unified processing framework without functional limitations. The other alternative is trusted
hardware solutions where existing research focus on finding best vertical division of a database
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architecture that simultaneously lowers the performance overhead of executing queries in a
protected environment and maximizes the security guarantees.
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Chapter 4

Multi-layer encrypted file system for
private databases

In this chapter we present our first main contribution of the thesis, SafeFS, a user-space multi-
layer encrypted file system. SafeFS is new file system that if placed between a database system
and the physical storage can manage the data plane to provide security, performance and
availability properties. This system improves on the state-of-the-art with its modular architecture
that provides a straightforward approach to stack and change logical layers in user-space. The
layers can be adjusted to fit the client application requirements and workload. We showed through
an extensive experimental evaluation that our approach has a minimal performance overhead in
classical storage workloads as well as transactional and analytical database workloads.

4.1 Introduction

Offloading the storage of a database system to an untrusted third-party service raises interoper-
ability and privacy issues. Market leading cloud providers (e.g.: Google [Goo], Amazon [Ama]
and Azure [Micb]) have several specialized storage products such as elastic storage, cross region
storage, block-oriented storage and archive storage. Each one of these products address a spe-
cific requirement such as on-demand scalable storage for large amounts of data, high-throughput
storage for transactional workloads and even secondary storage for backups or archives that
are sparsely accessed. However, the interface of these solutions is heterogeneous and often
incompatible with database systems. Furthermore, simply storing the data on third-party service
without encrypting it can result in a confidentiality breach.

The first problem can be partially solved by providing well-known and extensively used
abstractions on top of third-party interfaces [Wal95]. One of the most widespread and high-level
abstractions offered atop storage systems is the POSIX I/O file system interface [Wal95]. The
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practicality and ease of use of such abstraction has spurred the development of a plethora
of different file system solutions offering a variety of compromises between I/O performance
optimization, availability, consistency, resource consumption, security, and privacy guarantees
for stored data [UAA+10, BMO+14]. Additionally, developers can leverage the Fuse framework
to implement a POSIX-like file system on top of a multitude of local and remote storage systems
in a fairly straightforward manner. Nevertheless, each file system implementation is different and
specifically designed for certain use cases or workloads. Choosing which implementations to
use and combining them in order to take advantage of their respective strong features is far from
trivial [ZN00].

The second problem, securely outsourcing sensitive data, has also been the subject of
intensive work. There are several remote encrypted file system implementations providing
privacy preserving mechanisms [Hal10, enc]. However, similarly to storage systems, a single
approach does not address the specific privacy needs of every application or system. Some
require higher levels of data privacy while others target performance at the price of lower privacy
guarantees. Furthermore, these approaches lack a clear separation between privacy preserving
mechanisms and the file system implementation itself. This prevents a seamless combination
of different privacy preserving mechanisms with other file system properties (e.g., caching,
compression, replication, etc).

In this chapter we tackle both challenges simultaneously. Inspired by Software-Defined
Storage (SDS) design principles [TBO+13, AAB+14], we introduce SafeFS, a novel approach
to encrypted user-space file systems. We advance the state of the art in two important ways
by providing two-dimensional modularity and extensible security mechanisms. First, SafeFS
two-dimensional modular design can combine implementations of specialized storage layers for
security, replication, coding, compression and deduplication, while at the same time allowing
each layer to be individually configurable through plug-in software drivers. SafeFS layers can then
be stacked in any desired order to address different application needs. The design of SafeFS
avoids usual pitfalls such as the need for global knowledge across layers. For instance, for
size-modifying layer implementations (e.g., encryption with padding, compression, deduplication),
SafeFS does not require a cross-layer metadata manager to receive, process, or redirect requests
across layers [ZABN01]. Second, SafeFS design allows us to easily combine any Fuse-based file
system implementation with several cryptographic techniques and, at the same time, to leverage
both centralized [webf, webe] and distributed storage backends [BMO+14]. For example, it is
straightforward to integrate an existing Fuse-based file system with secret sharing on top of
distributed storage backends using SafeFS simply by adapting the system APIs.

To show the practicality and effectiveness of our approach, we implemented a full prototype
of SafeFS that, as in recent proposals [BGG+09, VTZ17], resorts to the Fuse framework. With a
thorough experimental evaluation, we compare several unique configurations of SafeFS, each
combining different privacy-preserving techniques and cryptographic primitives. We evaluate the
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Figure 4.1: Conceptual model of outsourcing storage to an untrusted remote site.

performance by resorting to state-of-the-art benchmarks, including a file system benchmark, a
transactional database benchmark as well as web-based database benchmarks. The remainder
of this chapter is organized as follows. In Section 4.2.2 we present a conceptual definition of
the problem addressed in this chapter and illustrate the design goals of SafeFS. The following
section 4.3 details SafeFS’s architecture and the approach used to solve the aforementioned
problems. The implementation details are given in Section 4.4. Section 4.5 presents our
extensive evaluation of the SafeFS prototype, before providing a discussion of the overall
contribution in Section 4.6.

4.2 Problem definition

Moving the database storage to a third-party service can be done at two levels, either at the
database engine level or at the file system level. Modifying the database engine is an intrusive
approach that requires in depth knowledge and can not be seamless applied to different systems.
The latter approach is non-intrusive and cross compatible with multiple systems as file systems
use a common POSIX I/O file system interface. SafeFS is applied at the second level to create a
solution that is orthogonal to any application.

To capture the problem of storage outsourcing addressed by SafeFS we depict in Figure 4.1
a general model that contains the most relevant components and their interactions. The model
is divided in two independent sites, the trusted site and an untrusted site. The untrusted site
abstracts any cloud provider with a storage solution that is accessible through a public interface,
either an NFS protocol, a REST protocol or any other proprietary interface. The trusted site
can use the public interface to store, access, delete and modify data at will without any size
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constrains or limitation on the number of requests. However, the untrusted site does not provide
any computational services. The trusted site can use more than a single untrusted site and use
a different interface in each one. Internally, the trusted site is split between the user space and
kernel space. On the user space reside the user application (e.g.: Database system), the file
system interface and SafeFS which manages some encryption keys and custom configuration.
The user application as well as the file system interface are left unmodified. On the kernel space
we only consider the fuse kernel module that intercepts file system request and relays them to
SafeFS.

We provide an overview of the interaction between the components which is further detailed in
Section 4.3.1. Requests start on the user application to update or access a file in the underlying
file system (Figure 4.1- ). In this interaction, data is always accessed or updated as plaintext.
From the application perspective, the file system behaves as a native file system. However, when
the request is sent to the kernel space it is eventually intercepted by the fuse kernel module
(Figure 4.1-À). If the request is made to a directory mounted by SafeFS, then the fuse kernel
module forwards the request (Figure 4.1-Ã). SafeFS can process incoming requests in different
ways depending on the configuration of layers. If SafeFS is configured with an encryption layer,
then the data in the request is encrypted and forwarded to one or multiple remote site interfaces
(Figure 4.1-Õ). The reverse path is taken to return the result of the operation back to the user
application and provide a consistent file system view. Throughout the remaining chapter we will
focus only on presenting SafeFS architecture from the trusted site viewpoint.

4.2.1 Trust model

We assume the untrusted site is corrupted by an semi-honest adversary that observes every
requests received. In fact, the adversary knows how many requests are made, what type of
operations are made (e.g.: read or write), the access pattern of the requests (e.g.: sequential,
random) and can view the data stored. All of this can be learned by the interaction between
the trusted site and untrusted site (Figure 4.1-Õ) which is not protected by a secure channel.
However, everything that happens within the trusted site is outside of the adversary control.
Furthermore, we assume the adversary does not try to compromise the integrity of the data or
forge the authenticity of the requests. In fact, SafeFS can support this type of attacks by using
authenticated encryption but the current version is focused only on ensuring data confidentiality.

4.2.2 Design goals

SafeFS is a framework for flexible, modular and extensible file system implementations built atop
Fuse. Its design allows to stack independent layers, each with their own characteristics, and
optimizations. These layers can then be integrated with existing Fuse-based file systems as well
as re-stacked in different order. Each stacking configuration leads to file systems with different
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Figure 4.2: Architecture of SafeFS.

traits, suitable to different applications and workloads. Keeping this in mind, the four pillars of our
design are:

• Effectiveness. SafeFS aims to reduce the cost of implementing new file systems by
focusing on self-contained, stackable, and reusable file system layers.

• Compatibility. SafeFS allows us to integrate and embed existing Fuse-based file systems
as individual layers.

• Flexibility. SafeFS can be configured to fit the stack of layers to the applications require-
ments.

• User-friendliness. From a client application perspective, SafeFS is transparent and usable
as any other Fuse file system.

4.3 Architecture

Figure 4.2 depicts the architecture of SafeFS. The system exposes a POSIX-compliant file
system interface to the client applications. Similar to other Fuse systems, all file system related
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operations (e.g., open, read, write, seek, flush, close, mkdir, etc.) are intercepted by the
Linux Fuse kernel module and forwarded to SafeFS by the Fuse user-space library. Each
operation is then processed by a stack of layers, each with a specific task. The combined result
of these tasks represents a file system implementation.

We identify two types of SafeFS layers serving different purposes. Upon receiving a request,
processing layers manipulate or transform file data and/or metadata and forward the request to
the next layers. Conversely, storage layers persist file data and metadata in designated storage
backends, such as local disks, network storage, or cloud-based storage services. All layers
expose an interface identical to the one provided by the Fuse library API, which allows them to
be stacked in any order. Requests are then orderly passed through all the layers such that each
layer only receives requests from the layer immediately on top of it and only issues requests
to the layer immediately below. Layers in the bottom level must be of storage type, in order to
provide a functional and persistent file system.

This stacking flexibility is key to efficiently reuse layer implementations and adapt to different
workloads. For example, using compression before replicating data across several storage
backends may be acceptable for archival-like workloads. In such settings, decompressing
data before reading it does not represent a performance impairment. On the other hand, for
high-throughput workloads it is more convenient to only apply compression on a subset of the
replicated backends. This subset will ensure that data is stored in a space-efficient fashion
and is replicated to tolerate catastrophic failures, while the other subset will ensure that stored
data is uncompressed and readily available. In these scenarios, one storage stack would use
a compression layer before a replication layer, while a second storage stack would put the
compression layer after the replication and only for a subset of storage backends. Layers must
be stacked wisely and not all combinations are efficient. An obviously bad design choice would
be to stack a randomized privacy layer (e.g., standard AES cypher) before a compression layer
(e.g., gzip): by doing so, the efficiency of the compression layer would be highly affected since
information produced by the above layer (the randomized encryption) should be indistinguishable
from random content.

Finally, the SafeFS architecture allows us to embed distributed layers as intermediate layers.
This is depicted in Figure 4.2, where layer N � 1 (e.g., a replication layer) stores data into two
different sub-layers N . SafeFS supports redirection of operations toward multiple layers, while at
the same time maintaining these layers agnostic from the layer above that transmits the requests.

4.3.1 A day in the life of a write

To illustrate the I/O flow inside a SafeFS stack, we consider a write operation issued by
the client application to the virtual file system (read operations are handled similarly). Each
request made to the virtual file system is handled by the Fuse kernel module (Figure 4.3- )
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Figure 4.3: Execution flow of a write request.

that immediately forwards is to the user-space library (Figure 4.3-À). At this point the request
reaches the topmost layer of the stack (Figure 4.3-Ã), called Layer 0. After processing the
request according to its specific implementation, each layer issues a write operation to the
following layer. For example, a privacy-preserving layer responsible for encrypting data will
take the input data, encrypt it according to its configuration, and emit a new write operation
with the ciphertext to the underlying layer. This process is repeated, according to each layer
implementation, until the operation reaches a storage layer, where the data is persisted into a
storage medium (Figure 4.3-Õ). The reply request stating whether the operation was successfully
executed or not takes the reverse path and is propagated first to Layer 0 (Figure 4.3-Œ), and
eventually backward up to the application (Figure 4.3-—).

When using distributed layers (e.g., with replication), write operations are issued to multiple
sublayers or storage backends. These distributed layers can break some of the assumptions
made by the applications. For instance, rename and sync operations must be atomic. To
ensure correct semantics of the operations, a distributed layer should contain a synchronization
mechanism that ensures that an operation is only committed if successful in every backend.
Otherwise, the operation fails, and the file state must not be changed. A possible solution would
be a block cache that stores blocks before any operation is applied.

We have discussed so far how layers modify data from read and write operations. The
behavior for layers that modify the attributes and permissions of files and folders is similar. For
instance, a layer providing access control to files shared among several users will add this
behavior to the specific Fuse calls that read and modify the files. This design paves the way
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for layer reuse and for interesting stacking configurations. Individual layers do not need to
implement the totality of the Fuse API: if a layer only manipulate files, it only needs to wrap the
Fuse operations that operate over files. Fuse operations over folders can be ignored and passed
directly to the next layer without any additional processing. Layers can support the full Fuse API
or a restricted subset, and this allows for a highly focused layer development cycle.

4.3.2 Layer integration

Besides the standard Fuse API, each SafeFS layer implements two more functions. First, the
init function initializes metadata, loads configurations, and specifies the following layer(s) in
the specific SafeFS stack. Second, the clean function frees the resources possibly allocated
by the layer. The integration of existing Fuse-based implementations in the form of a SafeFS
layer is straightforward. Once the init and clean are implemented, a developer simply needs
to link its code against the SafeFS library instead of the default Fuse. Additionally, for a layer
to be stacked, delegation calls are required to forward requests to the layers below or above.
The order in which layers are stacked is flexible and is declared via a configuration file. Finally,
SafeFS supports layers that modify the size of data being processed (e.g., compression, padded
encryption) without requiring any global index or cross-layer metadata. This is an advantage
over previous work [WMZ03b], further discussed with concrete examples in Section 4.4.

4.3.3 Driver mechanism

Some of the privacy-preserving layers must be configured with respect to the specific perfor-
mance and security requirements of the application. However, these configurations do not
change the execution flow of the messages. From an architectural perspective, using a DES
cipher or an AES cipher is strictly equivalent.

With this observation in mind, we further improved the SafeFS modularity by introducing
the notion of driver. Each layer can load a number of drivers by respecting a minimal SafeFS
driver API. Such API may change according to the layer specialization and characteristics, as
further discussed in the next section. Drivers are loaded according to a configuration file at file
system’s mount time. Moreover, it is possible to change a driver without recompiling the file
system, re-implement layers, or to load new layers. Naturally, this is possible provided that the
new configuration does not break compatibility with the previous one. For instance, introducing
different cryptographic techniques will prevent the file system from reading previous data.

Consider the architecture depicted in Figure 4.2, with a privacy-preserving layer having two
drivers, one for symmetric encryption via AES and another for asymmetric encryption with RSA.
The driver API of the layer consists of two basic operations: encode and decode. In this scenario,
the cryptographic algorithms are wrapped behind the two operations. When a write request is
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intercepted, SafeFS calls encode on the loaded driver and the specific cryptographic algorithm
is executed. Similarly, when a read operation is intercepted, the corresponding decode function
is called to decipher the data. In order to change the driver, it is sufficient to unmount the file
system, modify the configuration file, and remount the SafeFS partition.

The driver mechanism can be exploited by layers with diverse goals, such as those targeting
compression, replication, or caching. In the next section we discuss the current implementation
of SafeFS and illustrate its driver mechanism in further details.

4.4 Implementation

We have implemented a complete prototype of SafeFS in the C programming language. Currently,
it consists of less than 4,200 lines of code (LOC), including headers and the modules to parse
and load the configuration files. Configuration files are used to describe what layers and drivers
are used, their initialization parameters, and their stacking order. The code required to implement
a layer is also remarkably concise. For example, our cryptography-oriented layer only consists
of 580 LOC. SafeFS requires a Linux kernel that natively supports Fuse (v2.6.14). To evaluate
the benefits and drawbacks of different layering combinations, we implemented three unique
SafeFS layers, as depicted in Figure 4.4. These layers are respectively concerned with data size
normalization (granularity-oriented), enforcing data privacy policies (privacy-preserving) and
data persistence (multiple backend). Since they are used to evaluate SafeFS, we detail them in
the remainder of this section.

4.4.1 Granularity-oriented layer

It is important to be able to stack layers that operate on data at different granularity levels, e.g.,
with different block sizes. For example, one might need to stack a layer that reports dynamic
sizes for file write and read operations over a layer that only works with fixed-sized blocks
([WMZ03a, enc]).

As a more concrete example, the Fuse user-space library reports file write and read

operations with dynamic sizes. Yet, many cryptographic algorithms only work with fixed-size
block granularity and hence require a block size translation mechanism. Such translation is
provided by the granularity-oriented layer. This layer opens the way to exploit block-based
encryption, instead of whole-file encryption, which is more efficient for many workloads where
requests are made only for small portions of the files. For instance, if only 3 bytes of a file are
being read and the block size is 4KB, then only 4KB must be deciphered while a whole-file
approach could require the entire file to be deciphered only to recover those same 3 bytes of
data.
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In more details, the translation layer creates a logical abstraction on top of the actual data
size being read, written, or modified. This is achieved by processing data write and read

requests from the upper layer and manipulating the offsets and data sizes to be read/written
from underneath layers. The manipulation of the offsets and sizes is done using two functions:
align_read and align_write. The drivers of the layer must implement both function calls to
define distinct logical views for read (for align_read) and write (for align_write) operations.
Operations on directories or file attributes are redirected to adjacent layers pristine.

Our prototype implements two drivers for the translation layer: a block and an identity driver
(ID). The block driver creates a logical block representation for both file write and read requests,
which will be used transparently by the following layers. This block abstraction is fundamental for
layers whose processing or storage techniques rely on block-based requests (e.g., block-based
encryption, de-duplication, etc.). Block size is configured on driver initialization. On the other
hand, the identity driver does not change the offset or the buffer size of the bytes read or written.
We use this driver as a baseline to understand the overhead of our block-oriented approach and
the layer itself.
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4.4.2 Privacy-preserving layer

The goal of this layer is to protect sensitive information in a transparent way for applications
and other layers of SafeFS. As explained in Section 4.3.3, file data being written or read is
intercepted by the layer and then ciphered (encode) or deciphered (decode). We support three
drivers: standard AES encryption (AES), deterministic encryption (DET ), and Identity (ID).

The AES driver leverages the OpenSSL’s own AES-128 block cipher in CBC mode [webd].
Both key and initialization vector (IV) size of the AES cipher are parameters defined during
the initialization of the driver. Our design follows a block-based approach for encrypting and
decrypting data. Hence, the block driver of the granularity-oriented layer is crucial to transparently
ensure that each encode and decode call issued by the AES driver receives the totality of the
bytes for a given block. Each block has a random IV associated, generated in the encode
function, that is stored as extra padding to the cipher text. The IV is important for decoding
the ciphertext and returning the original plaintext but keeping it public after encryption does not
impact the security of the system [BR05].

The Det driver protects the plaintext with a block-based deterministic cipher ( This cipher
does not need a new random IV for each encoded block and is hence faster than randomized
encryption. Despite compression algorithms being more efficient in plaintext, this driver helps
detect data redundancy over ciphertext, otherwise impossible to find with a standard randomized
encryption scheme.

Both drivers resort to padding (16 bytes from the AES padding plus 16 bytes for storing the
IV). For example, a 4KB block requires 4,128 bytes of storage. Manipulating block sizes must be
done consistently across file system operations. Every size modifying layer must keep track of
the real file size and the modified file size, so no assumption is broken for the upper and lower
layers. For instance, if a layer adds padding data, it only reports the original file size without the
extra padding to the previous stack layer.

Finally, we implemented an Identity driver, which does not modify the content of intercepted
file operations and is used as an evaluation baseline, similarly to the granularity-oriented Identity
driver. We note that drivers for other encryption schemes (e.g., DES, Blowfish, or RSA) could be
implemented similarly.

4.4.3 Multiple backend layer

The storage layers directly deal with persisting data into storage backends. In practice, these
backends are mapped to unique storage resources available on the nodes (machines) where
SafeFS is deployed. The number of storage backends is a system parameter. They may
correspond to local hard drives or remote storage backends, such as NFS servers accessible via
local mount points. The drivers for this layer follow the same implementation pattern described
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previously, namely via encode and decode functions. The encode method, upon a write request,
is responsible for generating a set of data pieces to be written in each storage backend from the
original request. The decode implementation must be able to recover the original data from a set
of data pieces retrieved from the storage backends.

Our evaluation considers three drivers: replication (REP), secret sharing (XOR), and erasure
coding (Erasure). The Rep driver fully replicates the content and attributes of files and folders to
all the specified storage backends. Thus, if one of the backends fails, data is still recoverable
from the others. The XOR driver uses a bitwise additive secret sharing to protect files. The driver
creates a secure block (secret) by applying the bitwiseexclusiveor to a file block and a random
generated block. This operation can be applied multiple times using the previous new secret
as input, thus generating multiple secrets. The original block can be discarded and the secrets
safely stored across several storage backends [GMW87]. The content of the original files can
only be reconstructed by accessing the corresponding parts stored across the distinct storage
backends. Finally, the Erasure driver uses erasure codes such as Reed-Solomon codes [Wic94]
to provide reliability similar to replication but at a lower storage overhead. This driver increases
data redundancy by generating additional parity blocks from the original data. Thereafter, a
subset of the blocks is sufficient to reconstruct the original data. The generated blocks are stored
on distinct backends, thus tolerating the unavailability of some of the backends without any data
loss. As erasure codes modify the size of data being processed, this driver resorts to a metadata
index that tracks the offsets and sizes of stored blocks on a per-file basis. The index allows
containing the size-changing behavior of erasure-codes within the layer, thus not affecting any
other layer.

4.4.4 Configuration stacks

The above layers can be configured and stacked to form different setups. Each setup offers
trade-offs between security, performance, and reliability. The simplest SafeFS deployable stack
consists of the multiple backend layer plus the Rep driver with a replication factor of 1 (file
operations issued to a single location). This configuration offers the same guarantees of a typical
Fuse loopback file system.

Increasing the complexity of the layer stack leads to richer functionalities. By increasing the
replication factor and the number of storage backends for the simplest stack, we obtain a file
system that tolerates disk failure and file corruption. Similarly, replacing the Rep with the Erasure
driver, one may achieve a file system with increased robustness and reduced storage overhead.
However, erasure coding techniques only work in block-oriented settings thus requiring the
addition of the granularity-oriented layer to the stack.

When data privacy guarantees are required, one simply needs to include the privacy-aware
layer into the stack. Due to the block-based nature of the Rep and Erasure drivers, the granularity-
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oriented is also required. However, note that when AES and Erasure are combined, the file
system stack only requires a single block oriented layer. This layer provides a logical block view
for requests passed to the privacy-aware layer. These requests are then automatically passed
as blocks to the multiple backend layer.

Using the XOR driver provides an interesting privacy-aware solution, since trust is split on
several storage domains. This driver exploits a bitwise technique not dependent on previous
bytes to protect information, thus it does not require a block-based view as privacy-aware drivers.

4.5 Evaluation

This section presents our comparative evaluation of the SafeFS prototype. First, in Section 4.5.1
we present the third-party file systems against which we compare SafeFS. Then, in Section 4.5.2,
we describe the selected SafeFS stack configurations and their trade-offs. Section 4.5.3 presents
the evaluation methodology and the benchmark tools. Finally, Section 4.5.4 and Section 4.5.5
focuses on the evaluation results.

4.5.1 Third-party file systems

Since our SafeFS prototype focuses on encrypted file systems, we deployed and ran our suite of
benchmarks on three well-known open-source file systems with encryption capabilities. More
precisely, we evaluate SafeFS against the CryFS [cry] and EncFS [enc] user-space file systems.
We further include eCryptfs [Hal10], a kernel-space file system available in the Linux mainstream
kernel. We selected those for being widely used, freely available, adopted by the community,
and offering different security trade-offs. We detail the characteristics of each system relevant
for the evaluation:

CryFS (v0.9.6) is a Fuse-based encrypting file system that ensures data privacy and protects
file sizes, metadata, and directory structure. It uses AES-GCM for encryption and is
designed to integrate with cloud storage providers such as Dropbox.

EncFS (v1.7.4) is a cross-platform file system also built atop Fuse. This system has no notion
of partitions or volumes. It encrypts every file stored on a given mounting point using
AES with a 192-bit key. A checksum is stored with each file block to detect corruption
or modification of stored data. In the default configuration, also used in our benchmarks,
a single IV is used for every file, which increases encryption efficiency but decreases
security.

eCryptfs (v1.0.4) includes advanced key management and policy features. All the required
meta-data are stored in the file headers. Similar to SafeFS, it encrypts the content of a
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mounted folder with a predefined encryption key using AES-128.

4.5.2 SafeFS configurations

Granularity-Oriented Privacy-Preserving Multiple-Backend

Groups Stack Block ID AES DET ID REP XOR Erasure

Baseline
Fuse ⇥ ⇥ ⇥ ⇥ ⇥

p
,1 ⇥ ⇥

Identity ⇥
p

⇥ ⇥ p p
,1 ⇥ ⇥

Privacy

AES
p

⇥
p ⇥ ⇥

p
,1 ⇥ ⇥

DET
p

⇥ ⇥
p

⇥
p

,1 ⇥ ⇥

XOR ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
p

,3 ⇥

Redundancy
REP ⇥ ⇥ ⇥ ⇥ ⇥

p
,3 ⇥ ⇥

Erasure
p

⇥ ⇥ ⇥ ⇥ ⇥ ⇥ p
,3

Table 4.1: The different SafeFS stacks deployed in the evaluation. Stacks are divided in three
distinct groups: Baseline, Privacy, Redundancy. The table header holds the three SafeFS layers.
Below each layer we show the respective drivers. For each stack, we indicate the active drivers
(the
p

symbol). Layers without any active drivers are not used in the stack. The indices for
Multiple-Backend drivers indicate the number of storage backends used to write data.

Our benchmarks use a total of 7 different stack configurations (Table 4.1). Each exposes
different performance trade-offs and allows us to evaluate the different features of SafeFS. The
chosen stacks are divided in three groups: baseline, privacy, and redundancy.

The first group of configurations, as the name implies, serve as baseline file system im-
plementations where there is no data processing. The Fuse stack is a file system loopback
deployment without any SafeFS code. It simply writes the content of the virtual file system
into a local directory. The Identity stack is an actual SafeFS stack where every layer uses
the identity driver. It corresponds to a pass-through stack where the storage layer mimics the
loopback behavior. These two stacks provide means to evaluate SafeFS framework overhead
and individual layer overhead.

The privacy group is used to evaluate the modularity of SafeFS and measure trade-offs
between performance and privacy guarantees of different privacy preserving techniques. In
our experiments we used three distinct techniques. The AES stack and DET stacks correspond
respectively to a standard and a deterministic encryption mechanism. The AES stack is expected
to be less efficient than DET as it generates a different IV for each block. However, DET has the
weakest security guarantee. The third stack, named XOR, considers a different trust model where
no single storage location is trusted with the totality of the ciphered data. Data is stored across
distinct storage backends in such a way that unless an attacker gains access simultaneously to
all backends, it is impossible to recover any sensitive information about the original plaintext.

Finally, the two remaining stacks deal with data redundancy. The REP stack fully replicates
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files into three storage backends. In our configuration, two out of three backends can fail, while
still allowing the applications to recover the original data. The Erasure stack serves the same
purpose but relies on erasure codes for redundancy instead of traditional replication. Data is
split into 3 fragments (2 data + 1 parity) over 3 backends for a reduced storage overhead of
50%, with respect to replication. This erasure configuration supports the complete failure of one
of the backends. These stacks provide an overview of the costs of two different redundancy
mechanisms.

4.5.3 Methodology

Our evaluation is divided in two settings, a micro-benchmark setting and a macro-benchmark
setting.

Micro-benchmark setting. The goal of the micro-benchmark setting is to compare the perfor-
mance of SafeFS with the third-party systems in a local setting where all of the data storage is
made on a single host, the trusted site. Furthermore, this setting only uses general benchmarks
that directly measure the latency of different file system operations without the overhead of a real
application. We conducted our micro-benchmark experimental evaluation using two commonly
used benchmarking suits: db_bench and filebench. The db_bench benchmark is included
in LevelDB, an embeddable key-value store [webc]. This benchmark runs a set of predefined
operations on a local key-value store installed in a local directory. It reports performance metrics
for each operation on the database. The filebench [webb] tool is a full-fledged framework to
benchmark file systems. It emulates both real-world and custom workloads configured using a
workload modeling language (WML). Its suite of tests includes simple micro-benchmarks as well
as richer workloads that emulate mail- or web-server scenarios. We leverage and expand this
suite throughout our experiments.

The experiments ran on virtual machines (VM) with 4 cores and 4GB of RAM. The KVM
hypervisor exposes the physical CPU to the guest VM with the host-passthrough option [webg].
The VMs run on top of hard disk drives (HDD) and leverage the virtio module for better I/O
performance. We deployed each file system implementation inside a Docker (v1.12.3) container
with data volumes to bypass Docker’s AUFS [weba] and hit near-native performance.

Macro-benchmark setting. The macro-benchmark aims to measure the overhead of a re-
mote encrypted file system in a production database. In this setting we consider a distributed
deployment with a database engine on a trusted site outsourcing storage to one or more remote
backends in an untrusted site. More concretely, we use the PostgreSQL database management
engine [Mac16]. This database is considered one of the most efficient and reliable database
systems used in the industry due to its long-history of open-source development. For the remote
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Figure 4.5: Relative performance of db_bench workloads against native.

backends we use NFS servers as it provide a standard file system interface that is ubiquitous
on any cloud or external third-party service. The evaluation was done using OLTP-bench v1.0
(oltpbenchmark) [DPCCM13], a testbed for relational databases. This testbed contains more
than 15 workloads that can stress a database system under different scenarios such as transac-
tional, analytical, web-oriented and NoSQL applications. Additionally, the testbed collects not
only the overall system throughput but also the resource usage of the remote servers as well as
database statistics.

The experiments ran on a private cluster with 5 physical nodes, each with an Intel Core
i3-7100 CPU, clock rate of 3.90 GHz and 2 physical cores with hyper-threading. All nodes had 16
GiB DDR3 RAM and a solid-state storage (Samsung PM981 NVME). The nodes were connected
with a single 10 GiB network switch. We note that all of the software was deployed on bare metal
without any virtualization or containers.

4.5.4 Micro-benchmark results

We ran several workloads for each considered file system (3 third-party file systems and 7
SafeFS stacks). The results have been grouped according to the workloads. First, we present
the results of using db_bench, then filebench and, finally, we describe the results of running
latency analysis for SafeFS layers.

db_bench evaluation. We first present the results obtained with db_bench. We pick 7 work-
loads, each executing 1M read and write operations on LevelDB, which stores its data on the
selected file systems. The fill100K test (identified by ¿) writes 100K entries in random order.
Similarly, the entries are written in random order (fillrandom, ¡) or sequentially (fillseq, ¬). The
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overwrite (√) test completes the write-oriented test suite by overwriting entries in random order.
For read-oriented tests, we considered 3 cases: readrandom (ƒ), to randomly read entries from
the databases, readreverse (≈) to read entries sequentially in reverse order, and finally readseq
(∆) to read entries in sequential order.

Figure 4.5 presents the relative results of each system against the same tests executed over
a native file system (ext4 in our deployment). We use a colour scheme to indicate individual
performance against native: red (below 25%), orange (up to 75%), yellow (up to 95%), and green
(>= 95%). We observe that all systems show worse performance for write-specific workloads
(¿–√) while performing in yellow class or better for read-oriented workloads (ƒ, ≈, and ∆). The
results are heavily affected by the number of entries in the database (fill100K ¿ vs fillrandom ¡).
As the size of the data to encrypt grows, the performance worsens. For instance, the SafeFS
XOR configuration (the one with the worst performance) drops from 21% to 0.5%. The same
observation applies for CryFS (the system with best performance) that drops from 79.78% to
12.33%.

The results for the fillseq ¬ workload require a closer look as they have the worst performance
in every file system evaluated. Since db_bench is evaluating the throughput of LevelDB which
is storing its data on the evaluated file systems, it is necessary to understand an important
property of LevelDB. The database is optimized for write operations, which results for fillseq, in
high throughputs on native file systems contrasting with the selected file systems, where the
throughput is significantly lower. As a matter of example, comparing throughputs for fillseq vs
fillrandom on native (17.4 MB/s vs. 7.74 MB/s) and CryFS (1.14 MB/s vs. 0.94 MB/s) shows
how much of the initial gains provided by LevelDB are lost.

While the processing of data heavily impacts the writing workloads, reading operations (ƒ,
≈ and ∆) are relatively unaffected. The results for readrandom range from 87.05% with CryFS
up to 99.81% for eCryptFS. Moreover, in experiments that switch the reading offset, the results
are even better. In more details, the results never drop below 95.67% (readreverse on EncFS)
independently of whether the reading is done from the beginning or the tail of the file.

Overall, the different SafeFS stacks perform similarly for the different database operations.
The privacy stacks (see Table 4.1) performs comparably to the other file systems on most
operations. Only the fill100K test shows significant differences, in particular against CryFS
and eCryptFS. As expected, the deterministic driver provides a better performance (46.69%)
against AES (40.96%) and XOR (20.98%). The redundancy stacks perform similarly. The erasure
driver is slightly less efficient (22.11% of the native performance) due to the additional coding
processing.

filebench evaluation. Next, we look at the relative performance of various workloads from
filebench. Figure 4.6 depicts our results. We use the same color scheme as for db_bench. The
seven workloads, executed over the different file systems and configurations, can be separated
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Figure 4.6: Relative performance of filebench workloads against native.

in two sets: application emulations (file-server ¿, mail-server ¡, web-server ¬) and micro-
workloads (√ to ∆). This classification also introduces 3 major differences. First, the application
emulation benchmarks last for 15 minutes, while the micro-workloads terminate once a defined
amount of data is read or written. Second, the number of threads interacting with the system is
respectively set to 50, 16, and 100 for the three workloads ¿, ¡, and ¬, while micro-workloads
are single-threaded. Third, the focus of micro-workloads is to study the behavior of a single type
of operation while the application emulations usually run a mix of read and write operations.

In the micro-workloads (√–∆), we observe the performance of the tested solutions in simple
scenarios. Reading workloads (√ and ≈) are most affected by the reading order. Surprisingly, our
implementation performs better than the baseline with DET at 104.68% on random reads. These
observations contrast with the results obtained for sequential reads where the best performing
configuration in this case is SafeFS fuse (94.24%). On the writing side, micro-workloads ƒ

and ∆ also display different results. For sequential writes (∆), SafeFS Identity stack tops the
results at 55.56% of the native performance. On the other end of the scale, SafeFS XOR stalls at
9.14%. The situation does however get a little better when writing randomly: XOR then jumps
to 14.98%. An improvement that contrasts with the case of erasure coding (that has to read all
the existing data back before encoding again) where the performance dramatically drops from
29.93% to 0.7% when switching from sequential to random writes.

On the application workloads side, the mixed nature of the operations gives better insights
on the performance of the different systems and configurations. The systems that make use of
classical cryptographic techniques consistently experience performance hurdles. As the number
of write operations diminishes, from ¿ to ¬, the performance impact decreases accordingly.
Another important factor is the use of weaker yet faster schemes (such as re-using IVs for
SafeFS DET). As expected, those provide better results in all cases. Indeed, DET tops at 38.74%
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Figure 4.7: Execution time breakdown for different SafeFS stacks.

for ¡. Resorting to more secure solutions can still offer good results with SafeFS AES (¿: 28.40%,
¡: 32.32%, and ¬: 32.79%) but the need for integrated access control management should
not be neglected for an actual deployment. The remaining SafeFS stacks also exhibit signs of
performance degradation as the data processing intensifies.

Beyond the specifics of the data processing in each layer, the performance is also affected
by the number of layers stacked in a configuration. As evidence, we observe that the Identity

stack has a small but noticeable decrease of performance when compared with other FUSE
stacks. Overall, the privacy-preserving stacks of SafeFS with a single backend have a better
performance than the other available systems across the workloads. This benchmark suggests
that user-space solutions, such as those easily implementable via SafeFS, perform competitively
against kernel-based file systems.

Layers breakdown. In addition to using db_bench to study the performance degradation intro-
duced by SafeFS, we use some of its small benchmarks (fill100K, fillrandom, fillseq, overwrite,
readrandom, readreverse, and readseq) to measure the time spent in the different layers as
the system deals with read and write operations. To do so, SafeFS records the latency of both
operations in every layer loaded in the stack. The results obtained are presented in Figure 4.7.
We note that for all these benchmarks, the initialization phase is part of the latency and that the
time stacks show the sum of a layer’s inherent overhead and the time spent in the underlying
layers.
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Figure 4.8: Relative performance of oltpbench workloads against native.

As expected, the time spent in each layer varies according to the tasks performed by the
layers. The 3 most CPU-intensive stacks (AES, DET and Erasure) concentrate their load over
different layers: sfuse for the first two and multi for the last one. Indeed, more time is spent in
multi, the lowest layer, in non-privacy-preserving configurations. Another noticeable point is the
increase in time spent reading data back for Erasure in the multi layer (11.03% for fill100K,
21.19% for fillrandom, and 21.53% for fillseq) compared to the decrease for REP (respectively
8.02%, 1.93%, and 0.05%) and XOR (4.03%, 2.59%, and 0.05%) stacks.

4.5.5 Macro-benchmark results

In the macro-benchmark we are concerned on measuring the overhead of outsourcing the
data storage to a remote encrypted file system. As such, we focus our evaluation on the
security stacks of SafeFS and compare the results to a native remote file system and to a
kernel-space alternative, eCryptFS. The evaluation consists on measuring the throughput of 5
different workloads. Before evaluating a workload, the database is cleaned and initialized with a
new scheme and fresh data records. From the set of workloads supported on oltpbench we
selected two transactional workloads, two web-based workloads and a single NoSQL workload.
For the transactional workloads and the web-based workloads we used a small and a large
database size. All workloads were evaluated with a single client connection.

In transactional workloads a client submits sets of SQL queries to the database that either
modify or manipulate the data and if a single query fails, the database has to be restored
to a previous consistent state. The transactional workloads include the tatp (identified by ¿)
workload [Neu] that emulates a typical small home location register used by telecommunication
providers and the tpcc (identified by ¡) workload that simulates large warehouse-centric order
application. The tatp transactions have no more than 3 queries and are mostly read-intensive
whereas transactions in tpcc touch multiple tables and are write-intensive. The tatp workload
was evaluated on a database populated with 14 GiB while tpcc was evaluated with 50 GiB.

The web-based workloads do not have transactions, instead the focus is on emulating social
networks with database schemas that have many-to-may relationships and graph queries with
non-uniform accesses. We selected two workloads that simulate popular social networks, the twit-
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Figure 4.9: Network I/O of SafeFS AES, eCryptFS and native on tatp workload.

ter (identified by ¬) workload [CHBG10] and the wikipedia (identified by √) workload [UPvS09].
The foremost workload was evaluated with a database populated with 13 GiB while the latter
had 47 GiB. We also evaluated an additional workload that captures NoSQL systems that have
a simpler data model with just key-value operations. The YCSB (identified by ƒ) [CST+10]
workload simulates applications that require high-scalable NoSQL databases. The database
was populated with 16 GiB.

Figure 4.8 presents the results of the macro-benchmark evaluation with 1 hour runs for
every combination of system and workload. The results presented is the ratio of the throughput
in comparison to the native file system and we use the same color scheme as the previous
benchmarks. Across every workload, the SafeFS stacks have similar performance with the
exception of the SafeFS XOR stack. The encoding and distribution of data leads to a greater
performance difference. This difference is mostly prominent in the smallest datasets with
twitter having the highest performance decrease with an overhead 64%. In contrast, the
SafeFS XOR stack has the smallest overhead in the workload tpcc from all of the SafeFS stacks
with just a 7% performance slowdown. In alignment with the previous results, the SafeFS DET

stack has a better performance than SafeFS AES and has a relative performance ratio between
76% and 89% across every workload. However, there is no clear performance advantage of
using SafeFS DET over SafeFS AES in the web-based workloads as there is at most a negligible
difference of 3% in the wikipedia workload. The ycsb workload has almost a constant overhead
in every SafeFS stack that varies between 74% and 81%.

These results show that kernel-space solutions, in particular eCryptFS, have a small but
considerable advantage over SafeFS in this macro-benchmark setting. As observed, in almost
every workload eCryptFS has at most a 3% performance overhead in contrast to the native.
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However, in the tatp workload this overhead increases to 9%. In fact, when compared to SafeFS
DET, eCryptFS is only 2% faster. Figure 4.9 provides a in-depth look at the network usage of
both systems as well as to the native network file system. We observe, that the network write
traffic of SafeFS DET overlaps with eCryptFS and both follow the same pattern as the native file
system. However, the write traffic of SafeFS DET stabilizes between 2 to 8 MiB/s after 30 minutes
whereas eCryptFS is consistently writing more than 4 MiB/s. Depending on the information
stored by applications similar to tatp it might be an acceptable security trade-off to use SafeFS
DET over eCryptFS due to the lower resource usage and the similar performance.

4.6 Summary

In this Chapter we addressed the problem of outsourcing a database storage to an untrusted
third-party while processing queries on a trusted client. We address this problem with a high-
level approach that abstracts the application and protects data at the file system level. Existing
systems are divided in kernel-based solutions and user-space solutions, but state-of-the-art
solutions are monolithic and only support a limited set of encryption schemes. We propose
SafeFS, a modular user-space Fuse-based architecture that allows applications to compose
functional components (layers), each with a specific feature (drivers). This modular and flexible
design allows extending layers with novel algorithms in a straightforward fashion, as well as
reusing existing Fuse-based implementations. SafeFS layers can be used to compress, encrypt
and replicate applications data without any intrusive modification to applications.

We compared several SafeFS stacking configurations against state-of-the-art systems and
demonstrated the trade-offs for each of them. Our extensive evaluation based on real-world
benchmarks, including multiple database workloads, show that our user-space approach has
a practical performance and is in fact a suitable alternative to more efficient kernel-space
solution. Database benchmarks show that SafeFS most efficient privacy stacks have at most
26% overhead in comparison to a native NFS remote file system. We see two future lines of
work in SafeFS. We envision a context and workload-aware approach to choose the best stack
according to each application’s requirements (e.g. storage efficiency, resource consumption,
reliability, security) leveraging SDS control plane techniques that enforce performance, security,
and other policies across the storage vertical plane stack [TBO+13]. For instance, applying
stacks on a per-file basis, meaning that SafeFS encrypts only sensitive tables of a database
system instead of using the same privacy stack to every file and folder. Security-wise, SafeFS
still discloses some information to an untrusted server such as the which files are most accessed,
which blocks are read/updated and how many times they are touched. While there are encryption
schemes that address this problem, their integration as new layers is not straightforward as
they require multiple communication rounds with the untrusted server. Furthermore, a naive
integration can result in a prohibitive overhead and there may be significant optimizations left
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unexplored that are application specific.
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Chapter 5

A trusted NoSQL database on
untrusted clouds

In this chapter, we present our second main contribution, a multi-cloud NoSQL framework that
protects the users confidentiality by distributing data as well as query processing on multiple
non-colluding parties. This works adds an additional security layer on top of the encrypted
storage presented in the previous chapter and advances even further the idea of leveraging
multiple cloud providers. The results obtained with this work present a novel trade-off between
privacy and performance in the state of the art of CPD by leveraging secure multiparty protocols.

5.1 Introduction

Offloading only the database storage to an untrusted site using encryption is a prudent choice for
the most privacy-sensitive applications. By processing queries on a trusted private site and never
disclosing the encryption key, the client remains in control of the database. However, to benefit
from the cloud paradigm to the full extent applications have to outsource computation securely.
Recent efforts have tackled this challenge with PPE schemes such as CryptDB [PRZB11] and
SQL Server Always Encrypted [Mica] which are considered the state-of-the-art on CPD.

However, these systems have a few issues, as the same security guarantees that make
PPE schemes attractive end up compromising the user’s confidentiality. In fact, if a malicious
external attacker gains access to a data dump of a database they can learn sensitive information
even if the data is encrypted. For example, a common attack vector consists in performing
frequency analysis on datasets without a uniform distribution. Notably, prior work has shown
that, depending on the dataset, more than 50% of the data can be disclosed by correlating
information from different columns [DDC16]. Inference attacks are also effective at disclosing
sensitive data with more than 90% accuracy from a single database snapshot encrypted with
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PPE schemes [BGC+18].

In this chapter we explore a different approach to centralized privacy-aware database that
use multiple cryptographic schemes. We propose d’Artagnan, a secure multi-cloud NoSQL
database framework that decentralizes information by encrypting data in secrets and storing
them in independent databases, each hosted on a different cloud provider. A single secret
does not leak any information and the original plaintext value can only be decrypted if the
majority of the secrets are obtained by a single entity (e.g.: client application). Furthermore,
with these secrets d’Artagnan can process any query on the server-side by evaluating secure
cryptographic protocols. An immediate result of such system is that a data breach of a single
cloud is inconsequential and, for any significant information to be obtained, the majority of the
clouds that constitute d’Artagnan must be compromised. Clearly, the effort required to break the
system grows with the number of cloud providers used.

At the core of d’Artagnan are secret sharing schemes and secure multiparty protocols. Secret
sharing schemes are used to encrypt data in multiple secrets while SMPC protocols enable
the database to process queries over the secrets. These cryptographic techniques have been
overlooked by SQL and NoSQL databases as a practical alternative to PPE schemes despite
being capable of evaluating any function and supporting passive as well as active adversaries.
Furthermore, protocols remain secure until a predefined threshold of parties are corrupted
(e.g.: the majority of the parties). However, leveraging these protocols on a database requires
addressing some common distributed system challenges such as establishing a network of
nodes, discovery nodes and supporting dynamic removal or addition of new nodes.

We address this gap with the design of a high-level, modular and extensible multi-cloud
database framework that encrypts data in secrets and process queries with SMPC protocols. The
system hides the details of the underlying cryptographic protocols and the distributed execution
of secure queries under a standardized NoSQL API. Note that we chose to focus on key-value
NoSQL systems as they provide a small kernel of operations that can be composed to create
richer queries similar to SQL databases.

This chapter has 6 sections, starting with Section 5.2 that defines a general model of the
problem addressed. Section 5.3 presents d’Artagnan’s architecture and Section 5.4 describes
how every component in the system interacts to securely process queries. Section 5.5 describes
the prototype implementation. Section 5.6 presents and discusses the experimental evaluation.
Finally, Section 5.7 provides a discussion of this chapter.

5.2 Problem definition

In this chapter we address the problem of securely outsourcing computation as well as storage
of a NoSQL database to multiple third-party services. More precisely we limit the problem to
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Figure 5.1: System models of a plaintext NOSQL database and the d’Artagnan approach.

key-value NoSQL database systems. These databases are suitable for applications that handle
eventually consistent data, support lack of database-wide transactions and require a flexible data
scheme [Cat11]. Conceptually, data is stored in named multi-dimensional maps, similar to hash
tables, where values are indexed by a unique key and a column. The map data structure does
not follow a static schema and is dynamically adjusted as new rows are inserted. Clients interact
with the database to store or process data through an interface similar to the following [Mel98]:

Put(Table, Column,Key, V alue): Given a table, store a value indexed by the row key and
column.

Update(Table, Column,Key, V alue): Given a table, update the record indexed by the row key
and column with the specified value.

Get(Table, Column,Key): Retrieve the value of a table indexed by a row key and a column.

Delete(Table, Column,Key): Delete the value of the table indexed by a row key and a column.

Scan(Table, Start, Stop): Retrieve the records of a table whose index is greater than or equal
to the identifier Start and lower than the identifier Stop.

Filter(Table, Condition): Given a table, retrieve all the records that validate the condition predi-
cate. The condition can specify columns, propositional formulas, and regular expressions.

In Figure 5.1a we depict a high-level model of the problem of outsourcing a NoSQL database
to an untrusted service. This model is divided in a Trusted Site and a Untrusted Site. On the first
part resides a user application (e.g.: web-server) that interacts with the NoSQL database with a
native NoSQL client (Figure 5.1a- ). The NoSQL client exposes an interface similar to the one
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previously defined. Application requests are intercepted by the NoSQL client and forwarded to
the NoSQL database (Figure 5.1a-À) deployed on a single cloud.

On the Untrusted Site, the NoSQL database architecture consists of a distributed system with
multiple nodes. Generally, NoSQL databases trade strict consistency and transactional support
for a highly scalable, distributed architecture [Cat11, CDG+08]. This trade-off is key to design
“shared nothing” databases that scale horizontally by partitioning data into shards, range of table
rows uniquely defined by an initial row key and a final row key. Shards are created as a table
grows, replicated and balanced between a pool of computing nodes. Every shard is assigned to
a single node, but a node can manage multiple database shards. The mapping between a shard
and a node is considered meta-data managed by a proxy master node. However, this proxy node
is only used sporadically by database clients to find nodes that contain specific regions. Queries
are directly sent to computing nodes without any middleman. In case of a node failure, its shards
are reassigned to the remaining live nodes which handle incoming requires while a new node is
added to the cluster. Nodes are stateless and can be considered individual processing units that
do not share any in-memory context between each other.

We now give an intuition on our approach to cryptographically protect data. We depict our
approach in Figure 5.1b but provide a more detailed and extensive description of our architecture
in the following sections. Whereas current systems store encrypted data on a single system,
we split data by multiple K NoSQL databases. We keep the division between Trusted Site and
a Untrusted Site but we add to each site a d’Artagnan component. On the Trusted Site, the
user application sends and receives requests as plaintext (Figure 5.1b  ). When a request is
intercepted by the d’Artagnan client than data is encoded into multiple shares (Figure 5.1b-À).
The shares are forwarded to the d’Artagnan framework that is deployed on the Untrusted Site
alongside K clouds. The d’Artagnan component stores the shares on the NoSQL databases
(Figure 5.1b-Ã) and retrieves them to process queries as necessary. The number of clouds is
fixed, and each cloud contains an independent NoSQL database that has a varying number of
N computing nodes. The number of nodes inside each database can be dynamically adjusted
depending on the application workload. The d’Artagnan framework ensures data stays consistent
across the clouds and that queries are correctly evaluated. To ensure no single component
besides the NoSQL client has all the share, the d’Artagnan framework is in fact a distributed
component split across the clouds.

5.2.1 Trust model

In a N -cloud system, d’Artagnan encrypts sensitive values with a (N , t)-secret sharing scheme
and stores each share on a single database. The division of data in shares ensure that data at
rest remains secure as long as no more than t clouds are compromised. Even if a subset of the
cloud providers leak multiple database snapshots, it is proven to be impossible to decrypt the
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original values [Sha79].

Besides protecting data at rest, d’Artagnan’s goal is to protect user’s confidentiality during
query processing. In this case, d’Artagnan security guarantees depend on the properties and
trust model of SMPC protocols. d’Artagnan is designed to leverage different SMPC protocols
to protect user’s data from external attackers and malicious insiders. We assume the simplest
adversary supported by the majority of SMPC protocols. We consider a static, semi-honest
adversary that can corrupt a threshold of the clouds. For each corrupted cloud, the adversary
has access to all of the database computing nodes, the messages received and sent by the
nodes as well as the request access patterns, the storage access patterns, the data stored in
memory and persisted to storage. However, the adversary does not have access to anything
that happens on the Trusted Site and cannot corrupt more nodes than the predefined threshold
at any moment. Stronger adversaries can also be supported by d’Artagnan such as active or
dynamic adversaries if the appropriate multiparty protocol is used.

5.3 Architecture

d’Artagnan’s architecture, depicted in Figure 5.2, coordinates independent key-value databases.
Each database is hosted at different cloud providers and d’Artagnan’s architecture creates a
logical NoSQL database capable of processing queries over encrypted data. This decentralized
approach prevents a single cloud provider or a database vulnerability from corrupting and
compromising the entire system’s security guarantees. When taken to the limit, it is entirely
possible to have a system deployment where the first cloud (Party 1) is a BigTable database
on Google’s Cloud, the second cloud (Party 2) hosts a Dynamo DB in Amazon AWS and the
remaining clouds host entirely different databases.

From a high-level perspective, the framework operates across a Trusted Site and an Untrusted
Site. The Trusted Site is the system’s entry-point where the client application resides sheltered
from attacks. This site, possibly a private trusted infrastructure, is where sensitive data is
encrypted before being outsourced to the cloud. The Untrusted Site is where all the data storage
and query processing take place. This site has two or more clouds, each playing the role of a
SMPC protocol party. Every party (cloud) hosts an autonomous key-value NoSQL database
which has no knowledge of the remaining parties. Without d’Artagnan’s components, the party’s
databases are nothing more than a storage system that holds encrypted data. This section
describes these components and their role on the framework architecture.

5.3.1 Trusted site

The first component is the Safe Client, a privacy-preserving layer between the Trusted Site
and Untrusted Site. This component has two main goals, abstract the multiple underlying
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NoSQL databases and protect sensitive data. The first goal is accomplished by exposing an
high-level NoSQL API, as defined in Section 5.2, that enables applications to use d’Artagnan
as a single NoSQL database. The high-level queries are transformed into multiple low-level
requests sent to the Untrusted Site. However, before any query is sent to the Untrusted Site,
Safe Client encrypts sensitive user information. The client can specify, on a column basis, the
SMPC protocols used to process queries. For instance, a client can choose to protect a subset
of table columns with protocols that ensure confidentiality against an active adversary while
another subset is protected with protocols that just provide confidentiality against a semi-honest
adversary. To ensure different security guarantees each protocol may implement a different
secret sharing scheme. As such, Safe Client delegates the encryption and decryption of data
to external software libraries that implement the following API:

Encode(secret, n, k)! [shares]: Encode a secret in n shares such that only k shares are
required to decode the secret. This function returns a list of shares.

Decode([shares])! secret: Given a list of shares, decode them and return the secret.

5.3.2 Untrusted site

Safe Server. The Safe Server component is the processing engine of the Untrusted Site.
This component is a distributed layer with multiple nodes, at least one node per party, that
intercepts high-level Safe Client requests and converts them into secure operations. The
conversion process depends on the client request, the security model and the underlying
databases, but it ensures that every client key-value NoSQL query is converted into a sequence
of database-specific requests and SMPC protocols that have a semantically identical functionality
with additional security guarantees. Overall, the Safe Server initializes the necessary resources
and leverages every available component, the Multiparty Library, Network Middleware,
Discovery Service and the underlying database to securely process client requests. A detailed
description of the query transformation process and interaction of each component is presented
in Section 5.4.

Multiparty Library. The Multiparty Library component contains the implementation of
the secure multiparty protocols. This component abstracts the details of protocol implemen-
tations from the Safe Server with a high-level interface. Let p = {sp0, sp1, . . . spn} and
k = {sk0, sk1, . . . skn} be two secret shared values and p � k a comparison operation such
that � 2 {=, <,>,,�}. The multi-party library API supports the following operation set •:

• Equal(spi, ski)
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Figure 5.2: d’Artagnan architecture has two parts: a Safe Client and a Logical Database. The Safe Client
resides on the Trusted Site and intercepts client requests. The Logical Database consists of independent
NoSQL databases hosted at independent cloud providers. Cloud providers are considered an Untrusted
Site. In both parts, the gray boxes refer to d’Artagnan components and white boxes represent unmodified
third-party components.
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• LessThan(spi, ski)

• GreaterThan(spi, ski)

• LessThanOrEqualTo(spi, ski)

• GreaterThanOrEqualTo(spi, ski)

such that p � k ⌘ spi • ski. This interface has a set of core operators capable of satisfying
the high-level key-value NoSQL API. However, this set is extensible and can support additional
application-specific functions.

This library also defines a clear boundary between the database execution and the SMPC
protocols’ implementations. It encapsulates the details of the NoSQL database from the protocol
implementations, enabling expert cryptographers to integrate new protocols without having to
write database-specific logic. All of the necessary context to integrate new protocols is provided
by an execution environment that contains a Safe Server party ID and a Network Middleware

client. The party ID determines how the library evaluates a protocol circuit and the Network

Middleware client enables the parties to exchange shares.

Network Middleware The Network Middleware component establish a mesh network be-
tween every party and ensures the protocols exchange shares correctly. The parties can evaluate
protocols and communicate via the following network interface:

Send(playerID, share): send a share to a player.

Receive(playerID): receives a share from a player.

This simple interface can support a wide range of SMPC protocol implementations and
abstracts the Multiparty Library from concurrent protocol executions. At any time, a single
Safe Server node can process multiple concurrent requests and start parallel SMPC protocols
in the Multiparty Library. If concurrent protocol executions have to send shares from party
A to party B, the Network Middleware multiplexes the shares sent by party A and forwards
them to the correct protocol execution environment in party B. With this approach, the protocols
in the Multiparty Library only need to implement the circuit’s logic without having to deal
with concurrency issues.

Besides concurrent protocol execution, the Network Middleware also handles the execution
of protocols in a dynamic setting. The set of computing nodes in a NoSQL database that play the
role of parties in a protocol is not static and can be added or removed as necessary. For instance,
the set of available nodes can increase to improve the system availability and performance
while ensuring the same security guarantees. As such the Network Middleware adapts to
the dynamic set of nodes and routes the shares to the correct participants by leveraging the
Discovery Service.
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Discovery Service The Discovery Service component keeps track of the Safe Server’s

nodes status and location. Every time a node goes online in any of the clouds it notifies the
Discovery Service with a payload. The payload contains meta-data regarding the node, such
as the node’s IP address and the database tables it manages. When a node goes offline, it
reports its new status to the service. None of the information regarding the shared secrets is kept
on the Discovery Service and the connections between the nodes is made directly through
the Network Middleware without using the Discovery Service as a proxy. d’Artagnan makes
no assumptions on the actual implementation of the Discovery Service. Since the meta-data
contains no sensitive information, it can be stored on a distributed NoSQL database to avoid a
single point of failure and deployed in any public or private infrastructure.

5.4 Secure query processing

This section describes how d’Artagnan processes queries securely and how every component
interacts. We use a Filter operation as an example. Figure 5.3 depicts an illustrative deployment
scenario with N clouds used throughout this section. The first cloud hosts a BigTable database
whereas cloud N cloud hosts an HBase database. In this example, d’Artagnan stores a Table T

with M columns, from column C1 to column CM . In this table only the columns store sensitive
data and the row keys are simple plaintext identifiers (e.g: K1 and K2 in Figure 5.3).

Consider a client plaintext Filter(T,C1 == D) request on table T to search for every record
where the column C1 has the value D. The table can have several records matching this
condition, but, for simplicity purposes, let us consider that only the record with key k4 (last row of
table T) has value D. Every value stored in the tables is encrypted in shares, with each database
storing a single secret. The Safe Servers task is to find its party’s secrets of the matching rows
and send it to the Safe Client. Upon receiving all secrets, the Safe Client can disclose the
result and send it to the client.

The first step in d’Artagnan’s execution flow consists in protecting the client’s plaintext Filter
(Figure 5.3-∂). Upon receiving the request, the Safe Client has three main tasks. First, it
checks the client’s security requirements to select the secret sharing scheme to use. Secondly,
it encrypts the search value D in N shares with the proper secret sharing scheme. Finally,
it generates N secure Filters, each containing a single secret instead of the client’s plaintext
values. Afterwards, the filters are sent in parallel (Figure 5.3-∑) to the cloud providers, one filter
per party. It’s worth noting that the encrypted shares are always random and not deterministic.
As such, the shares generated in the Safe Client for the value D are different from the shares
stored in the databases for the same value. The only way the database can process the incoming
request is with an SMPC protocol.

Every party’s Safe Server intercepts the secure queries and start an execution flow to
process the secure Filter. The flow is identical in every party and executed in parallel by each
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party’s Safe Server. Thus, we describe the execution flow from the viewpoint of party 1 depicted
in Figure 5.3. Upon intercepting the request, the Safe Server scans the database (BigTable) in
batches. In this example there is only a single batch, from K1 to K4 (Figure 5.3-∏). Afterwards,
it creates an execution environment containing its player ID (1) and a Discovery Service client.
With the execution environment, the Safe Server is ready to find the records that satisfy the
Filter condition and starts an Equal protocol (Figure 5.3-π) with the shares stored in column C1.

The Multiparty Library starts to participate in the protocol execution by evaluating the
Equal encrypted circuit (Figure 5.3-∫). Eventually, every party’s Safe Server reaches this point
and also starts to participate in the protocol by invoking the same function with their own shares.
The compiled Equal circuit is composed of multiplication gates that requires parties to exchange
shares during the circuit evaluation. However, before any share can be sent, the Network

Middleware contacts the Discovery Service to store a payload signaling its location and the
request it’s processing (Figure 5.3-ª). This information enables each party’s Safe Server to
find its peers in the computation. For instance, if party 1 has to send a share to party N , the
Network Middleware asks for the IP address of the Safe Server in party N that is processing
an Equal protocol on table T . In a real execution, additional information is required since there
can be multiple concurrent protocols being executed. However, for the Multiparty Library

these details are abstracted by the Network Middleware. When the parties learn each other’s
locations, the party’s Network Middleware establish a communication channel and exchange
the necessary shares to evaluate the protocol (Figure 5.3-º).

The protocol evaluation either completes successfully or aborts. Protocols abort if the
implementation ensures fairness guarantees and an active attack is detected. Moreover, a
protocol with identifiable aborts [CL17] returns the party ID of the corrupted party. In this
scenario, the information is sent to the client that decides the proper course of action. A
successful protocol evaluation returns the rows satisfying the Filter request. In the example,
it’s the row with key K4 depicted in Figure 5.3. An attacker also learns this information if a
party is corrupted. Even though this information by itself is not sufficient to break the system’s
confidentiality, it’s an open problem that can be addressed with protocols that ensure oblivious
execution [KS14a]. The server-side processing ends with every Safe Server sending the
shares of the rows that satisfy the protocol to the Safe Client (Figure 5.3-Ω) which discloses
the original row values and returns the correct result to the client (Figure 5.3-æ).

5.5 Implementation

We implemented a complete and fully-functional prototype. This prototype supports Apache
HBase, a scalable, open-source NoSQL relational database [hba]. HBase stores data in a
multi-dimensional map similar to the NoSQL data model previously presented in Section 5.2.
However, tables are partitioned automatically by the system in multiple shards. A shard is a
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storage unit of a subset of consecutive tables rows that enables the system to scale horizontally
by balancing the workload between the database’s computing nodes.

A single HBase deployment is a distributed system with two types of nodes: a single Master
node and multiple RegionServers (computing nodes). The Master stores meta information
regarding cluster configuration and database tables. The RegionServers stores and processes
all of the database data. Each RegionServer hosts a set of shards and each shard can only be
served by a single RegionServer. The query execution is handled directly between clients and
RegionServers.

d’Artagnan’s components are implemented in Java. The Safe Client prototype provides
the same API as the HBase client but manages multiple HBase client connections, one for each
party. As described in Section 5.3, this component transforms plaintext HBase queries into
secure HBase requests. However, the Safe Client prototype contains a pool of threads that
executes the secure requests in parallel. The results of the secure requests are decrypted and
aggregated in a single final result forwarded to the client application.

The Safe Server component is integrated as an HBase coprocessor, a feature that enables
developers to extend RegionServers behavior with plugins. The coprocessors intercept every
request sent to a RegionServer and have access to an internal database API capable of modifying
the RegionServers core behavior. This approach brings secure query processing closer to the
data by removing a network hop between the Safe Server nodes and the parties databases.

In this prototype a Safe Server node is instantiated per RegionServer. Since each HBase
database cluster can have more than a single RegionServer, the role of a single SMPC party
is in fact played by multiple Safe Server nodes. To manage the multiple nodes as a single
party, the Safe Server nodes store a payload on the Discovery Service, implemented as
a Redis [Red] database. The payload contains the address of each Safe Server node, the
party it belongs to and a unique request identifier for each client query. This information
enables the Network Middleware to discover which Safe Server nodes are evaluating an
SMPC protocol and establish a mesh network. Even when one or more parties have multiple
Safe Server nodes, each processing concurrent requests, the Network Middleware is able
to route shares between the nodes participating in a protocol. The information stored on the
Discovery Service reveals no information on the actual shares as the communication between
the parties is made directly through TCP channels without using the Discovery Service as a
proxy. Furthermore, all of the data stored on the Discovery Service can be cryptographically
signed to prevent a malicious attacker from corrupting the information.

The Multiparty Library is implemented in Java and currently supports the protocols
proposed by Bogdanov et al. [BNTW12]. These protocols are among the most efficient in
the state-of-the-art and are one of the few protocols applied in the industry to protect critical
information [BLW08]. This protocol suit is optimized for three independent parties with a single
dealer and ensures confidentiality against a semi-honest adversary.
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d’Artagnan inherits the security guarantees of the underlying secure multiparty protocols. As
such, this prototype protects the user’s confidentiality against malicious insiders and external
attackers that do not modify the protocol execution. Although the current prototype does not
support protocols that protect the user’s confidentiality against an active adversary, new protocols
can be integrated to protected data from such adversary. For instance, the current framework can
easily leverage protocols such as the SPDZ Protocol Suite [SB18] which detects the presence
of a corrupted party. Supporting these protocols only requires writing two wrappers: the
wrapper for the encode and decode functions in the Safe Client; the protocols wrappers for the
Multiparty Library. The remaining components, the Safe Server, Network Middleware

and Discovery Service are orthogonal to the underlying protocol implementations and require
no modifications.

5.6 Evaluation

This section presents the evaluation of d’Artagnan’s prototype in two experimental settings,
including a complete system deployment on public cloud providers. Furthermore, it demonstrates
the current performance bottleneck of one of the most efficient secure multiparty protocols
protocols with an industry-proven benchmark.

5.6.1 Experimental setup

Methodology. The evaluation measures d’Artagnan throughput (OP/s), and latency in two
different settings. The first is a controlled setting of a fully distributed deployment designed to
establish the system’s performance baseline. The second scenario validates the prototype with
a real-world deployment on the leading cloud providers: Google Cloud Platform [Goo], Microsoft
Azure [Micb], Digital Ocean [Dig] and Amazon AWS [Ama]. HBase is the baseline used in both
scenarios.

Use case. We use a synthetic use case of a medical clinic with an appointments table. The
table contains the columns: Physician ID, Patient ID, Date, Type and Institution ID. Records in
this table contain private data that must be protected. The information stored on the table reveals
the location (Institution ID), Type (e.g.: Cardiology, Oncology) and date of an appointment.
Furthermore, it leaks the relation between a physician and a patient. To protect this information,
columns are encrypted with an additive (3,1)-secret sharing scheme. The table records are
indexed by a numeric identifier (Key) stored as plaintext. These identifiers reveal no information
and are only used to access the data.
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Workloads Get Update Insert Scan R-M-W Filter

A 50% 50% - - - -

B 95% 5% - - - -

D 95% - 5% - - -

E - - 5% 95% - -

F 50% - - - 50% -

G 40% 20% 20% - - 20%

Table 5.1: Benchmark workloads. Each workload issues a request with the NoSQL API presented
in Section 5.2. The operator R�M �W is the composition of a Get and Update operation.

Benchmark. For a standard evaluation we use the industry-proven Yahoo! Cloud Serving
Benchmark (YCSB) [CST+10]. This benchmark has six standard workloads (A-F), each with
a different read-write ratio and value distribution. Following the approach commonly seen in
related literature [KTV+18, CST+10], we omit the results of workload C as they are identical to
the results obtained in workload B. The operators on these workloads only process the plaintext
keys and do not measure the overhead of SMPC. However, the workloads are essential to
evaluate d’Artagnan’s overhead of protecting data with a secret sharing scheme and issuing
concurrent requests to multiple clouds. Furthermore, it establishes a direct comparison with a
standard HBase deployment without any secure processing. We designed a new workload G
to measure the overhead of SMPC protocols. The workload simulates a clinic use case where
the staff frequently browses through the daily appoints but sporadically schedules or updates a
new appointment. The workload filters through the Type of appoints using SMPC protocols. The
request distribution of every workload is presented in Table 5.1.

One important aspect to the entire evaluation is the value distribution on the Appointments
table and how the values for the NoSQL operations are chosen by the YCSB benchmark. On
both scenarios the table identifiers are integer values that increase monotonically with every new
row. Each table column value is sampled from a uniform distribution of the data type. The same
applies for the input values of the Put, Update and Get operators. The Scan and Filter operators
choose a starting key from a uniform distribution and iterate over every row until the last table
row. The operator read-modify-write (R-M-W) presented in Table 5.1 is the composition of a Get

and Update operation.

5.6.2 Controlled setting

Experimental set-up. d’Artagnan’s prototype was deployed on a private infrastructure divided
in three independent clusters. Each cluster is in itself a distributed HBase deployment with 2
Region Servers, each one with a Safe Server. In total, this deployment consisted of 10 nodes,
3 per HBase cluster plus the client machine with the YCSB benchmark that contains the Safe
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Client. Every node had an i3 CPU 4 cores at 3.7 GHz, 8 GB of main memory and a 128 GB
SSD. Hosts were connected over a shared Gigabit Ethernet network with an average latency of
0.3 ms.

YCSB workloads. Figure 5.4 presents the results of the YCSB workloads with the Appoint-
ments table containing 1 million rows divided between 20 shards. Each plot has latency versus
throughput curves that depict the systems scalability with an increasing number of clients, from
1 to 256 in a logarithmic scale base 2. Each dot (⇥, �) in a plot represents an experiment with a
different number of clients. Experiments consists of 3 hour runs.

From workload A to F d’Artagnan prototype scales with the number of clients but starts to
reach a plateau with 32 clients as requests latency increase at a higher rate than the throughput.
For instance, on Workload A d’Artagnan prototype has a throughput increase of 10% from 32
clients to 256 clients but the latency increases 87%. Both d’Artagnan prototype and HBase follow
a similar pattern across the workloads with a higher throughput on read-intensive workloads. The
highest throughput reached by both systems is found on workload B with d’Artagnan prototype
peaking around 17 KOP/s and HBase at 49 KOP/s. With a maximum overhead of 2.88⇥ the
baseline, d’Artagnan’s overhead is acceptable considering that for each client, the Safe Client

has to encrypt every column value with a secret sharing scheme, send three concurrent requests,
one per cloud, and wait for all parties to process the request. On the maximum load of 256
concurrent clients, d’Artagnan has 768⇥ more requests to manage than the baseline.

Workload G on Figure 5.4 is the first workload to measure the impact of SMPC protocols.
Even though only 20% of the workload operations are filters that require SMPC, the protocols
have a significant impact on the system throughput. d’Artagnan prototype is limited to 5 OP/s
and reaches an average latency of 78 seconds with 32 clients. HBase scales with the increasing
number of clients and peaks at 33 OP/s with an average latency of 10 seconds with 32 clients.
With the highest throughput of both systems, d’Artagnan prototype is 6.6⇥ slower than HBase.
Even with the specialized SMPC protocols, d’Artagnan prototype main bottleneck is the network
bandwidth used to evaluate the multiplication gates of the encrypted circuits, as depicted with the
cumulative distribution function (CDF) in Figure 5.5. The presented CDFs’ results were collected
during the execution of Workload G with a single client on both systems. A single database client
is sufficient to saturate the network bandwidth with just 10% of the d’Artagnan network usage
bellow 140 MB/s. Computational resources are not a critical factor as the CPU usage in every
experiment, even when evaluating protocols with 256 concurrent clients, never rises above 30%.

Multiparty protocols. We also evaluated the SMPC protocols throughput isolated from any
other operations. In particular, we evaluate two circuits: Equality (EQ) and GreaterThanOrE-
qualTo (GTE). These encrypted circuits are the backbone of the protocols implemented on the
prototype as they enable the database to answer the NoSQL API defined in Section 5.2. The
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Figure 5.4: d’Artagnan and baseline (HBase) performance with the YCSB Workloads. The benchmarks
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a logarithmic scale. The dots (⇥, �) in the plot represent an experiment with the increasing number of
clients.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1

0 20 40 60 80 100 120 140 160 180

C
D

F
of

to
ta

lM
B

Network Usage (MB/s)

HBase

Network Usage (MB/s)

d’Artagnan

Figure 5.5: Baseline (HBase) and d’Artagnan cumulative distribution function (CDF) of the network usage
on workload G with a single client.



FCUP 93
CHAPTER 5. A TRUSTED NOSQL DATABASE ON UNTRUSTED CLOUDS

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35

0
10
20
30
40
50
60
70
80
90

0 5 10 15 20 25 30 35

0
1
2
3
4
5
6
7
8
9

10

0 5 10 15 20 25 30 35

Th
ro

ug
hp

ut
(o

ps
/s

)

1K rows

HBase d’Artagnan EQ d’Artagnan GTE

10K rows

100K rows

Number of Clients

1M rows
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evaluation measured the protocols performance with different Appointments table size, ranging
from 1000 records to 1M. Furthermore, it assesses the protocols scalability for each dataset
with an increasing number of clients, from 1 to 32 in a logarithmic scale base 2. The number of
clients was restricted to 32 as d’Artagnan prototype reaches a saturation point. The table and
request value distributions followed the same approach as the previous evaluation. The baseline
was HBase’s Equal filter.

Figure 5.6 shows the evaluation results with throughput versus number of clients curves.
Overall, both systems throughputs decrease as data size increases, but only the baseline scales
with the number clients. For the smaller data set, 1K rows, d’Artagnan prototype EQ protocol
peaks at 310 OP/s. In contrast, the baseline has a maximum of 2431 OP/s for the same filter
operation. Still on the smaller datasets, the GTE protocol reaches a maximum throughput of
52 OP/s for 32 clients. On the larger datasets, 100 K and 1 M, d’Artagnan prototype has a
consistent overhead of 99% compared to the baseline as the system cannot scale with the
increasing number of clients. Similar to Workload G, the main bottleneck is the network. On the
smallest datasets the network usages ranges on average from 4 MB/s to 90 MB/s as the number
of clients increase. After 10 K the bandwidth becomes saturated with just a few clients.
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5.6.3 Multi-cloud deployment

A multi-cloud deployment requires a careful analysis of the cloud providers’ location and the
interconnecting network. The most important aspects are the distance between the third-party
infrastructures and their distance to the Safe Client. Ideally, the client machine should be a
private infrastructure located in the same city as the cloud servers to minimize the requests
latency. However, this is not often possible either because the private infrastructure is far from
any of the cloud provider servers, as is our case, or because the cloud providers do not have
datacenters at the client’s geographical area. As such, we present a scenario that illustrates a
realistic use-case where deployment on a single city is not available but the Safe Client is in a
private infrastructure near different cloud providers.

Experimental Set-up. The entire deployment consisted of 4 nodes, three independent HBase
servers hosted on Google Cloud, Microsoft Azure and Digital Ocean, and the YCSB benchmark
client hosted on Amazon AWS. The nodes were spread out through European countries and
were selected to minimize the latency and maximize the available bandwidth. Google’s HBase
server was located on Frankfurt, Azure’s was on Holland and Digital Ocean’s was on Belgium.
The client machine was also located on Frankfurt. The latency between nodes ranged from 1
ms to 12 ms and the bandwidth from 1 Gbps to 3 Gbps. d’Artagnan’s servers were hosted on
machines with 4 vCPUs, an SSD Disk and at least 10 GB of main memory. The client machine
had 1 vCPU allocated, an SSD Disk and 1 GB of main memory.

This scenario follows a similar approach to the controlled environment but adjusts the
appointments table size to 100 K rows. This adjustment was made to simulate a realistic use
case where critical data is stored on an untrusted cloud [KTV+18]. As the system’s scalability is
presented in the controlled environment, this evaluation only considers the YCSB workloads and
SMPC protocols for 32 clients. Experiments consists of 3 hour runs.

Figure 5.7 presents d’Artagnan prototype results as the overhead percentage in relation
to the baseline, an HBase server on Microsoft Azure. All YCSB workloads follow the same
distribution as in the controlled environment. d’Artagnan prototype throughput on workload A
and B has a maximum overhead of 95%, peaks at 797 OP/s on workload A while the baseline
reaches the 10 KOP/s on workload B. On the workloads D, E and F the overhead is slightly
smaller and never surpasses the 43%. On Workload G the prototype peaks at 21.48 OP/s and
the baseline at 38.53 OP/s, an overhead of 44%. The EQ protocol has the lowest overhead of
39% in contrast to HBase.

Overall, both experimental settings show that the d’Artagnan main source of overhead are
the SMPC protocols. Even though these protocols are among the most efficient in the state-of-
the-art the network bandwidth used to evaluate the multiplication gates decreases the overall
system’s throughput. However, the system’s performance is acceptable for privacy-sensitive
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Figure 5.7: d’Artagnan overhead against baseline (HBase) for the YCSB workloads and filters on a
multi-cloud deployment for 32 clients and an Appointments table with 100 K rows.

application without real-time performance requirements. In a realistic deployment with cloud
providers, the system has an overhead as low as 39%. Furthermore, the current performance
is not a hard-limit as novel, ground-breaking SMPC protocols have broken the 1 Billion gates
per second barrier [ABF+17] as well as achieved global-scale secure computation [WRK17].
The proposed framework can support additional protocols to tailor the performance for specific
application requirements.

5.7 Summary

At a high-level, this Chapter explored a novel approach to outsource range queries to an
untrusted third-party. More concretely, we focused on the particular problem of creating a secure
key-value NoSQL database on top of untrusted clouds. Whereas existing cryptographic protected
databases rely on computational secure cryptographic schemes that centralize information in a
single untrusted site, we opt for a decentralized approach that splits data throughout multiple
non-colluding parties. d’Artagnan is a novel NoSQL database framework that uses secret
sharing as well as SMPC protocols to store and process queries over distributed secrets. With
this approach, our system can use a single encryption scheme to process any query without
having to necessary disclose partial information and a single data breach does not compromise
the user’s confidentiality. The main contribution of d’Artagnan is managing the multiple parties,
each with an independent database, to create a single logical secure database. Furthermore,
its architecture is agnostic to the SMPC protocols and new constructions can be integrated to
protected data from an active adversary, support a greater subset of corrupted nodes or increase
the system availability.

d’Artagnan’s prototype was evaluated with state-of-the-art benchmarks and deployed in
market-leading cloud providers. The results show that the secure multiparty protocols protocols
currently used by d’Artagnan have a considerable overhead and the main bottleneck is the
network bandwidth. Additionally, the cloud evaluation also shows that this approach is feasible
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and can even provide a practical alternative for applications that manage a small but highly
sensitive dataset (e.g.: medical data, identity management). Applications with large data sets
clearly require novel protocols that improve the overall system performance. One possible future
research path is exploring SMPC protocols with an offline and online phase. In this model,
parties exchange information in the offline phase to evaluate functions in the online phase more
efficiently. However, the integration of this model is not straightforward as it is not clear what are
the implications in the overall architecture of NoSQL database systems.
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Chapter 6

Building oblivious searches from the
ground up

In this chapter we depart from the decentralized approach from the previous chapters and
instead tackle a common vulnerability of cryptographic protected databases, the access patterns
disclosed by search queries. This leakage can be exploited by an adversary to reconstruct the
plaintext values of an encrypted database with high accuracy. We address this leakage with
CODBS, an oblivious search scheme that redesigns the internal data structures of relational
databases to provide a new trade-off between security and performance. More specifically,
CODBS generates an access pattern for each query that is indistinguishable from arbitrary
accesses and it is more efficient that state-of-the-art constructions (asymptotically and experi-
mentally).

6.1 Introduction

CPD systems often use SSE schemes as they enable a client to store encrypted data in a
third-party and evaluate queries remotely over ciphertexts. As discussed in Section 2.2.3, these
schemes create an encrypted index that captures the relation between a keyword and a set of
documents identifiers, with each identifier pointing to an actual document. The index as well
as the documents are encrypted by the client and stored on a remote server. The client can
query the index by generating cryptographic tokens for a specific keyword. Given a token as an
input, the server can search the index and find the set of documents that contain the queried
keyword without having to decrypt any data. However, SSE schemes can disclose confidential
information even when proven secure under standard cryptographic assumptions. The main
source of leakage are the access patterns revealed by a query, which can lead to statistical
analysis attacks [IKK12, CGPR15].
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Figure 6.1: Search tree with L levels stored in two different ORAM constructions: a tree-based ODS as
prosed by Wang et al. [WNL+14] and the CODBS scheme presented in this chapter.

One approach to address the leakage of SSE schemes is to use ORAM [GO96]. With
an ORAM scheme, a client can access a remote storage and conceal its access patterns by
shuffling and encrypting multiple blocks. This allows the leakage of an SSE scheme to be
hidden, by replacing the whole server-side index and document storage with a single monolithic
ORAM. However, this approach has a few drawbacks: the SSE client has to keep additional
local state (position map and stash); a single query needs multiple communication rounds
between the client and the server; ORAM algorithms are bandwidth-intensive even for simple
block accesses [SDS+18, PPRY18, SPS14].

The overhead of ORAM schemes can be minimized by using trusted hardware co-located
with the encrypted index on the server-side. As presented in Section 2.3.3, an IEE is a trusted
hardware technology that offers the possibility to perform arbitrary (verifiable) computations in
a clean slate. The internal state of an IEE is assumed to be isolated from other co-located
processes, including operating systems and hypervisors. Intel’s Software Guard Extensions
(SGX) is a prominent instance of an IEE that is widely used to develop novel solutions due to its
ubiquity and accessibility in commodity hardware. We will use SGX as a deployment example,
even though our approach and security analyses are modular in relation to the trusted hardware
security anchors.

Combining ORAM primitives with trusted hardware is a relatively new approach to search
over encrypted data with minimal leakage. Existing systems propose novel search algorithms
and index data structures optimized for ORAM primitives that effectively lower query latency
and the bandwidth used between the client and the server. More concretely, Oblix [MPC+18]
uses an oblivious search tree to index the keywords of a database and POSUP [HOJY19] uses
an oblivious linked list to store the keywords as well as the documents. In fact, both of these
systems improve on the early work of oblivious data structures (ODS) proposed by Wang et
al. [WNL+14]. Besides these fine-grained SSE systems, there are also full-fledge oblivious
database solutions such as Opaque [ZDB+17] and ObliDB [EZ19]. Nonetheless, both systems
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use ORAM algorithms as black-boxes and do not optimize the internal data structures. Trusted
hardware is used in these systems as an anchor of trust to search encrypted data on behalf of
the client. In Oblix as well as POSUP the enclave is limited to fetch encrypted blocks from the
untrusted server and searching for records that match a search key. However, a few systems
such as ObliDB take a step further and deploy to an enclave a trimmed-down database engine.

Our main goal in this chapter is to provide a novel oblivious search scheme for relational
databases with minimal bandwidth usage and client side state. However, instead of taking the
top-down approach of SSE schemes that propose new index data structures and rely on ORAM
schemes as black-boxes, we take a bottom-up approach; we design from the ground up an
oblivious search scheme that builds on the indexes of existing database systems. This approach
ensures that we leverage the extensive research in database systems and that our system
design choices are based on realistic and pragmatic assumptions. We do not aim to be fully SQL
compliant, but our scheme can be integrated in full-fledge solutions (e.g.: ObliDB) to improve the
overall system throughput.

To achieve our goal we present in this chapter a novel oblivious search scheme CODBS
inspired by Wang et al. tree-based ODS [WNL+14]. Our scheme is deployed on a trusted proxy
and uses two independent data structures, one to store a table index and one to store a database
table. The search scheme improves over existing work in several key aspects. In comparison to
POSUP it does not require auxiliary data structures to keep a relation between keywords and
ORAM addresses. Furthermore, our scheme searches over keywords and reduces the position
maps to a small constant. Our system is also closely related to Oblix tree-based ODS but it has
a lower bandwidth blowup.

More concretely, CODBS is a tree-based oblivious search scheme to store database indexes.
This scheme originated from the observation that an oblivious search on a tree-based ODS
touches every tree level once in the same order. As such, it is clear that a balanced tree-based
ODS only needs to hide which node is accessed in a level and not the level accessed. From
this insight, we split the search tree into L smaller ORAM instances, rather than a large ORAM,
where L is the search tree height. With this modification, we reduce the bandwidth blowup of
Wang et al. tree-based ODS from O(N · log (N)) to O(L2/2� c), here N is the number of data
blocks and c is a small constant. This contribution is depicted in Figure 6.1. Additionally, in
the original construction the location of tree node can only be reshuffled after a complete tree
scan. Our construction can flush a node immediately after an access by generating the position
of a node dynamically with a PRF, similarly to Two-ORAM [GMP16]. If the flush is made on a
background thread we are able to reduce the query latency by half.

Besides CODBS, we also propose Forest ORAM, an optimized ORAM construction to store
database tables. Forest ORAM is used to store the tree levels of CODBS and hide the access
patterns. All of algorithms presented in this chapter have been implemented in a complete
solution on top of PostgreSQL, one of the most widely used open-source databases. Our
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Figure 6.2: System models of a plaintext database, a naive oblivious solution and an optimized oblivious
system.

implementation is non-intrusive, as it does not require any modification to the database engine.
We also measured the average system throughput, latency and resource usage of our solution
with an industry-standard benchmark, YCSB [CST+10]. Through a systematic and detailed
evaluation we validated the asymptotic improvements of our construction and shown a ⇠ 2⇥ to
⇠ 4⇥ performance improvement over state-of-the-art constructions that leverage Path ORAM
and oblivious data structures [WNL+14, MPC+18].

This chapter is organized as follows, in Section 6.2 we present a high-level model of the
the problem addressed in this chapter, the security model and an overview of CODBS. Next,
in Section 6.3 we present the security definitions of the encryption schemes used throughout
this chapter. The main contribution of this chapter, CODBS, is presented in Section 6.4 and
then in Section 6.5 we present Forest ORAM. We prove the security of the proposed scheme
in Section 6.6 and then present the experimental system evaluation in Section 6.7. Finally, we
summarize the results obtained in this chapter on Section 6.8.

6.2 Problem definition

6.2.1 System model

Databases support a diverse range of data structures and server-side operations to select, filter,
aggregate and join data. We focus on minimizing the information disclosed by the index scan
operator, a fundamental building block of relational databases. By protecting index scans, more
complex operations inherit its security guarantees. Our starting point is the typical architecture of
a relational database management system, in which a request placed by the client to the remote
server is processed in two steps: i. an index scan locates the record of interest in the underlying
storage; and ii. an access to the storage retrieves a data block in which the record resides.
Database performance hinges on the optimization of accesses to the storage subsystem—in
which both indexes and data tables reside—via specialized data structures. Tree-based indexes
are used to ensure that most accesses to storage span only a few blocks, and the tree data
structures are themselves optimized to minimize cross-block transitions.
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To understand the different stages of an index scan, we capture a typical plaintext database
system with the model depicted in Figure 6.2a; we consider three main components: a Database
Client , a Query Engine and a Storage Backend . In this model, the Database Client is a remote
application, for instance a web server or a system administrator; it relies on the database
management system to store and process data. The actual query processing is handled by the
Query Engine, which is the most computationally intensive component. However, the Query
Engine is stateless, and data is stored on block-based data structures. This Storage Backend
abstracts the storage capabilities available in cloud infrastructures such as elastic file systems
or external block storage. Inside the Storage Backend there are two data structures, a Search
Index and a database Table. We consider the index a B+-tree [LY81] that keeps a mapping
between a keyword and table record. The database Table is a linked list of blocks with each
block holding a subset of records.

Our conceptual model is similar to the model of searchable encryption schemes [HOJY19,
FBB+18, HOJY19] but has two minor adjustments. First, in SSE schemes the indexes are often
a simple mapping (e.g.: Hash table) that have constant access time whereas in our model the
index is a B+-tree that has logarithmic search time. Secondly, our model explicitly handles the
accesses to the table (documents in SSE) which is a source of information leakage that is not
always included in SSE models. Our goal is to focus on the main components that disclose
information in a search query of a standard relational database management system.

During an index scan the components follow a predictable set of steps. A query execution
starts with the Database Client sending a query to the Query Engine (Figure 6.2a-∂). The input
query is intercepted by the Query Engine which generates a query plan describing the database
tables and indexes that must be accessed and the order of the accesses. The Query Engine
executes an index scan by searching a tree-based index (Figure 6.2a-∑). This index search
results in a subset of table pointers that satisfy an input query. For each pointer, the Query
Engine retrieves its matching table record (Figure 6.2a-∏) and stores it in a result set. The
execution flow between Query Engine and the Storage Backend is repeated until every relevant
record is accessed and the complete result set is sent to the Database Client (Figure 6.2a-π).

The execution of a database query has two main types of leakage. The first, commonly
addressed with ORAM, is the access patterns revealed by the query engine when accessing
the database storage (Figure 6.2a-∑,∏). Every access from the Query Engine to the Storage
Backend consists of either reading or writing a data block in one of the databases’ data structures.
The sequence of blocks accessed during the tree transversal define a unique path that identifies a
small subset of data records. The set of possible results is shortened even further by the identity
of the blocks accessed on the table storage, as each table block contains a limited number of
database tuples. However, simply hiding the access patterns to the database structures with
an ORAM construction is not sufficient. An adversary can learn critical information just from
the number of accesses from the table index to the table storage. This information is closely
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related with the second leakage considered in our model, the volume leakage. As demonstrated
by multiple successful attacks, the size of the result set returned from the database server to
the client (Figure 6.2a-π) and the number of accesses made to a specific record is sufficient to
compromise the database [GLMP18, LMP18].

Our approach is based on optimizing an ORAM-based solution to fit the database engine
architecture and outsourcing most of the client processing and storage load to a Trusted Proxy
deployed at an intermediate level of trust. As depicted in Figure 6.2b, in a naive solution the
Trusted Proxy can be thought of as an interactive oblivious protocol that manages two position-
based ORAM constructions and keeps all of the client side state inside the protected environment
(stash and position map). One of the ORAM constructions stores the database index, while the
other stores the indexed table. We detail the trust model and the optimization approach next.

6.2.2 Trust model

We consider a semi-honest adversary that can observe all communications and computation
activity, with the exception of those occurring inside the client and proxy. Concretely, this implies
knowledge of: i.) messages exchanged between client and proxy (Figure 6.2c-∂,π); ii.) proxy
interactions with external memory (Figure 6.2c-s); and iii.) proxy interactions with the storage
(Figure 6.2c-∏). We assume that client-to-proxy interaction is preceded by a key exchange
protocol, to establish a secure channel. This allows our system to rely on standard cryptographic
techniques to protect the confidentiality of messages exchanged between client and proxy.
Instrumenting IEE-enabled code in this way is a common requirement, and has been shown
to be achievable securely with minimal performance overhead [SCF+15]. However, secure
channels disclose the size, direction and number of messages. Another relevant issue is related
to proxy interactions with external memory. This stems from our deployment setting, where
the secure proxy is executing in an IEE-enabled system, physically co-located with adversarial
controlled environment. Against these threats, it is expected for the hardware to protect the
memory contents [BWK+17, XCP15], but not the access patterns. Our protocol tackles this
issue with constant-time implementations [ABB+16, MPC+18]. The leakage that remains are
the traffic patterns in the client-to-proxy interface, and the access patterns in the proxy-to-storage
interface. The adversary has knowledge of the data blocks in the external storage.

6.2.3 Optimization approach

We now refine the high-level model and detail the system architecture used in this chapter, along
with an overview of our optimizations. Our system is a relational database outsourced to a
third-party infrastructure, as depicted in Figure 6.2c. The Trusted Proxy is hosted in an Intel SGX
enclave and we assume that the deployment environment supports the creation of genuine IEEs
that can be successfully authenticated with an attestation service. With this approach the Trusted
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Proxy and Query Engine are co-located on the same third-party server, effectively lowering the
inter-component latency to a minimum. We are agnostic with respect to the Storage Backend
but for concreteness require that it provides a standard I/O POSIX interface accessible to the
Trusted Proxy . The Query Engine becomes a passthrough middleware that simply manages
client connections, reroutes input client requests to the Trusted Proxy and provides an interface
to read/write blocks from the database storage. The Trusted Proxy also holds an internal secret
state which includes secret keys used to encrypt/decrypt blocks from the database storage. We
do not detail how this state persists, but we assume it is kept outside of the adversary control
and that it can be stored alongside the data blocks, encrypted and sealed with a secret key.

Moving the Trusted Proxy to an Intel SGX enclave is challenging as enclaves have a limited
pool of protected memory available. Current technology is restricted to 128 MiB but only 93
MiB can actually be used to store and read application data. Even though this limit can be
overcome with page swapping, it incurs in additional costly operations, and the issue of access
patterns arises again [WAK18]. We address this limitation with CODBS, our novel oblivious
search scheme which has multiple composable ORAMs that reduce the client (here proxy-side)
storage to a constant factor and allow the protected proxy to function with a small local memory,
while guaranteeing leakage-free storage access patterns.

CODBS follows a cascade approach of ORAMs that divides a database B+-Tree index of
height L into L independent ORAMs. Each ORAM stores the nodes of a single tree level and
hides any access to an individual node. Similar to Wang et al. ODS, the ORAM client (here
the Trusted Proxy) does not store a position map in memory as the tree nodes keep pointers
to its children. Intuitively, a tree search is simply a matter of jumping from level to level and
following the pointers to the next ORAM node until a leaf is reached. However, the pointers used
in Wang et al. ODS are static and can only be updated at the end of tree scan. Our scheme
addresses this limitation with dynamic pointers that can be updated immediately after accessing
any tree node. Our scheme further reduces the client side memory requirements by keeping the
ORAMs stash on the external storage and accessing it with sequential scans. The access to the
database Table in our scheme is considered as an extension of the tree, i.e., an additional level
after the tree leaves.

6.3 Definitions

In this section we present the notation and security definitions used throughout this work. The
security parameter is denoted by � and it is passed as input in unary (i.e., 1�). A negligible
function in the security parameter is denoted as negl(�). We consider an adversary A and a
simulator S to be polynomial time algorithms. Our constructions rely on standard notions of a
variable-length-input PRF and an IND-CPA symmetric encryption scheme [BR05]. The secret
keys are uniformly sampled from {0, 1}�.



FCUP 105
CHAPTER 6. BUILDING OBLIVIOUS SEARCHES FROM THE GROUND UP

Databases. A plaintext database is a set of data records indexed by a search key DB =

{(key1, data1) . . . (keyn, datan)}. We abstract the search keys as keywords from the set of
all finite strings W ✓ {0, 1}⇤ and the data records datai 2 {0, 1}B as binary data blocks of
fixed length B. A database query ⌧ : W ! {0, 1} is a predicate that consists of keywords
in the domain W that satisfies a boolean formula. Given an input query ⌧ a database search
DB(⌧) = {datai : ⌧(keyi) = 1} returns all data records that satisfy the query.

We provide a more detailed definition of the internal data structures that emulate the internal
details of relational database. The database keys and data records are stored in a pair of data
structures where I denotes a tree-based index that stores the database search keys and T

denotes a Table Heap with the data records. The Table Heap is defined as a collection of N
table blocks T = {(a1, data1), . . . , (an, datan)} associated with a unique address ai 2 Z. The
tree-based index I abstracts the search tree found in databases as a collection of L levels,
each one storing multiple tree nodes. The number of nodes grow level by level, with the first
level starting with a single root node that points to d (tree fanout) child nodes. The nodes in the
following levels subsequently point to new child nodes. This process is repeated recursively until
the last level that stores the tree leaves which points to Table Heap offsets. Therefore, an index
I is a set of pointers ptrs(l,a) uniquely identified by a pair (l, a) of tree level l 2 {0, . . . L} and
node address a 2 {0, . . . , dl}. Furthermore a pointer is a set of tuples of search keys paired with
a child address ptrs(l,a) = {(key1, p1), . . . (keyd, pd)} where the address pi at level l maps to a
block address on the next level pi 2 {0, . . . , dl+1

}. We denote access to the data structures with
array notation where a Table Heap access returns a table block data T [a] and a Table Index
access at level l and address a returns its associated node pointers ptrs I[l][a]. A tree-based
index is correct if every node has a single parent.

Ideal storage. We capture the access patterns of a database execution using an idealized
storage M that abstracts an untrusted external storage. This storage is a sequence of K words
indexed by a logical address space [K] = {1, . . . ,K}. Each word is a data block of size B that
can be individually accessed with a block-based API defined as follows:

• Alloc(N) ! D: reserves a empty data structure D that consists of a subset of storage
words of size N 2 [0, . . . ,K] from the storage address pace.

• Read(D, a)! block: returns a block of D at address a.

• Write(D, a, block) ! D: updates the data structure D with a new block on the storage
address a.

• Addrs()! X : Returns the access patterns trace X of every API invocation on the ideal
storage.
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The ideal storage is available to any algorithm at any point of its execution and registers every
API request in a public access pattern X . More specifically, an access pattern X = {I1, . . . , IN}

is a sequence of instructions Ii = (op, addr, data) where each instruction has an operation
defined by the public interface op 2 {Alloc,Read,Write}, a target address within the ideal
storage range addr 2 [K] and a binary string that is either written to or read from the storage
data 2 {0, 1}B. In case of a read instruction the data is initially empty and is filled with the
content of the logical address in the storage. In case of an allocation, the requested storage size
is specified in the address and the data field is left empty. We denote by out A

M
(prms) the

execution of an algorithm A with access to the ideal storage M given parameters prms. The
access pattern of the algorithm execution can be obtained by X  M.Addrs().

6.3.1 Oblivious index scan

We define here the syntax and security of an Oblivious Index Scan (OIS), which is realized by
our main construction. The goal of this primitive is to leverage specialized ORAMs as building
blocks that store the database data structure and ensure that every input query has a constant
number of accesses. Intuitively, an OIS scheme starts with an empty data storage, which the
Database Client fills by outsourcing a plaintext database structure via the Trusted Proxy with an
initialization algorithm. After this initial step, the Database Client establishes a request/response
stream with the Trusted Proxy such that, for each query sent a pre-defined number of record
results is returned (e.g., one record). The complete result set of a query is only returned after
multiple requests. This stream-based communication hides the sizes of query results and can
be removed if this leakage is not a problem for the application.

In our syntax and security model we omit the stream-based access mechanism, as this intro-
duces unnecessary complexity and because, once it is established that the proposed protocol
hides everything except the size of the query results returned to the client, it is straightforward
to argue that introducing the stream-based mechanism removes the remaining leakage from
client-to-proxy communications. We do analyse the performance trade-offs introduced by this
mechanism in Section 6.7.

Definition 1. (Oblivious Index Scan) An oblivious index scan scheme OIS consists of the
following two algorithms:

• Init(1�, I, T , prms)!(st, Ĩ, T̃ ): Initialization algorithm that takes as input a Table Index
I, a Table Heap T and the public database parameters prms: (number of blocks N ,
tree-based index height L, and tree fanout d). The algorithm returns an internal state st,
an oblivious search tree Ĩ and an oblivious table T̃ . The oblivious data structures preserve
the indexing relation between the input data structures. The internal state is kept securely
within the Trusted Proxy and it contains the internal state of multiple ORAMs, a secret



FCUP 107
CHAPTER 6. BUILDING OBLIVIOUS SEARCHES FROM THE GROUND UP

key for a symmetric encryption scheme and a secret key of a PRF. The oblivious data
structures are stored in the Storage Backend .

• Search(st, Ĩ, T̃ , ⌧ )!(st0, Ĩ 0, T̃ 0, data): Search algorithm that takes as input the current
state st, an oblivious Table Index Ĩ, a oblivious Table Heap T̃ and an input query ⌧ . The
algorithm filters the records that satisfy the query with an oblivious index scan and returns
an updated state st0, a shuffled oblivious Table Index Ĩ

0, a permuted oblivious Table Heap
T̃
0 and the resulting data record.

Correctness. An oblivious index scan scheme is correct if for every security parameter �,
every plaintext database DB, every pair of oblivious data structures initialized Ĩ and T̃ initialized
by the Init algorithm and every query ⌧ , the set of the data records of a plaintext database search
DB(⌧) with size N is equal to the set of records returned after a sequence of N query searches
Search with probability 1� negl(N)

1. As such, correctness is defined by:

DB(⌧) = {Search(st, Ĩ, T̃ , ⌧0), . . . , Search(st, Ĩ, T̃ , ⌧N )}

Security. The security of an OIS construction is defined in the simulation-based real/ideal
paradigm. Our security game consists of an adversary that sends a plaintext database of it
choosing to the experiment and afterwards sends a sequence of queries. For each query, the
adversary receives the access patterns X of the database to an external storage and a pair of
encrypted data structures. In both games, the access pattern includes the addresses of blocks
accessed, the instructions (read or write) and the blocks encrypted with a symmetric encryption
scheme. We consider an adaptive adversary that can change its attack strategy during the game
depending on the access patterns returned by the experiment. Intuitively, an OIS construction
is secure if an adversary cannot distinguish if the access patterns were generated by a real-
world execution or a simulator that only does arbitrary accesses. In both worlds, the access
patterns are captured by an ideal storage M that is used internally by the ORAM constructions
to read/write data blocks. However, in the real-world the ORAM accesses depend on the input
queries, while in the ideal world the simulators are only given the databases public parameters,
number of blocks, the tree-based index height and fanout. As such, the simulators use the
ORAMs as black-boxes to access arbitrary storage addresses. This security definition follows a
similar approach to simulation-based definitions of ORAM constructions [PPRY18, AKL+18].

Definition 2. Let OIS = (Init, Search) be an oblivious index scan scheme. For every stateful
algorithm A (the adversary) and S (the simulator), consider the following security game:

1This negligible chance of failure matches the probability of failure of a single underlying ORAM scheme. In our
proposed construction, the probability is 1� negl(N) · L, as L ORAMs are used.
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• RealOIS

A (1
�
): The adversary A sends the experiment a pair of plaintext database struc-

tures I and T as well as public parameters: number of Table Heap blocks N , Table
Index height L and fanout d. The experiment initializes a pair of oblivious data structures
(T̃ , Ĩ)  Init(1

�, I, T ) and returns them to the adversary alongside the initialization
algorithm access patterns XI . The adversary follows with a polynomial number of adaptive
search queries ⌧ and the experiment outputs updated oblivious structures and the access
patterns XS of the Search(Ĩ, T̃ , ⌧) function. In the end, the adversary returns a bit b which
becomes the experiment result.

• IdealOIS

S,A (1
�
): The adversary A sends to the experiment a pair of plaintext database struc-

tures I and T and public parameters. The game initializes a pair of dummy oblivious data
structures (T̃ , Ĩ)  S(1

�, N, L, d) and returns them to the client alongside a simulated
access pattern XI . The adversary evaluates a polynomial number of adaptive search
queries ⌧ and the experiment returns the updated oblivious structures and simulated
access patterns generated by S(N,L, d). Here the simulator is stateful and the crux is
that it does not see the raw data or queries. At the end, the adversary returns a bit b which
becomes the experiment result.

OIS is secure if for all A there exists a simulator S such that:

���Pr
⇥
RealOIS

A (1
�
) = 1

⇤
� Pr

h
IdealOIS

S,A (1
�
) = 1

i ��� < negl(�)

The formal security definition is presented in Section 6.6.1.

6.3.2 Oblivious RAM

We present an extended definition of oblivious RAM schemes that underpins our OIS construction.
We follow the classical definition of position-based ORAMs [SDS+18, WNL+14] where a client
(e.g.: local machine) remotely accesses data blocks in a server (e.g.: block storage) but modify
it in two ways. First, instead of providing a single Access method that reads data from the
server, shuffles the blocks and flushes them back, we divide these processes in two distinct
functions. Secondly, we explicitly require an external position � to be passed as input for every
oblivious access. Similar to internal position maps, the external position map keeps track of the
current location of blocks. However, the external position map also determines the next location
where a block must be stored after an oblivious access. As such, the responsibility of correctly
book-keeping the location of the blocks is shifted to the ORAM client. We do not restrict the
external pmap structure in any way. It depends on the ORAM construction. We note that ORAM
without a pmap are also captured if � is set to empty (?)

Definition 3. (Oblivious RAM) An oblivious RAM scheme consists of the following three algo-
rithms:
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• Build(N )!(st, D̃): Initialization algorithm that takes as input a maximum number of blocks
N and outputs an internal state st and an initialized data structure D̃.

• Read((st, �), D̃, a)!(st0, data): Access operation that takes as input an internal ORAM
state st, an external position map �, the external data structure D̃ and a block address a.
It returns an updated state st0 and the external block data. This operation does not evict
the ORAM internal state nor modifies the external data structure.

• Write((st, �), D̃, a, data)!(st0, D̃0): Eviction operation that takes as input an internal state
st, an external pmap �, a data structure D̃, a block address a and the new block data. It
evicts stashed blocks, writes data to offset a and returns an updated state st0 and data
structure D̃

0.

We stress that the division of the Access methods in two operations is only made to clearly
expose a position map that can be updated dynamically, as done by our construction in Sec-
tion 6.4.

Security. In the classical ORAM indistinguishably definition, an ORAM scheme is secure if
it generates access patterns independent of the client real accesses. Intuitively, an oblivious
access pattern cannot disclose which data the client is accessing, when a data block was last
accessed, or if a real access was a read or write operation.

Definition 4. (ORAM security) Let a data request sequence of a client to an external server be
denoted by:

!
y= ((opM , aM , dataM ), . . . , (op1, a1, data1))

where M is the sequence size and each opi denotes a read(ai) or a write(ai, datai)
operation where 1  i  M . More specifically, the block read/written is uniquely identified by
address ai, and datai denotes the data being read/written. Note that request sequences are
only sent to the server after the client initializes an ORAM with the Buld algorithm and a read
or a write operation corresponds to the evaluation of the Read algorithm followed by the Write

algorithm. Furthermore, the offset 1 corresponds to the most recent operation while the offset
M corresponds to the oldest operation. Additionally, Let X [�](

!
y ) denote the access patterns

(possibly randomized) generated by an ORAM construction � when accessing a remote storage
server. An ORAM scheme � is secure if: 1) for any two data request sequences !y1 and !y2 have
the same length, their accesses patterns X [�](

!
y1) and X [�](

!
y2) also have the same length and

are indistinguishable (computational or statistically); 2) the data returned on input
!
y is correct

with probability >= 1� negl(|
!
y |).

We present a security definition that captures ORAM construction with an external position
map. Intuitively, an ORAM construction is secure according to Definition 5 if the ORAM client
generates the position map independently of the input request sequence.
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Definition 5. (External position map ORAM security.) Let
!
�= (�M , . . . , �1) denote a sequence

of position map states such that �i determines the access pattern for request opi. Additionally,
we denote by X [�;

!
� ](
!
y ) the access patterns (possibly randomized) generated by an ORAM

construction � when accessing a remote storage server given a sequence of position maps
!
�y.

Given a data request sequence
!
y , we say that an ORAM construction with an external

pmap X [�;
!
� ](
!
y ) is secure if it satisfies Definition 4 and there exists an algorithm O that upon

activation outputs a pmap with an identical distribution to that produced by the construction. The
algorithm O generates the pmap without having access to any information besides the database
size as a public parameter. Note that O is not restricted to random algorithms, as an ORAM
scheme can be deterministic and simply access the same sequence of addresses (e.g.: full scan
of the storage blocks).

6.4 Oblivious cascading scans

Overview. In this section we present our cascading oblivious database search (CODBS)
construction. Intuitively, the scheme captures the interaction between the Trusted Proxy and the
Storage Backend . The client starts by issuing an initialization query to the Trusted Proxy in order
to outsource a local plaintext Table Heap and a plaintext Table Index to a sequence of L + 1

levels of independent ORAMs. Our construction stores the database blocks across each level by
following the pattern that emerges naturally from the tree-based indexes in databases such as
B+-trees. As such, every node of a Table Index at level l is stored on the ORAM level l. The last
ORAM level is reserved for the table blocks. The underlying ORAMs are devoid of an internal
pmap and instead we explicitly provide a pmap for every ORAM access. In fact, the locations
of the blocks B in an ORAM at level l + 1 are stored in its parent node A at level l. As defined
in Section 6.3, each plaintext tree node has a list of tree points (key, a) which is enhanced
during the initialization process with an additional counter (key, a, ctr). These counters keep the
access to the ORAM levels correct and secure.

After the initialization, the client proceeds to issue search queries to the Trusted Proxy . With
the multiple ORAM levels, a query search consists of cascading from level to level and choosing
the next node to access at each step. To gain an intuition on how search proceeds from level to
level, consider the following example of an access to a block A at level l. Before moving to a
level l + 1, the scheme seeks in the block A a pointer (key, a, ctr) to a child node that satisfies
its query. If a match is found, the location of the next block to access is calculated with a PRF by
providing as input the ORAM level l + 1, the address a and the counter ctr. However, before
moving to the next level l + 1, the counter of the matching pointer is updated and block A is
shuffled back in level l to a new position. The new location of A is also calculated using a PRF.
This combination of independent ORAM levels with PRFs enable the search to generate the
pmap of a block without having to backtrack and shuffle each level without accessing every block
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in the Table Index . The database search ends by accessing and returning to the client a single
Table Heap block that satisfies the input query.

CODBS in detail. Given a PRF F : {0, 1}� ⇥ {0, 1}⇤ ! {0, 1}�, an IND-CPA symmetric
encryption scheme ⇥ = (KGen,Enc,Dec) and a position-based ORAM scheme � with an
external pmap, CODBS is defined by the Init function and the Search function presented in
Algorithm 1. In this section we use ORAMs as black-box, but we will later present an optimized
construction in Section 6.5. The pmap in CODBS is not a fixed-sized array as in classical position-
based ORAM construction. Instead, the location of a block is provided by location tokens, i.e.: two
outputs sampled from a PRF. The block location is defined by a tuple (F (m), F (m0)) containing
a token for its current location and a token for its eviction location. These tokens are used by the
ORAM scheme to move a block from its original address to a new one after an oblivious access
is made. For instance, assuming the underlying ORAM scheme is a construction similar to Path
ORAM [SDS+18] the tokens are used to compute uniformly random leaves in the server’s binary
tree.

Initialization algorithm. The Init algorithm outsources a plaintext database to a pair of obliv-
ious data structures stored in an untrusted server. The goal of this algorithm is to initialize
the Trusted Proxy internal state and ensure the database is ready to process client queries.
The algorithm starts with the generation of secret keys (line 2) and then proceeds to create
two additional oblivious structures, an oblivious search tree Ĩ (line 3) and an oblivious table T̃

(line 4-12). The oblivious search tree Ĩ is the result of the algorithm InitSearchTree. This tree
initialization algorithm traverses the plaintext database tree level by level, creates an ORAM for
each level l with capacity for dl blocks and stores the blocks of a tree level in the respective
ORAM. The resulting data structure consists of L ORAMs that keep an identical structure to
an input tree-based index. Each tree level is assigned to a single ORAM that stores all the of
the level’s nodes. Before a tree node is written to an ORAM, its internal structure is updated
and a unique access counter is added for every pair of (key, ptr). It’s important to note that the
pointer ptr in a node at level i points to a node offset a at level i+ 1. As blocks are written to
an ORAM for the first time, the cryptographic token used by the �.Read function starts with a
counter set to 0 and the eviction token increments the counter by a single unit. At the end of the
index initialization function every parent node can compute the location of its children.

After the index initialization, the Init function creates an additional level to store the Table
Heap blocks. The initialization process starts with the allocation of an oblivious table T̃ (line
4) filled with N dummy blocks. Afterwards, the algorithm scans the Table Heap block by block
(line 5) and generates two cryptographic tokens for each block (line 6-7). The initial location of a
block is computed by providing F with a unique message composed by the total number of levels
L+ 1, the block address a and an initial counter set to 0 (line 6). The eviction token is computed
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Algorithm 1: OIS construction.

1 Function Init(1�, I, T , N , L, d)
2 sk

F
 F.KGen(1�);sk

E
 ⇥.KGen(1�)

3 (stĨ , Ĩ) InitSearchTree(I, L, d, sk
F

, sk
E

)

4 (stT̃ , T̃ ) �.Build(N )
5 for a 2 {0, . . . , N} do
6 �t  F (sk

F
, L+ 1||a||0)

7 �t+1  F (sk
F
, L+ 1||a||1))

8 �  (�t, �t+1)
9 c ⇥.Enc(sk

E
, T [a])

10 (stT̃ , _) �.Read((stT̃ , �), T̃ , a)
11 (stT̃ , T̃ ) �.Write((stT̃ , �), T̃ , a, c)
12 end

13 return ((sk
F

, sk
E

, 1, stT̃ , stĨ ), (Ĩ, T̃ ))

1 Function InitSearchTree(I, L, d, sk
F

, sk
E
)

2 Ĩ  []; stĨ  []
3 for l 2 {0, 1, . . . , L} do
4 (stĨl

, Ĩl) �.Build(dl)

5 for a 2 {0, 1, . . . , dl} do
6 data I[l][a]
7 data’ []
8 for i 2 {0, 1, . . . , |data|} do
9 (key, a0) data[i]

10 data0[i] (key, a0, 1)
11 end
12 � (F(sk

F
, l||a||0), F(sk

F
, l||a||1))

13 c ⇥.Enc(sk
E
, data0)

14 (stĨl
, _) �.Read((stĨl

, �), Ĩl, a)
15 (stĨl

, Ĩl) �.Write((stĨl
, �), Ĩl, a, c)

16 end
17 Ĩ[l] Ĩl; stĨ [l] stĨl

18 end
19 return (Ĩ, stĨ )

1 Function Search(st, Ĩ, T̃ , ⌧)
2 (sk

F
, sk

E
, ctrr, stT̃ , stĨ ) st

3 a 0; ctr ctrr

4 for l 2 {0, 1, . . . , L} do
5 stĨl

 stĨ [l]; Ĩl  Ĩ[l]
6 �t  F(sk

F
, l||a||ctr)

7 �t+1  F(sk
F
, l||a||ctr + 1)

8 �  (�t, �t+1)

9 (st0Ĩl
, c) �.Read((stĨl

, �), Ĩl, a)
10 data ⇥.Dec(sk

E
, c)

11 (data0, a0, ctr0) Next(data, ⌧ ))
12 c0  ⇥.Enc(sk

E
, data0)

13 (st00Ĩl
, Ĩ0

l ) �.Write((st0Ĩl
, �), Ĩl, a, c’)

14 a a0; ctr ctr0

15 stĨ [l] st00Ĩl
; Ĩ[l] Ĩ0

l

16 end

17 �t  F(sk
F
, L+ 1||a||ctr)

18 �t+1  F(sk
F
, L+ 1||a||ctr + 1)

19 � (�t, �t+1)

20 (st0T̃ , c) �.Read((stT̃ , �), T̃ , a)
21 data ⇥.Dec(sk

E
, c)

22 c0  ⇥.Enc(sk
E
, data)

23 (st00T̃ , T̃ 0) �.Write((st0T̃ , �), T̃ , a, c’)
24 st0  (sk

F
, sk

E
, ctrr+1, st00T̃ , stĨ )

25 return (st0, Ĩ, T̃ 0, data)

1 Function Next(data, ⌧)
2 for i 2 {0, 1, . . . , |data|} do
3 (key, a, c) data[i]
4 if SelectChild(key, ⌧ ) then
5 data[i] (key, a, c+ 1)
6 return (data, a, c)
7 end
8 end
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with a similar message, but the counter is incremented by 1 (line 7). The syntax of the message
ensures that each block’s location i is independent from previous locations and every other block.
During the table scan, every block a is encrypted and stored in the oblivious data structure at a
uniform random location defined by its location tokens � (line 10-11). The function returns the
internal state.

Search algorithm. We now describe CODBS’ oblivious search algorithm. During this first look
at the algorithm we are not concerned with volume leakage and assume that for every input query
⌧ the protocol returns a single Table Heap block. This assumption implies that every indexed
record is unique and there are no range queries. We address this limitation in Section 6.4.1.
With this simplification the algorithm cascades from the first ORAM level to the last, selecting a
single node at each level. In detail, a query search has the following steps:

1.) Oblivious tree search. (line 4-15): In this step, the algorithm traverses the L levels of
the tree-based index (line 4), fetching a node from each level until it reaches a tree leaf. At every
level of the tree scan, the algorithm accesses the tree node at address a stored on an oblivious
location defined by the counter ctr. These variables are initially set to the tree root (line 2) and
similarly to the initialization algorithm, the current block location tokens are calculated with a PRF
(line 6-7). The accessed tree node (line 9) is processed by the Next function which selects a
new child node address a0 and a counter ctr0 to be accessed in the next tree level. This function
also returns an updated node data0 that is encrypted and evicted to the oblivious data structure
(line 12-13). At the end of every level the block pointers, counters and the internal ORAM state
are updated (line 14-15).

2.) Node selection. (Function Next): This operation selects a single tree child node address
from an input parent node. A tree node is a set of tuples (key, a0, c0) where each tuple consists
of a node address a0, a location counter c0 and a predicate key. We scan over every tuple (line
2) and check if a tuple key matches an input query ⌧ (line 4). As the choice of which child
nodes satisfies an input query depends on the underlying index we abstract this process with
the function SelectChild that takes as input a query ⌧ and the current child key. This function
returns a boolean result bit b that is set to true if the key satisfies the query. When a child node
is found the function increments the counter of the target child node (line 6). This update is
made ahead of time, before the child node is accessed, to ensure that the parent node keeps a
consistent pointer before it’s shuffled back to the ORAM external storage. The function ends by
returning the updated accessed node as well as the current location of the next node, defined by
the address a and the old counter value c.

3.) Table heap access. (Line 17-23): Finally, after scanning the search tree and reaching
a leaf node, the algorithm obtains a single Table Heap block pointer. With this information,
the current location of the block is calculated with a PRF function (line 17-18) and the block is
accessed and evicted (line 20-23). At the end of the algorithm, the Trusted Proxy internal state
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is updated (line 24) and the resulting block returned to the client.

Multi-User setting. Our protocol mainly considers the single-user setting, but can also be
extended to the multi-user setting. We can follow an approach similar to POSUP [HOJY19] and
store an access control list (ACL) on the Trusted Proxy , as well as a list of user credentials. This
meta-data is created by the data owner and outsourced to the remote server during the database
initialization process. Given an input query, the Trusted Proxy authenticates the request using
the user credentials and validates the user’s permissions. If the authentication is successful,
then the Trusted Proxy searches the database obliviously, as defined in Algorithm 1.

6.4.1 Oblivious query stream

Until this point, the Search algorithm was a 1-to-1 function that returned a single table block for
every input query. However, the database must support range queries and equality queries
that return multiple results. We address this limitation with the insight that any query with
multiple resulting records can be unfolded into a sequence of multiple queries with a single
result. Additionally, queries can be composed one after the other to obtain an oblivious stream
of client requests and database results. Next, we provide a concise description of our solution
assuming that the search keys are defined in a continuous domain fully known to the client.
This assumption matches existing work in state-of-the-art oblivious data structures [WNL+14]
and can easily be dropped at the cost of additional server-side bookkeeping, as is standard in
relational databases.

With this observation, the CODBS client is implemented as an algorithm that maintains a
constant rate r of requests/responses with the Trusted Proxy . The algorithm starts by opening
an authenticated channel with the Trusted Proxy and proceeds to send queries on a loop at a
rate r. The first query starts by searching for the first element in a subrange of the search key
domain. The request is processed by Trusted Proxy which scans every ORAM level with the
Search algorithm. The resulting database block is stashed by the client which keeps sending
queries with the consecutive elements in the key domain. A search query ends when the Trusted
Proxy returns a dummy element that does not satisfy the client query. This query stream is
crucial to hide one of the main sources of leakage of search queries over ORAMs, the volume
leakage. To address this leakage the query stream remains active by the client, even if there are
no new queries to search. In this case, a dummy query is sent to the Trusted Proxy and its result
is ignored by the client. With this approach, the volume leakage of the system no longer depends
on the size of the result set of a query but rather on the rate of requests made to the proxy. This
rate is public information that can be adjusted depending on the workload. Regardless of the
request rate, the access patterns no longer depend on private data.
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6.5 Forest ORAM

We now instantiate the underlying ORAM construction used for each level. A major concern that
arises from storing the Table Heap in an ORAM is the bandwidth blowup — number of blocks
transferred per access — of an oblivious access. Even though Table Index size is proportional to
the number of blocks in a Table Heap, the cost of a database search is dominated by the access
to the last level. In our experimental evaluation we verified that there are 50 times more blocks in
a Table Heap than in a Table Index for a small dataset and this difference only increases as the
dataset grows. To address this issue, we propose Forest ORAM an extension to Path ORAM
that scales with the number of blocks.

Forest ORAM is based on OblivStore [SSS12], a ORAM partition framework that divides a
single ORAM construction in multiple, independent P partitions. Each partition is protected with
an ORAM scheme and the cost of accessing a single block depends on the number of blocks in a
partition and not on the total number of blocks stored on the external storage. However, the initial
OblivStore’s constructions was proposed before tree-based constructions became standard and
thus uses a hierarchical ORAM scheme for each partition, resulting in a worst-case bandwidth
blowup of O

p
N . In Forest ORAM we replace the hierarchical framework with Path ORAM

and optimize the number of partitions to lower the bandwidth overhead of accessing a single
Path ORAM and prevent a partition from overflowing. Forest ORAM has O(log(N)� log (P ))

bandwidth blowup and a O(log (P )) upper bounded stash.

The security of OblivStore, as with most tree-based ORAM algorithms, is based on the
assumption that the stash is stored securely by the client. However, if the stash is stored inside
an IEE’s secure memory, every access to the stash is disclosed to the adversary. Specifically,
an adversary can learn the stash offset accessed and track the movement of blocks within the
stash. This leakage can result in linkability attacks [SSS12]. This problem also affects OblivStore
as it keeps an individual stash for each partition. The issue becomes clear with the following
example; after an oblivious access, OblivStore moves an accessed block from a partition A
to a partition B. Without any modification to the original construction, the movement between
partitions is simply a matter of removing a block stored in partition A and writing it to the partition
B stash. However, if the adversary can trace this exchange of blocks, it learns the exact location
where the block was stored. This information would have never been disclosed on a classical
client-server deployment, which compromises OblivStore’s security.

We addresses this issue with a single oblivious stash shared between all of the partitions.
This oblivious stash stores blocks from every partition and has a fixed size equal to the upper
bound of excepted blocks, i.e., O(log (P )) blocks. We denote the oblivious stash as OS and we
use the standard set notation to denote any access to the stash. To ensure a uniform access
pattern, all operations to the stash implicitly touch every element and any conditional logic, such
as if conditions, or assignments are executed with constant time operators. We also considered
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that the Forest ORAM algorithms executed inside an IEE are implemented with constant time
guarantees to prevent any access patterns from being disclosed trough side-channel attacks.
However, we refrain from explicitly presenting low-level detailed algorithms with constant time
operators as there are several standard approaches that can be applied [MPC+18, HOJY19,
ABB+16].

The Forest ORAM construction is defined by the algorithms presented in Algorithm 2.
Whereas state-of-the-art position based ORAM algorithms provide a single Access method, we
split this method in two main functions Read and Write. Furthermore, we also explicitly define
the initialization algorithm Build that allocates an external memory structure and setups the
construction parameters. Our algorithms are mostly similar to Path ORAM definition [SDS+18]
and we explicitly highlight our modifications in blue, which mostly include the division of blocks in
multiple partions as done by OblivStore.

Intuition. We first start with an intuitive overview of the protocol. Following OblivStore’s partition
framework, the untrusted server storage is divided into P individual partitions. The N outsourced
blocks are uniformly distributed between the partitions, with each partition storing about N/P

blocks each. A partition stores the data in a binary tree, similar to Path ORAM. The nodes in the
binary tree are known as buckets and each one stores up to Z data blocks.

Main Invariant. Forest ORAM has one main invariant. Every block is mapped to a uniformly
random partition p and a uniformly random leaf l in a partition tree. If a block a is mapped to a
partition p and a leaf l, the block can either be found on a client cache or on a bucket at partition
p in the path from the root to the leaf l.

To access (read or write request) a block from the server, Forest ORAM uses the external
position map to obtain the location of the block. Given a partition p and a leaf l, the entire path
from the tree root in partition p to the tree leaf l is transferred to the client stash. The client
shuffles the blocks and flushes a new set of blocks to the path accessed. To prevent any number
of subsequent accesses to the same block from being disclosed to an adversary, blocks are
re-assigned to new locations after each access.

When a block is re-assigned, its partition as well as its tree leaf are sampled from a uniform
random distribution. The blocks stay on the client-side stash until a client request can flush it
back to the external storage. Similar to OblivStore, we prevent the stash from overflowing with
a periodic eviction process that flushes blocks from the stash to the partitions. This process is
independent of the client requests and the client cache size.

External position map. The external position keeps track of the blocks locations and is
managed by an application using Forest ORAM. Intuitively, this position map could be as simple
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as an inverted index that maps a block address a to a tuple with the block location (x, y) where
x denotes a tree leaf and y a partition. Additionally, the position map is updated after every
access to move blocks to new uniform random position. In Forest ORAM we abstract the details
of the implementation of the external position map and define it as a tuple of location tokens
� = (�t, �t+1). Each location token is a bitstring {0, 1}D with size D. Every Forest ORAM
request (Read/Write) on address a receives a location token where �t is the current location of a
and �t1 is a new location of a after an access. We denote by ⌧ : � ! (x, y) a function that takes
as input a location token and returns its associated coordinates, leaf x and partition y.

Server Storage. The server storage is divided into P partitions of Path ORAMs such that
P = log (N). Each partition contains 2

log (N/P )+1
� 1 blocks of fixed size B. The partitions are

independent Path ORAM constructions with a binary tree of height L = {0, 1, . . . , 2log (N/P )
}

and each tree node is a bucket containing Z data blocks. The blocks are structured as a tuple (�,
a, isDummy, data) such that each block contains its data, a bit isDummy that defines if the
data is real or free with dummy data, the real block offset a and its current location token �. It’s
important to note that we assume that blocks are implicitly encrypted before being stored on the
external storage to hide its information from an adversary.

Path. Consider x 2 {0, 1, . . . , 2L�1} a leaf node in a tree on partition y 2 {0, 1, . . . , P}. Each
leaf node x in y defines a unique tree path that starts on the tree root and ends on the leaf. We
denote by P(x, y) the set of buckets in partition y on the unique path defined by x. We further
denote by P(x, y, l) a bucket at level l in P(x, y). Finally, we denote by L(y, l) the set of all the
buckets in partition y at tree level l.

Client Storage. The client’s storage consists of a single oblivious stash OS shared between
every partition. The stash is a temporary holding place for blocks accessed on a partition that
have not been evicted to the server. A subset of the stashed blocks is flushed after a partition
access, while the remaining blocks are evicted by a background eviction process. As proven in
OblivStore [SS13] the size of the stash is upper-bounded by the number of partitions O(logN).

Initialization. Forest ORAM is initialized by the Build function defined in Algorithm 2. This
function allocates an external memory structure D̃ for P partitions, each with a Path ORAM tree
with height L and Z blocks. The allocated blocks are overwritten by dummy data blocks. The
algorithm returns the client state with the internal parameters and an empty stash OS.

In Forest ORAM, a block access to an address a is done with a Read request followed by a
Write request. First, the client downloads a block from the server with the function Read, updates
the block in case of a write operation and flushes the updated block back to the server with the
Write function. The functions are described by the following two steps:
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Algorithm 2: Forest ORAM

1 Function Build(N)
2 P log (N) L log (N/P )

3 D̃ M.Alloc(P · 2L · Z)
4 Bucket []
5 for b 2 {0, 1, . . . , Z} do
6 Bucket[b] ({0}⇤, {0}⇤, 1, {0}⇤)
7 end
8 for i 2 {0, 1, . . . P · 2L} do
9 M.Write(D̃, i, Bucket)

10 end
11 return (([], P, L), D̃)

1 Function Read(st, D̃, a)
2 ((S, P, L), �) st; (�t, _) �
3 (x, y) ⌧(�t)

4 for l 2 {0, 1, . . . , L} do
5 S  S [M.Read(D̃,P(x, y, l))
6 end

7 data Read block a from S

8 return ((S,P,L), data)

1 Function Write(st, D̃, a, data⇤)
2 ((S, P, L), �) st; (�t, �t+1) �
3 (x, y) ⌧(�t)
4 (xt+1, yt+1) ⌧ (�t+1)

5 S  (S � {(�, a, 0, data)}) [ {(�t+1, a, 0, data
⇤)}

6 for l 2 {L,L� 1, . . . , 0} do
7 S0  {(�0, a0, 0, data) 2 S :

P(x, y, l) = P((⌧(�0), l)}
8 S0  Select min(|S0|, Z) blocks from S’.
9 S  S � S0

10 D̃0  M.Write(D̃, P(x,y,l), S’)

11 end
12 return ((S,P,L), D̃0)

1.) Block Access (Function Read): The function generates the location of offset a from the
location token (line 3), reads from the remote server the blocks in path P(x, y, l) defined
by the leaf x, partition y and tree level l (line 4-6). The blocks are stored on the stash and
the requested block is returned to the client (line 7-8).

2.) Block Flush (Function Write): The function generates the current location of offset a as
well as its new position from the location’s tokens (line 3-4). The stash is updated with new
block data⇤ and the new location of address �t+1 (line 5). The block eviction process (line
6-11) scans a tree path level by level, from the leaf to the root. At each level, the function
selects blocks from the stash with a path P(⌧(�0), l) that intercepts the path P(x, y, l)

accessed on the Read function. The selected blocks are trimmed to limit the tree node’s
capacity to Z (line 8). Finally, the resulting blocks are removed from the stash (line 9) and
evicted to the external storage (line 9).

6.5.1 Background eviction

A core component of OblivStore’s construction is the background eviction process that prevents
the client-side stash from overflowing. However, the algorithm used by OblivStore’s is not
applicable to Forest ORAM as it is bounded to hierarchical ORAMs. Furthermore, simply evicting
blocks from the stash after an oblivious access can disclose the new location of block. We
present a new eviction algorithm that addresses the two main challenges of a background
eviction:
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Algorithm 3: Background eviction.

1 Function Evict(st, D̃, a)
2 (S, P, L) st
3 y  Random(1, . . . , P )

4 for l 2 {0, 1, . . . , L} do
5 S  S [M.Read(L(y, l))
6 for x 2 {0, . . . , 2(l+1)

� 1} do
7 S0  {(�, a, 0, data) 2 S : P(x, y, l) = P(⌧(�), l)}

8 S0  Select min(|S0|, Z ⇤ 2(l) � 1) blocks from S’.
9 S  S � S0

10 end
11 M.WriteBucket(L(y, l), S0)
12 end

Minimizing stash size. The background process runs at an eviction rate c · v, such that c > 0

is the eviction rate and v is the clients request rate, meaning that for every oblivious access
there are c background evictions executed. The eviction process maximizes the number of
real blocks in a partition and attempts to replace every dummy block with a real stashed
block.

Oblivious access pattern. The access patterns of the partitions selected for eviction have to
be independent of the data access patterns of client requests and from the stashed blocks.
Furthermore, a partition must always be evicted if chosen, even when there are no stashed
blocks to evict.

The eviction background process is presented in Algorithm 3. The protocol resembles the
Path ORAM eviction function but has a few differences to ensure that blocks are written to
partitions independently of the data access patterns. The algorithm transverses the binary tree
level by level, from the root to the leaf, reading every block and flushing stashed blocks to the
server. Conceptually, Forest ORAM Write eviction is a vertical operation on a tree branch while
the background eviction is an horizontal process. We slightly abuse the notation of M.Read and
M.Write to denote that every node in tree level is read/write from/to the server.

The algorithm is described by the following 4 steps: 1.) (line 3) choose a random partition y

to evict; 2.) (line 4-5) Start to iterate the tree level by level L(y, l), and at every level read the
nodes from the server on to the stash; 3.) (line 6-10) Choose from the stash the set of blocks
that can be stored on the current level. This selection filters from the stash the blocks with a path
that belong to the selected partition and can be written to the current level; 4.) (line 11) Evict the
batch of selected blocks S0 to the current tree level. At each tree level l, blocks are written with a
deterministic access pattern from the first node to the last {0, 1, . . . , 2l}.
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6.5.2 Asymptotic analysis

The Forest ORAM bandwidth blowup per access is similar to Path ORAM, requiring 2 · Z log (N)

blocks to be transferred from the server to the client. The major difference is the partition of the
tree in multiple subtrees, each with only log (N/P ) blocks leading to a total bandwidth blowup of
2 · Z(logN � logP ).

In a CODBS search, we can further decrease the online bandwidth by pushing some I/O
to a background process. The CODBS search algorithm, as defined in Algorithm 1, accesses
the levels of a Table Index with a sequence of Read and Write functions, in this same order.
However, note that each level is an independent ORAM and that the levels grow by a factor of 2
from the roots to the leaf. As such, an oblivious access to level i has a lower bandwidth blowup
than an access to level i+ 1. Furthermore, consider an execution model where a main thread
processes the CODBS search and an additional background thread can evaluate any function.
If we evaluate the function Write (Algorithm 3) in the background thread, the main thread can
fetch a block from level i and move on to access the next level i+ 1. The eviciton of the block
in level i is done by the background thread which flushes the blocks before the main thread
fetches all blocks from level i+ 1. By induction, we can apply this process to every level and
the CODBS search only processes Read functions, effectively decreasing the only bandwidth
blowup to Z log (logN � logP ).

6.6 Security analysis

CODBS is designed to leak only the maximum number of blocks stored in the Table Heap and
the Table Index . Intuitively, from the perspective of an adversary, the database is a black box that
takes as input two public parameters: the database size and a query sequence. The database
processes the queries and outputs an access pattern that only depends on the database
size and not on the database contents or input queries. As such, an adversary cannot learn
from the access patterns or the storage layout of the database any additional information that
compromises the database content’s such as the order or range between records. Besides
the query access pattern leakage our construction also tackles an additional issue, the query
volume leakage. Overall, our construction captures a security notion stronger than state-of-the-
art searchable encryption schemes and encrypted databases but slightly weaker than a full
server-side oblivious database without any leakage.

The security analysis of CODBS is almost straightforward from the composition of black-
box position based ORAMs. We focus on the Search algorithm as the same arguments are
applicable to the Init algorithm. For every input query, the adversary observes a fixed number of
blocks accessed that depend on the public parameter of the Table Index height L. Furthermore,
each level access generates an external access pattern that is independent of the input query
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and the database’s data. To an adversary, the external access patterns are indistinguishable
from an arbitrary sequence of accesses as the accessed locations are the result of an ORAM
construction.

CODBS relies on an IEE to establish a secure perimeter with a small but protected memory
region, which we instantiate with Intel SGX. Even though we assume that an SGX enclave
ensures the confidentiality and integrity of the memory pages, the access to each individual page
is still disclosed to an adversary. In fact, an adversary may attempt to compromise the security
of CODBS by exploiting the memory access patterns during its execution in an IEE. To address
this vulnerability in CODBS, the algorithms presented in Section 6.4 and Section 6.5 have to be
modified to remove any conditional logic and instead use operators that provide constant-time
execution. However, we choose to present the algorithms without constant-time properties to
provide the reader with a more intuitive description. Nonetheless, a constant-time implementation
of these algorithms can be achieved by using standard operators in the literature such as
oblivious assignment and oblivious equality comparison operators [HOJY19, MPC+18, ABB+16].
Furthermore, we also assume that the PRF, authenticated encryption scheme and the function
SelectChild are constant-time.

Finally, we address the query volume leakage with a continuous stream of fixed sized
requests/responses. The stream is continuously generated by the database client which controls
the rate of queries sent to the database. For every input query, the database returns a single
database result with a fixed public size (e.g: size of a Table Heap block) to prevent an adversary
from distinguishing between dummy results and real results. Furthermore, as the number of
requests/responses exchanged depends on the request rate and not on the size of the query
results, the generated stream is indistinguishable from any arbitrary sequence of requests and
responses. As such, an adversary cannot disclose how many real queries were issued, the
order in which queries are sent or which results corresponds to each query. The composition
of an oblivious query stream with the oblivious Trusted Proxy access patterns ensures that an
adversary cannot distinguish between a real database execution from an arbitrary sequence of
accesses.

6.6.1 Security model

We now present our formal game-based security model and the security proof of the CODBS
protocol. We present in Figure 6.3 the game-based security definition of an oblivious index
(Definition 2). During the execution of the game, an ideal storage M is available to ORAM
primitives in both worlds. In the real game RealOIS

A (1
�
) the adversary A starts by interacting

with the CODBS protocol by providing a plaintext database to be encrypted and stored on
oblivious data structures. The adversary is given the complete sequence of accesses to the
external storage M after the initialization algorithm and the pair of resulting data structures.
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(st, Ĩ, T̃ , d) Search
M
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Figure 6.3: OIS Real and Ideal game definition

The adversary follows by adaptively requesting new search queries and for each one receives
the respective access patterns. In the ideal game IdealOIS

S,A (1
�
), the interaction between the

adversary and the simulator S follows the same flow of interactions. However, the sequence
of access patterns and oblivious data structures generated by the simulator does not take
into account the adversary plaintext database or its queries. Instead, the access patterns are
generated from public parameters.

Our security model focuses on a passive adversary that can observe every interaction
between the Trusted Proxy and the external database storage. However, the adversary cannot
create arbitrary instances of the protocol, or forge requests and data blocks. In fact, our proof
can be extended to an active adversary in the IEE model [BPSW16] (Section 2.3.3) albeit at the
cost of a more extensive proof that would detract from the main concern of our construction: the
external database access patterns. Nonetheless, we provide a brief description on the existing
mechanisms that can be used to make CODBS secure against active attackers. Intuitively,
our construction can be loaded in an IEE with an attested key exchange protocol that ensures
that only a single instance of the protocol can establish a secret key between the database
client and the Trusted Proxy . Furthermore, a secure communication channel between the client
and the database prevents the adversary from providing valid inputs to either party. Finally, an
authenticated encryption scheme and a sequence of numbers can be used to ensure that the
database blocks in the external storage cannot be forged.

6.6.2 Game-based proof

Let � = (Build,Read,Write) be a constant-time position based ORAM with the security
guarantees in Definition 6.3.2. Furthermore, let F be a PRF with domain D and output Range
R with prf-security as defined by Bellare and Rogway [BR05] (Section 2.1.2). Furthermore. let
⇥ = (Gen,Enc,Dec) be an IND-CPA encryption scheme according to Shoup and Boneh [BS17]
(Section 2.1.1). CODBS is secure according to Definition 6.3.1.
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Figure 6.4: Extended real game.
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T̃ (stT̃ , T̃ ) �.Build(N)

for a 2 {0, 1, . . . , N}
�  (g(c), g(c+ 1))

(stT̃ , _) �.Read((stT̃ , �), T̃ , {0}⇤)

data ⇥.Enc(skE , {0}B)

o �.Write((stT̃ , �), T̃ , {0}⇤, data)

(stT̃ , T̃ ) o

stSim  (N,L, d, skE , stĨ , stT̃ , g, c+ 2)
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Figure 6.5: OIS ideal simulators.

Theorem 6.6.1. The CODBS construction defined by Algorithm 1 is a secure Oblivious Index
Scan according to Definition 1 if � is an Oblivious RAM scheme, ⇥ is an IND-CPA symmetric
encryption scheme and F is a PRF.

The security proof of Theorem 6.6.1 is described through a sequence of 5 games presented
from Figure 6.6 to Figure 6.9. We denote by Gi the i-th game and by Pr[Gi = 1] the probability
that Game i outputs 1. Each game is a transition from the real game defined in Figure 6.4 with
a slight modifications until the last game that is identical to the ideal game with the simulators
defined in Figure 6.5.

Game G0. G0 is defined by the real security game RealOIS

A (1
�
) (Figure 6.3) instantiated with

the CODBS construction which results in the extended real game presented in Figure 6.4. This
extension inlines the InitSearchTree function and encapsulates the addition of a child counter to
the tree nodes in the function InitNode.

Pr[RealOIS

A (1
�
) = 1] = Pr[G0 = 1]

Game G1. The following game G1, presented in Figure 6.6, makes two modifications on the
real world game, which simplify the next steps. First, it adds a global counter to the protocols
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Figure 6.6: Game 1 hop.

internal state. The counter does not modify the protocol but provides a unique, non-repeatable
value. The counter is incremented twice after every pair of �.Read/�.Write function, i.e., when
the initialization protocol stores a database block in on the external data structures and after a
block is accessed during a query search. The second modification is the addition of an ideal
structure IA that stores the tree-based nodes generated by InitNode. The data stored on this
structure is identical to the data blocks stored on the L ORAM levels and does not modify it in
any way. As this modification does not change the game execution it is clear that the adversary
gains no additional advantage in this hop.

Pr[G0 = 1] = Pr[G1 = 1]

Game G2. This game, presented in Figure 6.7, is a two-step hop that alters the process of
generating location tokens for every ORAM access. First, every function F is replaced with a real
randomly sampled function g. Secondly, the input messages to the functions are replaced by the
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, �), Ĩl, a, data0c)

(st00Ĩl
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l

�  (g(cS), g(cS + 1))

(st0T̃ , datac) �.Read((stT̃ , �), T̃ , a)

data ⇥.Dec(skE , datac)

data
0
c  ⇥.Enc(skE , data)

(st00T̃ , T̃ 0
) �.Write((st0T̃ , �), T̃ , a, data

0
c)

st
0  (g, skE , st00T̃ , stĨ , cS + 2, IA)
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Figure 6.7: Game 2 hop.

current value on the global counters. Since these input messages are unique by construction,
we are exchanging unique values by unique values, enabling us to use the global counter in
the PRF. For every ORAM access either a tree level l, a node offset a or access counter c
is different. As the secret key skF is outside of the adversary control, an adversary that can
distinguish between G1 and G2 can also be used to distinguish F from a truly random function.
As such, we upper bound the distance between these two games by building an adversary B1

against the prf-security experiment such that:

Pr[G1 = 1]� Pr[G2 = 1] = Adv
prf

F,B1
(�)

Adversary B1 simulates the game G2 as follows. For every requested location token the
adversary issues a new call to the prfF,B1

oracle. Furthermore, the output bit of G2 is forwarded
as the resulting bit of the prf-security experiment. As the difference between both games is the
location token generated either by a F(l||a||c) or g(cS), and both input messages are unique,
then the probability of distinguishing between game G2 and G1 is the same as prf-security.

Game G3. With game G3, presented in Figure 6.8, the encrypted data blocks are replaced
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Figure 6.8: Game 3 hop.

by dummy message with a constant length B. As the contents of the table blocks are never
disclosed to the adversary according to the security model and the access counters stored within
the tree nodes have been replaced by the global counter, the blocks contents are no longer
relevant for the protocol execution. Furthermore, as the adversary A does not have access to
the secret key skE the upper bound between game G4 and game G3 is defined by an adversary
B2 in an IND-CPA experiment AdvIND�CPA

⇥,B2
(�).

Adversary B2 simulates the game G3 by forwarding for every encryption request a pair of
input message (data, {0}B) to the IND-CPA✓,B2 experiment. After the requests, the protocol
continues to be executed with the ciphertext returned from the experiment. Once G3 terminates
its resulting bit is returned as the guessing bit of the experiment. Since the difference between
both games is the same as presenting the encryption of one of the input messages, then the
probability that A distinguish between G2 and G3 is the same as the IND-CPA security.

Pr[G2 = 1]� Pr[G3 = 1] = Adv
IND�CPA

⇥,B2
(�)

Game G4. In this game, presented in Figure 6.9, we replace every block address a in an
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, �), Ĩl, {0}⇤, data0c)

(st00Ĩl
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Figure 6.9: Game 4 hop.

ORAM read and write requests by the fixed address 0. With this modification, game G3 has
a data request sequence !y3 that depends on the input query and database contents while G4

has a data request sequence !y4= ((·, 0, ·), . . . , (·, 0, ·)) that always accesses the same address.
Since both requests have the exact same length then according to the security definition of
an ORAM construction the access pattern generated by both requests are indistinguishable
X [�](

!
y3) ⇡ X [�](

!
y4). In fact, our constructions leverage an ORAM scheme with an external

pmap which determines the access patterns generated. Since in both games the pmap sequence
!
� is generated by an oracle O instantiated as a random function g that outputs a unique message
independent of the accessed addressed then the access patterns generated are indistinguishable
from an access pattern generated by an ORAM construction with an internal pmap. We upper
bound the distance between both games with an hybrid argument [BS17] of an adversary B3

that plays against an ORAM experiment AdvORAM

�,B3
(�).

In this game we apply a standard hybrid argument where and adversary B3 has to distinguish
between a sequence of L+1 hops such that each hop is denoted as G(3,i) where 0  i  L+1.
In the first hop G(3,0) everything in the game is identical to G3, but in the hop G(3,1) the access
to the first ORAM level is made to a fixed address 0. As everything remains equal, distinguishing
between these two hops is the same as distinguishing between two access patterns generated
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by an ORAM construction. This argument can be applied recursively in the subsequent levels
by changing one level at each step, from G(3,i) to G(3,(i+1)) where i 2 [0..L]. In the last game,
G(3,(L+1)) is exactly equal to G4. As such, the advantage of an adversary A distinguishing
between G4 and G3 is the same as B3 distinguishing the access patterns generated of just one
of the L+1 ORAM levels in the sequence of from G(3,0) to G(3,(L+1)). The upper bound is given
by:

Pr[G3 = 1]� Pr[G4 = 1] = (L+ 1) · Adv
ORAM

�,B3
(�)

Let,

Adv
OBLIVS

OIS,S,A(�) =
���Pr

⇥
RealOIS

A (1
�
) = 1

⇤
� Pr

h
IdealOIS

S,A (1
�
) =

i ���

then Theorem 6.6.1 follows from

Adv
OBLIVS

OIS,S,A(�) =
4X

i=0

|Pr[Gi = 1]� Pr[Gi+1 = 1]| 

Adv
prf

F,B1
(�) + Adv

IND�CPA

⇥,B2
(�) + L+ 1 · Adv

ORAM

�,B3
(�)  negl(�)

⌅

6.7 Evaluation

We implemented CODBS as a PostgreSQL server-side extension that supports equality and
range queries. We build upon on a widely used open-source database management systems to
ensure that our system design choices are based on realistic assumptions and the evaluation
results are comparable to industry standard databases. Furthermore, this approach enables
us to provide a turnkey solution that can be easily integrated with existing applications. The
complete solution has roughly 12K lines of C code and is composed by an ORAM library, a
Trusted Proxy engine and a database wrapper.

6.7.1 System Implementation

Our system currently supports two ORAM constructions: Path ORAM and Forest ORAM.
We implemented both constructions in a general-purpose ORAM library, open-source for any
application that needs to hide its access patterns. The library has no third-party dependencies
(e.g.: Intel SGX, OpenSSL) and decouples the main logic of an ORAM algorithm from its auxiliary
data structures (stash, position map and external storage). With this design, an application can
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include our library as a static or shared library and customize the low-level accesses to the
external storage.

We implemented CODBS as the database component that replaces the Trusted Proxy and
provides an input API similar to the definition in Section 6.3.1. Additionally, this component has
an output API to access the external database storage. The component is deployed within an
Intel SGX enclave collocated with the database. Currently, the extension supports a B+-tree as
the index data structure. We leverage the LibSodium [Den20] library v1.0.5 to instantiate the
cryptographic primitives as it provides constant-time implementations. Concretely, we instantiate
the PRF F as a SHA256-HMAC and ⇥ encryption scheme as an AES block cipher with CBC
mode.

The Trusted Proxy is connected to the database with a wrapper component implemented
as Foreign Data Wrapper (FDW), a PostgreSQL module that enables developers to extend the
database server without modifying the core source code. With this component, client applications
can define oblivious tables that are not accessed by the standard PostgreSQL execution path
but instead by user-defined functions. In our system, the wrapper intercepts input queries
and forwards them to the Trusted Proxy trough ECALLs to the enclave. For each query, the
Trusted Proxy generates a sequence of oblivious invocations to the database storage using
OCALLs. These invocations are handled by the database wrapper which accesses the database
physical storage using the PostgreSQL low-level table interface. An additional advantage of
an FDW module is the transparent integration of CODBS with a database client. A database
client can establish an oblivious stream of requests with the Trusted Proxy trough database
cursors [Mac16]. A cursor is a query control data structure that enables the client to fetch a
few rows at a time from a specific query instead of obtaining every resulting row. Using this
mechanism, the client can keep pooling query results from the Trusted Proxy and issuing new
queries.

6.7.2 Methodology

We measure the performance of our system to answer the following questions: 1) How does
CODBS scale with increasingly larger datasets; 2) What is the overhead in comparison to a
plaintext database for different types of queries; 3) How does size of the result set of a range
query impact the overall system the database performance. In the evaluation we compare our
construction to a system Baseline which consists of a database that stores the Table Index and
Table Heap in a single Path ORAM construction. For a fair comparison, the Baseline also uses
an oblivious query stream.

Micro & Macro Settings. We divided our system evaluation in two distinct settings, a micro
setting and a macro setting. Both settings use a synthetic dataset and workload. The micro
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setting measures the performance of Forest ORAM construction and Path ORAM constructions
isolated from the CODBS scheme and the PostgreSQL engine. In this setting each construction
read/writes blocks of B = 8 KiB from/to the main memory at randomly sampled positions. The
data blocks written to memory are also sampled from a uniform distribution {0, 1}B . In the
macro setting we use the YCSB benchmark v0.18 [CST+10]. In the benchmark the database
has a single table with two columns. The first column Key is indexed and stores unique
keywords. The second column stores JSON objects containing randomly sampled data. Each
table record has the same size as a database block 8 KiB. We configured the benchmark to
generate two workloads over the indexed column: Workload A) Equality queries that search for
keywords sampled from a uniform random distribution; Workload B) Range queries that start on
a randomly sampled keyword and search for at most k values where k is uniformly sampled from
[1..X]. The first benchmark is designed with a one-to-one match between a database record
and database table block to enable a linear analysis of the expected database performance as
the table size increases.

For both benchmarks we performed 5 runs for each combination of deployment, configuration,
workload and database size. The number of runs is the maximum necessary to calculate an
accurate Confidence Interval (CI) [Jai91] with the measured standard deviation. Each run lasted
for 40 minutes with a 10-minute warm up period and a 2-minute cool down period between
each run. Furthermore, we ensure that each run is an independent observation by clearing the
systems caches and deleting any persistent data.

Collected Metrics. In the micro benchmark we measure the mean and the percentile latencies
of a read and write operations for every run. With the YCSB benchmark we collect the mean
and percentile latencies as well as the system throughput for every run. The samples mean are
calculated within an 95% CI with the Student’s t-distribution [Jai91]. We collected CPU, memory
and disk usage of each system and ORAM construction using Dstat v0.7.3.

Experimental Setup. The system was deployed in a private infrastructure. Each computational
node had an Intel Core i3-7100 CPU with a clock rate of 3.90 GHz and 2 physical cores in hyper-
threading. The main memory was a 16 GiB DDR3 RAM and the solid-state storage a Samsung
PM981 NVME with 250 GB. The machines had Intel SGX SDK v2.0 installed. Additionally, the
nodes were interconnected by a 10 GiB network switch.

6.7.3 Micro-benchmark

Figure 6.10 depicts the results of the micro-benchmark. The workload in this benchmark with an
initially empty oblivious data structure and measures the latency of an oblivious access request,
either a read or a write. With this workload we measure the average latency of a request for the
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Figure 6.10: Forest ORAM and Path ORAM comparison. X-axis measures number of blocks and errors
bars the 95% CI.

Forest ORAM and Path ORAM constructions. We also measure the latency of both constructions
with two distinct stashes, an unbounded stash where a stash access stops as soon as it finds an
element and a double-oblivious stash with fixed size upper bounded at log (N). The number of
blocks stored on the ORAMs increases from 2

10(65 MiB) to 2
16 (2 GiB).

As can be observed, the performance difference between both stashes is almost non-existent.
This is expected as position-based ORAM constructions are designed to utilize as much as
possible the stash. In more detail, on an oblivious stash a Forest ORAM request takes on
average 27 µs for the smallest data set while in the largest takes 59 µs. The Path ORAM has a
higher latency, with 99 µs for an oblivious request in the smallest data set and 190 µs for the
largest data set. This difference represents at least a ⇠ 2.6⇥ speedup. In the unbounded stash,
the most significant difference is noticed on Forest ORAM in the 2

14 dataset where there is a
an average performance decrease of 2.5%. As the dataset increases, the performance of both
systems degrades at a similar rate with Forest ORAM latency increasing by ⇠ 15% and Path
ORAM by ⇠ 17%. At the 90th percentile, both systems performances degrade considerably, with
Forest ORAM latency increasing at most by ⇠ 17% and Path ORAM by 7%. Even with these
outliers Forest ORAM latency is at least ⇠ 1.6⇥ lower than Path ORAM.

This benchmark shows that the asymptotic difference between Forest ORAM and Path
ORAM has a practical impact. The average latency as well as the 90th and 99.9th percentiles
are smaller than Path ORAM. This difference is attributed to the partition framework which scales
the number of partitions and the tree height of each individual partition as the data set increases.
In fact, the number of partitions depends on parameter that can be adjusted to increase even
further the performance of Forest ORAM at the cost of additional client-side storage. The only
unexpected result is the 99.9th percentile maximum performance degradation of ⇠ 120% when
compared to Path ORAM. However, this difference only occurs in the smallest data sizes and
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Figure 6.11: Avg. latency of YCSB workloads. Workload A X-axis measures the numbers of blocks.
Workload B X-axis measures a query resulting records.

stabilizes in both protocols at ⇠ 40%.

6.7.4 Macro-benchmark

We now present the performance of a complete CODBS deployment and compare it to Baseline.
The Baseline solution uses a Path ORAM construction to store the database data and does
not divide the Table Index in multiple ORAM levels. Instead, the Table Index is stored in a
single ORAM and accessed as an oblivious data structure similar to the one used in Oblix and
proposed by Wang et. al [MPC+18, WNL+14]. However, it still calculates the block addresses
using a PRF to keep both systems comparable. With this approach, the Baseline provides clear
understanding on the practical performance improvements of our cascade solution. Additionally,
we also contrast both solutions to a plaintext PostgreSQL database. The evaluation consists
on measuring the throughput and latency of increasingly larger database databases until a
saturation point is reached and the systems cannot provide a practical throughput (> 1 op/s).
Besides the performance of database searches, we also measure the cost of outsourcing the
initialization algorithm.

Figure 6.11 presents the macro results. In workload A, the database size starts with 2
4 Table

Heap records and a Table Index with a single tree level (a total of 47 MiB) and is increased
until 216 Table Heap blocks with a Table Index of two levels (a total 2.1 GiB). Across this range,
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CODBS maintains an average latency below 10 ms which corresponds to 886 ops/s for the
smallest data set and 158 ops/s for the largest. The average maximum throughput of every run
in Baseline is 264 ops/s (smallest dataset) and the average latency surpasses CODBS at just
2
8 Table Heap records. Its highest average latency is 25 ms, corresponding to a throughput of 40

ops/s, meaning that CODBS has approximately a 4⇥ speedup. There is a slight performance
degradation of both systems on the 99th percentile in the largest dataset. CODBS has a 30%
latency increase with an average latency of 13.34 ± 1.74 ms and the Baseline has an increase
of 17% with an average latency of 29.33 ± 12.95 ms. In contrast to both solutions, a plaintext
PostgreSQL has on average ⇠ 7663 ops/s.

Workload B uses the dataset with 2
16 Table Heap records to measure the latency of range

scans, more specifically a where clause with a greater than operator. The number of returned
records ranges from a 10 to 40, with larger ranges becoming impractical. Similar to workload A,
the Baseline system has the highest average latency of 324 ms and a throughput of 3 ops/s.
CODBS has a ⇠ 3⇥ speedup with the lowest throughput of 10 ops/s and an average latency of
96 ms. While both solutions have a considerable performance decrease, a plaintext PostgreSQL
has at most a decrease of ⇠ 26% on the largest dataset from returning a single result to return
40 results.

Figure 6.12 provides an analysis of the multiple query processing stages in both systems. It
breakdowns the execution between the database data structures, Table Index (I-File, I-Stash)
and the Table Heap (T-File, T-Stash) and PRF computation. Each structure is divided even further
by the time spent in the ORAM stash and external access to store (I-File, T-File). The CODBS
breakdown also accounts for the time spend at each index level (L2 and L1). The overhead of
block encryption is measured within the accesses to the external files. As depicted, CODBS
spends most of the time (60%) accessing the Table Heap, 8% accessing the first Table Index
level and 28% accessing the second Table Index level and the remaining time calculating the
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Figure 6.13: Avg. disk writes over time on workload A on data set with 2
16 records. The light gray

represents the 95% CI.

PRFs. In contrast, the Baseline accesses are almost equally divided between the Table Heap
and Table Index . With the Baseline spending more time accessing the external file, the system
throughput is dominated by the disk IO. This claim is further supported by Figure 6.13 which
presents the average write requests to the external storage grouped in intervals of 10 seconds.
As can be observed, the Baseline has a sustained rate 10 to 40 MiB writes per second while
CODBS is constantly below 2 MiB/s.

We also measure the performance and storage penalties associated with the precomputation
of the initialization algorithm. For the dataset with 2

4 records CODBS has an average latency of
23 seconds to initialize 47 MiB. The Baseline takes on average 28 seconds to the complete
the initialization. On the largest dataset, CODBS initialization latency is ⇠ 14⇥ higher with
an average of 346 seconds while Baseline is ⇠ 18⇥ higher. Both solutions incur in storage
overhead with a negligible growth on the smallest dataset but with a significant growth in largest
datasets. For a plaintext database with 2

16 records (2.1 GiB), Baseline has a threefold increase
(6.2 GiB) while CODBS is ⇠ 5⇥ larger (11 GiB).

Discussion. Across every benchmark and workload, CODBS displays an overall performance
that exceeds that of the baseline system. These speedups are the result of combining the
cascade approach with the Forest ORAM construction. This combination results in an asymp-
totic decrease of log (log (N)) bandwidth blowup compared to state-of-the-art oblivious data
structures as shown in Section 6.7.3. This seemingly small difference has a significant impact.

In the YCSB benchmark on workload A with a tree height of just two levels there is a
4⇥ speedup instead of just a 2.6⇥ speedup as might otherwise be expected from the micro
benchmarks. This difference is the result of spending less time accessing the storage and a
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95% lower number of disk writes on average than the baseline. Regarding workload B the
performance gains of CODBS in comparison to the baseline are less significant. With just a
2⇥ speedup, the main bottleneck in this workload seems to be the size of the data exchanged in
the oblivious query stream. Across the different result set size, CODBS has on average a write
rate of ⇠ 1.3 MiB/s and the baseline writes at most ⇠ 347 KiB/s.

6.8 Summary

Along this chapter we presented a novel cryptographic scheme for database query searches
that minimizes the information leaked to a few public parameters. The common approach in the
state-of-the-art is to protect sensitive data on databases by using cryptographic schemes as a
black-box. However, this approach results in disclosing partial information when the schemes are
applied without taking into consideration the data structures of relational systems. In this chapter,
we take the opposite approach and propose a novel construction that leverages the query-
optimized data structures of databases. We present CODBS, an efficient solution for secure
database searches on tree-based indexes and heap table accesses. Our main contribution
is a cascade of multiple ORAM levels, each storing blocks from a database index or table.
We also use a general construction that removes the need for an ORAM position map and
instead use an external map that can be computed on demand during a query search. The
overhead of database search is reduced to the bandwidth of accessing multiple small ORAMs
instead of accessing a large ORAM multiple times. We further improve the performance of
database searches by resorting to an IEE (Intel SGX) collocated with the database engine. Our
construction hides the internal memory access patterns of trusted hardware and we prove its
security in the style of provable security.

Our solution shows that taking into consideration application specific details can result in
more efficient cryptographic schemes. We implemented our construction as a system integrated
with a PostgreSQL database and measured its performance. Comparatively to the state-of-
the-art constructions, our solution is 1.2⇥ to 4⇥ faster and only requires a small constant size
storage that can be deployed within an Intel SGX enclave. A straightforward line of research is
the practical application and improvement of our solution on applications that are read-intensive
and can fully leverage our cascade solution. Conceptually, it’s possible to have a parallel system
that accesses multiple ORAM concurrently and increases the system throughput. Another
alternative is to enhance our construction with dynamic updates and do a security analysis of
the information that is disclosed.
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Chapter 7

Conclusion

The Cloud infrastructure is the de facto standard technology for migrating on-premises applica-
tions to a remote third-party service. The main benefit of cloud providers is the seemingly virtual
infinite resources that can be allocated on-demand at a lower cost than classical data-centers
infrastructures. Having a cost-effective third-party service that manages the hardware as well as
software enables individuals and organizations alike to focus on their products. This has resulted
on several sectors offloading their applications to clouds such as e-commerce portals, social
network, streaming services and retail chains. However, organizations that handle sensitive data
such as medical applications or financial services refrain from fully adopting the cloud paradigm
due to security concerns. The main detracting factor is the immediate loss of data control and
possible data disclosures.

CPD have been proposed to protect the user’s confidentiality. These systems encrypt data
before offloading it an untrusted third-party service. However, classical encryption schemes limit
the database functionality which is essential to several different applications. To mitigate this
issue, existing systems prioritize performance and functionality over privacy and leak partial
information such as the order or equality between values. This leakage enables the database
engine to process queries over ciphertexts on the server-side with minimal overhead or functional
limitations. In this dissertation we proposed, developed and evaluated three new novel solutions
to store and process confidential data in untrusted services. Our aim was to explore alternative
trade-offs between privacy, performance and functionality in CPD systems. This goal was
achieved with our contributions that offload increasingly more computation to the untrusted
server. All of our contributions consider a semi-honest, static adversary that observes everything
that is stored and evaluated on the untrusted service.

Our first contribution provides a multi-layer, stackable user space encrypted file system
to outsource sensitive data. In this contribution, the database engine remains in a private
infrastructure, but sensitive data is permanently stored on an untrusted site. Our solution,
SafeFS, intercepts database request to the file system and modifies them in a pipeline of layers
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that can encrypt, replicate and compress data. To support these features, the system was
designed with the concept of modular layers that encapsulate a single feature. Layers can be
composed on top of each other by following a standard input and output interface. The proposed
system was evaluated experimentally, and the results show that SafeFS is a practical alternative
to tailor-fit solutions.

Even tough cloud providers have safeguards to prevent an external attacker from compromis-
ing a system, there are always exploits. Our second contribution leverages the security of existing
providers and proposed a novel system, d’Artagnan, that decentralizes private information. Our
system uses secret sharing to encrypt data in multiple secrets that can be stored in non-colluding
third-parties. With this approach, the corruption of a single party does not compromise the
security of the database and the original values can only be reconstructed if the majority of the
parties are corrupted. As such, an adversary has to commit far more resources on an attack
than in a classical database. d’Artagnan also manages multiple computing nodes to ensure
a consistent global state and evaluate queries using secure multiparty protocols. The system
has a modular architecture that is agnostic to the underlying protocols and can integrate new
constructions to support active adversaries, a dynamic set of participating parties and provide
higher availability. The system was validated with an experimental evaluation that show that
d’Artagnan is a viable solution for small, but highly sensitive datasets.

Our third core contribution took a more in-depth approach to hide the access-patterns
disclosed by queries in relational databases. We proposed a new oblivious index scan scheme
that reduces the information disclosed by an index scan to a few public parameters such as
the height and fanout of a search tree. Furthermore, we presented a novel constant-time
oblivious construction that can be securely deployed on trusted-hardware and has a bandwidth
blowup lower than state-of-the-art constructions. Our solution uses an optimized ORAM scheme,
Forest ORAM, that improves the practical performance and scalability of tree-based ORAM
constructions. We integrated the novel constructions with one of the most widely used open-
source database systems, PostgreSQL, and measured the resulting system throughput. The
obtained results show that our approach is at least twice as fast as existing solutions.

Overall, the contributions in this dissertation are practical instances of systems that answer
positively to our research questions. The proposed systems support an extensive set of queries
without an underlying assumption that partial information needs to be disclosed. However,
each system has some constraint either due to the trust model or the cryptographic schemes
used. SafeFS provides a practical and efficient solution to outsource data but still discloses
the underlying access patterns of the database and assumes the client has the computational
resources to host a database engine in a private infrastructure. The next contribution, d’Artagnan,
can be used to offload any computation to an untrusted third-party but the existing secure
multiparty protocols have a significant overhead that is not practical for large-scale systems. One
important insight from the cloud evaluation is the impact that the location of the clouds has on
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the system throughput. Ideally, the infrastructure of the cloud providers should be geographically
close and have at least a 10 GiB network between the sites. Nonetheless, even if the bandwidth
usage of the protocols is reduced to an optimal number of messages, this decentralized approach
will always be slower than any centralized solution. However, this may be an acceptable cost
depending on an application performance requirements. Our last contribution, CODBS, found a
balance between performance and functionality without compromising the user’s confidentiality.
This solution makes the explicit assumption that there is a trusted proxy (IEE) on a cloud provider
that cannot be compromised. However, this assumption may not always be valid as not all cloud
providers have computing instances with trusted hardware. In these cases, one of our previous
contributions might be preferable. A general purpose CPD with practical performance that is not
susceptible to statistical or side-channel attacks is currently unfeasible and there are still several
research directions left open.

Future Work. An immediate accessible research path is improving our contributions by ap-
plying them to practical uses cases and proposing or integrating new cryptographic schemes
that provide interesting trade-offs between performance and confidentiality. An example is the
integration of ORAM schemes on SafeFS to hide the database access patterns. From a system
design perspective, it is not entire clear how these schemes can be integrated in a stackable
architecture. Furthermore, the system performance will decrease significantly and it will require
new solutions to mitigate the overhead. A possible research path is to propose novel optimized
ORAM constructions that follow an approach similar to Forest ORAM and distribute data between
multiple, smaller ORAMs.

In a different direction there is an immediate need for an empirical study on access pattern
leakage of specific applications. SSE schemes as well as CODBS have taken a best-effort
approach to minimize the information disclosed by search queries. To further improve the existing
lower bounds, it is critical to have an in-depth knowledge of what is an acceptable leakage in
different application settings. Towards this goal there is the need for representative datasets and
workloads of application in specific domains that manage sensitive information.

Even though we presented a straightforward solution to the problem of volume leakage
in Chapter 6, it is still a challenging open problems without an efficient solution. The current
approaches to address this issues resort to changing the distribution of values in a database by
adding dummy elements, limit searches to a fixed size or using differential privacy. In our last
contribution we opted for maintaining a constant stream of requests between the clients and the
database engine to prevent an adversary from discerning real requests from dummy requests.
Exploring our approach in applications that have queries running periodically may provide some
insights on how to minimize the number of dummy requests and increase the system throughput.
Solving this problem with an efficient solution is one of the current main limitations to create a
general-purpose CPD.
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