11 research outputs found

    A multi-level search strategy for the 0–1 Multidimensional Knapsack Problem

    Get PDF
    AbstractWe propose an exact method based on a multi-level search strategy for solving the 0–1 Multidimensional Knapsack Problem. Our search strategy is primarily based on the reduced costs of the non-basic variables of the LP-relaxation solution. Considering that the variables are sorted in decreasing order of their absolute reduced cost value, the top level branches of the search tree are enumerated following Resolution Search strategy, the middle level branches are enumerated following Branch & Bound strategy and the lower level branches are enumerated according to a simple Depth First Search enumeration strategy. Experimentally, this cooperative scheme is able to solve optimally large-scale strongly correlated 0–1 Multidimensional Knapsack Problem instances. The optimal values of all the 10 constraint, 500 variable instances and some of the 30 constraint, 250 variable instances of the OR-Library were found. These values were previously unknown

    A Weight-coded Evolutionary Algorithm for the Multidimensional Knapsack Problem

    Get PDF
    A revised weight-coded evolutionary algorithm (RWCEA) is proposed for solving multidimensional knapsack problems. This RWCEA uses a new decoding method and incorporates a heuristic method in initialization. Computational results show that the RWCEA performs better than a weight-coded evolutionary algorithm proposed by Raidl (1999) and to some existing benchmarks, it can yield better results than the ones reported in the OR-library.Comment: Submitted to Applied Mathematics and Computation on April 8, 201

    A Memetic Lagrangian Heuristic for the 0-1 Multidimensional Knapsack Problem

    Get PDF
    We present a new evolutionary algorithm to solve the 0-1 multidimensional knapsack problem. We tackle the problem using duality concept, differently from traditional approaches. Our method is based on Lagrangian relaxation. Lagrange multipliers transform the problem, keeping the optimality as well as decreasing the complexity. However, it is not easy to find Lagrange multipliers nearest to the capacity constraints of the problem. Through empirical investigation of Lagrangian space, we can see the potentiality of using a memetic algorithm. So we use a memetic algorithm to find the optimal Lagrange multipliers. We show the efficiency of the proposed method by the experiments on well-known benchmark data

    Approximate and Exact Merging of Knapsack Constraints with Cover Inequalities

    Get PDF
    This paper presents both approximate and exact merged knapsack cover inequalities, a class of cutting planes for knapsack and multiple knapsack integer programs. These inequalities combine the information from knapsack constraints and cover inequalities. Approximate merged knapsack cover inequalities can be generated through a O(n log n) algorithm, where n is the number of variables. This class of inequalities can be strengthened to an exact version with a pseudo-polynomial time algorithm. Computational experiments demonstrate an average improvement of approximately 8% in solution time and 5% in the number of ticks from CPLEX when approximate merged knapsack cover inequalities are implemented as preprocessing cuts to solve some benchmark multiple knapsack problems. Furthermore, exact merged knapsack cover inequalities improve the solution time and number of ticks of some random multiple knapsack instances by 15% and 5%, respectively

    A case study of controlling crossover in a selection hyper-heuristic framework using the multidimensional knapsack problem

    Get PDF
    Hyper-heuristics are high-level methodologies for solving complex problems that operate on a search space of heuristics. In a selection hyper-heuristic framework, a heuristic is chosen from an existing set of low-level heuristics and applied to the current solution to produce a new solution at each point in the search. The use of crossover low-level heuristics is possible in an increasing number of general-purpose hyper-heuristic tools such as HyFlex and Hyperion. However, little work has been undertaken to assess how best to utilise it. Since a single-point search hyper-heuristic operates on a single candidate solution, and two candidate solutions are required for crossover, a mechanism is required to control the choice of the other solution. The frameworks we propose maintain a list of potential solutions for use in crossover. We investigate the use of such lists at two conceptual levels. First, crossover is controlled at the hyper-heuristic level where no problem-specific information is required. Second, it is controlled at the problem domain level where problem-specific information is used to produce good-quality solutions to use in crossover. A number of selection hyper-heuristics are compared using these frameworks over three benchmark libraries with varying properties for an NP-hard optimisation problem: the multidimensional 0-1 knapsack problem. It is shown that allowing crossover to be managed at the domain level outperforms managing crossover at the hyper-heuristic level in this problem domain. © 2016 Massachusetts Institute of Technolog

    Xqx Based Modeling For General Integer Programming Problems

    Get PDF
    We present a new way to model general integer programming (IP) problems with in- equality and equality constraints using XQX. We begin with the definition of IP problems folloby their practical applications, and then present the existing XQX based models to handle such problems. We then present our XQX model for general IP problems (including binary IP) with equality and inequality constraints, and also show how this model can be applied to problems with just inequality constraints. We then present the local optima based solution procedure for our XQX model. We also present new theorems and their proofs for our XQX model. Next, we present a detailed literature survey on the 0-1 multidimensional knapsack problem (MDKP) and apply our XQX model using our simple heuristic procedure to solve benchmark problems. The 0-1 MDKP is a binary IP problem with inequality con- straints and variables with binary values. We apply our XQX model using a heuristics we developed on 0-1 MDKP problems of various sizes and found that our model can handle any problem sizes and can provide reasonable quality results in reasonable time. Finally, we apply our XQX model developed for general integer programming problems on the general multi-dimensional knapsack problems. The general MDKP is a general IP problem with inequality constraints where the variables are positive integers. We apply our XQX model on GMDKP problems of various sizes and find that it can provide reasonable quality results in reasonable time. We also find that it can handle problems of any size and provide fea- sible and good quality solutions irrespective of the starting solutions. We conclude with a discussion of some issues related with our XQX model

    Knapsack Problems with Side Constraints

    Get PDF
    The thesis considers a specific class of resource allocation problems in Combinatorial Optimization: the Knapsack Problems. These are paradigmatic NP-hard problems where a set of items with given profits and weights is available. The aim is to select a subset of the items in order to maximize the total profit without exceeding a known knapsack capacity. In the classical 0-1 Knapsack Problem (KP), each item can be picked at most once. The focus of the thesis is on four generalizations of KP involving side constraints beyond the capacity bound. More precisely, we provide solution approaches and insights for the following problems: The Knapsack Problem with Setups; the Collapsing Knapsack Problem; the Penalized Knapsack Problem; the Incremental Knapsack Problem. These problems reveal challenging research topics with many real-life applications. The scientific contributions we provide are both from a theoretical and a practical perspective. On the one hand, we give insights into structural elements and properties of the problems and derive a series of approximation results for some of them. On the other hand, we offer valuable solution approaches for direct applications of practical interest or when the problems considered arise as sub-problems in broader contexts

    Incorporating Memory and Learning Mechanisms Into Meta-RaPS

    Get PDF
    Due to the rapid increase of dimensions and complexity of real life problems, it has become more difficult to find optimal solutions using only exact mathematical methods. The need to find near-optimal solutions in an acceptable amount of time is a challenge when developing more sophisticated approaches. A proper answer to this challenge can be through the implementation of metaheuristic approaches. However, a more powerful answer might be reached by incorporating intelligence into metaheuristics. Meta-RaPS (Metaheuristic for Randomized Priority Search) is a metaheuristic that creates high quality solutions for discrete optimization problems. It is proposed that incorporating memory and learning mechanisms into Meta-RaPS, which is currently classified as a memoryless metaheuristic, can help the algorithm produce higher quality results. The proposed Meta-RaPS versions were created by taking different perspectives of learning. The first approach taken is Estimation of Distribution Algorithms (EDA), a stochastic learning technique that creates a probability distribution for each decision variable to generate new solutions. The second Meta-RaPS version was developed by utilizing a machine learning algorithm, Q Learning, which has been successfully applied to optimization problems whose output is a sequence of actions. In the third Meta-RaPS version, Path Relinking (PR) was implemented as a post-optimization method in which the new algorithm learns the good attributes by memorizing best solutions, and follows them to reach better solutions. The fourth proposed version of Meta-RaPS presented another form of learning with its ability to adaptively tune parameters. The efficiency of these approaches motivated us to redesign Meta-RaPS by removing the improvement phase and adding a more sophisticated Path Relinking method. The new Meta-RaPS could solve even the largest problems in much less time while keeping up the quality of its solutions. To evaluate their performance, all introduced versions were tested using the 0-1 Multidimensional Knapsack Problem (MKP). After comparing the proposed algorithms, Meta-RaPS PR and Meta-RaPS Q Learning appeared to be the algorithms with the best and worst performance, respectively. On the other hand, they could all show superior performance than other approaches to the 0-1 MKP in the literature
    corecore