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We present a new evolutionary algorithm to solve the 0-1 multidimensional knapsack problem.We tackle the problem using duality
concept, differently from traditional approaches. Ourmethod is based on Lagrangian relaxation. Lagrangemultipliers transform the
problem, keeping the optimality as well as decreasing the complexity. However, it is not easy to find Lagrange multipliers nearest
to the capacity constraints of the problem. Through empirical investigation of Lagrangian space, we can see the potentiality of
using a memetic algorithm. So we use a memetic algorithm to find the optimal Lagrange multipliers. We show the efficiency of the
proposed method by the experiments on well-known benchmark data.

1. Introduction

The knapsack problems have a number of applications in
various fields, for example, cryptography, economy, network,
and so forth.The 0-1multidimensional knapsack problem (0-
1MKP) is an NP-hard problem, but not strongly NP-hard [1].
It can be considered as an extended version of thewell-known
0-1 knapsack problem (0-1KP). In the 0-1KP, given a set of
objects, each object that can go into the knapsack has a size
and a profit. The knapsack has a certain capacity for size. The
objective is to find an assignment that maximizes the total
profit not exceeding the given capacity. In the case of the 0-
1MKP, the number of capacity constraints is more than one.
For example, the constraints can be a weight besides a size.
Naturally, the 0-1MKP is a generalized version of the 0-1KP.

Let 𝑛 and 𝑚 be the numbers of objects and capacity
constraints, respectively. Each object 𝑖 has a profit V

𝑖
, and,

for each constraint 𝑗, a capacity consumption value𝑤
𝑗𝑖
. Each

constraint 𝑗 has a capacity 𝑏
𝑗
. Then, we formally define the

0-1MKP as follows:
maximize k

𝑇x

subject to 𝑊x ≤ b, x ∈ {0, 1}𝑛,
(1)

where k = (V
𝑖
) and x = (𝑥

𝑖
) are 𝑛-dimensional column

vectors, 𝑊 = (𝑤
𝑗𝑖
) is an 𝑚 × 𝑛 matrix, b = (𝑏

𝑗
) is an

𝑚-dimensional column vector, and 𝑇 means the transpose
of a matrix or a column vector. 𝑊, b, and k are given,
and each element of them is a nonnegative integer. In brief,
the objective of the 0-1MKP is to find a binary vector x
which maximizes the weighted sum k𝑇x satisfying 𝑚 linear
constraints𝑊x ≤ b.

For the knapsack problem with only one constraint, there
have been a number of researches about efficient approx-
imation algorithm to find a near-optimal solution. In this
paper, we are interested in the problem with more than one
constraint, that is, the multidimensional knapsack problem.
In [2, 3] among others, the exact algorithms for 0-1MKP have
been introduced. Heuristic approaches for 0-1MKP have also
been extensively studied in the past [4–13]. Also, a number
of evolutionary algorithms to solve the problem have been
proposed [6, 14–19]. A number of methods for the 0-1 bi-
knapsack problem, which is a particular case of 0-1MKP, have
also been proposed.The reader is referred to [20–22] for deep
surveys of 0-1MKP.

However, most researches directly deal with the discrete
search space. In this paper, we transform the search space of
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the problem into a real space instead of directly managing the
original discrete space.The 0-1MKP is the optimization prob-
lem with multiple constraints. We transform the problem
using the multiple Lagrange multipliers. However, we have
a lot of limitations since the domain is not continuous but
discrete. Lagrangian heuristics have been mainly used to get
good upper bounds of the integer problems by the duality. To
get good upper bounds, a number of researchers have studied
dual solvings using Lagrangian duality, surrogate duality, and
composite duality, and there was a recent study using cutting
plane method for 0-1MKP. However, in this paper, we focus
on finding good lower bounds, that is, good feasible solutions.

There have been a number of studies about Lagrangian
method for discrete problems.There were also a fewmethods
that used Lagrange multipliers for 0-1MKP. Typically, most
of them found just good upper bounds to be used in a
branch-and-bound algorithm by dualizing constraints and
hence could not find a feasible solution directly. To the best of
the author’s knowledge, there have been only two Lagrangian
methods to find lower bounds (feasible solutions). One is
the constructive heuristic (CONS) proposed by Magazine
and Oguz [10], and the other is its improvement using
randomization (R-CONS) [13, 19]. There was also a method
called LM-GA that improved the performance by combining
CONS with genetic algorithms [23]. LM-GA used the real-
valued weight-codings to make a variant of the original
problem and then applied CONS (see Section 2.2 for details).
LM-GA provided a new viewpoint to solve 0-1MKP, but it
just used CONS for fitness evaluation and did not give any
contribution in the aspect of Lagrangian theory.

In this paper, we present a local improvement heuristic
for optimizing Lagrange multipliers. However, it is not easy
to obtain good solutions by just using the heuristic itself.
Through empirical investigation of Lagrangian space, we
devise a novel memetic Lagrangian heuristic combined with
genetic algorithms. The remainder of this paper is organized
as follows. In Section 2, we present our memetic Lagrangian
method together with some literature survey. In Section 3,
we give our experimental results on well-known benchmark
data, and we make conclusions in Section 4.

2. Lagrangian Optimization

2.1. Preliminaries. The 0-1MKP is a maximization problem
with constraints. It is possible to transform the original opti-
mization problem into the following problem using Lagrange
multipliers:

maximize {k
𝑇x − ⟨𝜆,𝑊x − b⟩}

subject to x ∈ {0, 1}𝑛.
(2)

It is easy to find the maximum of the transformed problem
using the following formula:

k
𝑇x − ⟨𝜆,𝑊x − b⟩ =

𝑛

∑

𝑖=1

𝑥
𝑖
(V
𝑖
−

𝑚

∑

𝑗=1

𝜆
𝑗
𝑤
𝑗𝑖
) + ⟨𝜆, b⟩ . (3)

Tomaximize the above formula for the fixed 𝜆, we have to set
𝑥
𝑖
to be 1 only if V

𝑖
> ∑
𝑚

𝑗=1
𝜆
𝑗
𝑤
𝑗𝑖
for each 𝑖. Since each V

𝑖
does

not have an effect on the others, getting themaximum is fairly
easy. Since this algorithm computes just ∑𝑚

𝑗=1
𝜆
𝑗
𝑤
𝑗𝑖
for each

𝑖, its time complexity becomes 𝑂(𝑚𝑛).
If we only find out 𝜆 for the problem, we get the

optimal solution of the 0-1MKP in polynomial time. We
may have the problem that such 𝜆 never exists or it is
difficult to find it although it exists. However, this method
is not entirely useless. For arbitrary 𝜆, let the vector x which
achieves the maximum in the above formula be x∗. Since 𝜆
is chosen arbitrarily, we do not guarantee that x∗ satisfies the
constraints of the original problem. Nevertheless, letting the
capacity be b∗ = 𝑊x∗ instead of bmakes x∗ be the optimal
solution by the following proposition [13, 19]. We call this
procedure Lagrangian method for the 0-1MKP (LMMKP).

Proposition 1. The vector x∗ obtained by applying LMMKP
with given 𝜆 is the maximizer of the following problem:

maximize k
𝑇x

subject to 𝑊x ≤ b∗, x ∈ {0, 1}𝑛.
(4)

In particular, in the case that 𝜆
𝑘
is 0, the 𝑘th constraint is

ignored. That is, x∗ is the maximizer of the problems which
have the capacities c’s such that 𝑐

𝑘
≥ 𝑏
∗

𝑘
and 𝑐
𝑖
= 𝑏
∗

𝑖
for all

𝑖 ̸= 𝑘. In general, the following proposition [19] holds.

Proposition 2. In particular, if LMMKP is applied with 𝜆 such
that 𝜆

𝑘
1

= 0, 𝜆
𝑘
2

= 0, . . . , 𝑎𝑛𝑑 𝜆
𝑘
𝑟

= 0, replacing the capacity
b∗ by c such that

𝑐
𝑖
= 𝑏
∗

𝑖
, if 𝑖 ̸= 𝑘

𝑗
∀j,

𝑐
𝑖
≥ 𝑏
∗

𝑖
, otherwise

(5)

in Proposition 1 makes the proposition still hold.

Instead of finding the optimal solution of the original
0-1MKP directly, we consider the problem of finding 𝜆
corresponding to given constraints. That is, we transform the
problem of dealing with 𝑛-dimensional binary vector x into
the one of dealing with𝑚-dimensional real vector 𝜆. If there
are Lagrange multipliers corresponding to given constraints
and we find them, we easily get the optimal solution of the
0-1MKP. Otherwise we try to get the solution close to the
optimum by devoting to find Lagrange multipliers which
satisfy given constraints and are nearest to them.

2.2. Prior Work. In this subsection, we briefly examine exist-
ing Lagrangian heuristics for discrete optimization problems.
Coping with nondifferentiability of the Lagrangian led to the
last technical development: subgradient algorithm. Subgradi-
ent algorithm is a fundamentally simple procedure. Typically,
the subgradient algorithm has been used as a technique
for generating good upper bounds for branch-and-bound
methods, where it is known as Lagrangian relaxation. The
reader is referred to [24] for the deep survey of Lagrangian
relaxation. At each iteration of the subgradient algorithm,
one takes a step from the present Lagrange multiplier in the
direction opposite to a subgradient, which is the direction of
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(b∗ − b), where b∗ is the capacity obtained by LMMKP, and
b is the original capacity.

The only previous attempt to find lower bounds using
Lagrangian method is CONS [10]; however, CONS without
hybridization with other metaheuristics could not show
satisfactory results. LM-GA by [23] obtained better results
by the hybridization of weight-coded genetic algorithm and
CONS. In LM-GA, a candidate solution is represented by a
vector (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
) of weights. Weight 𝑤

𝑖
is associated

with object 𝑖. Each profit 𝑝
𝑖
is modified by applying several

biasing techniques with these weights, that is, we can obtain a
modified problem instance𝑃 which has the same constraints
as those of the original problem instance but has a different
object function. And then, solutions for this modified prob-
lem instance are obtained by applying a decoding heuristic. In
particular, LM-GA used CONS as a decoding heuristic. The
feasible solutions for the modified problem instance are also
feasible for the original problem instance since they satisfy the
same constraints. So, weight-coding does not need an explicit
repairing algorithm.

The proposed heuristic is different from LM-GA in that it
improves CONS itself by using properties of Lagrange mul-
tipliers, but LM-GA just uses CONS as evaluation function.
Lagrange multipliers in the proposed heuristic can move to
more diverse directions than CONS because of its random
factor.

2.3. Randomized Constructive Heuristic. Yoon et al. [13, 19]
proposed a randomized constructive heuristic (R-CONS)
as an improved variant of CONS. First, 𝜆 is set to be 0.
Consequently, 𝑥

𝑖
becomes 1 for each V

𝑖
> 0. It means that

all positive-valued objects are put in the knapsack and so
almost all constraints are violated. If 𝜆 is increased, some
objects become taken out. We increase 𝜆 adequately for only
one object to be taken out. We change only one Lagrange
multiplier at a time. We randomly choose one number 𝑘 and
change 𝜆

𝑘
.

Reconsider (3). Making (V
𝑖
− ∑
𝑚

𝑗=1
𝜆
𝑗
𝑤
𝑗𝑖
) be negative by

increasing 𝜆
𝑘
let 𝑥
𝑖
= 0 by LMMKP. For each object 𝑖 such

that 𝑥
𝑖
= 1, let 𝛼

𝑖
be the increment of 𝜆

𝑘
to make 𝑥

𝑖
be 0.

Then, (V
𝑖
− ∑
𝑚

𝑗=1
𝜆
𝑗
𝑤
𝑗𝑖
− 𝛼
𝑖
𝑤
𝑘𝑖
) has to be negative. That is, if

we increase 𝜆
𝑘
by 𝛼
𝑖
such that 𝛼

𝑖
> (V
𝑖
− ∑
𝑚

𝑗=1
𝜆
𝑗
𝑤
𝑗𝑖
)/𝑤
𝑘𝑖
, the

𝑖th object is taken out. So, if we just change 𝜆
𝑘
to 𝜆
𝑘
+min

𝑖
𝛼
𝑖
,

leave 𝜆
𝑖
as it is for 𝑖 ̸= 𝑘, and apply LMMKP again, exactly one

object is taken out.We take out objects one by one in this way
and stop this procedure if every constraint is satisfied.

Algorithm 1 shows the pseudo code of R-CONS. The
number of operations to take out the object is at most 𝑛, and
computing 𝛼

𝑖
for each object 𝑖 takes 𝑂(𝑚) time. Hence, the

total time complexity becomes 𝑂(𝑛2𝑚).

2.4. Local Improvement Heuristic. Our goal is to improve
a real vector 𝜆 obtained by R-CONS whose corresponding
capacity is quite close to the capacity of the given prob-
lem instance. To devise a local improvement heuristic, we
exploited the following proposition [13, 19].

Proposition 3. Suppose that 𝜆 and 𝜆 correspond to {x, b} and
{x, b} by the LMMKP, respectively. Let 𝜆 = (𝜆

1
, 𝜆
2
, . . . , 𝜆

𝑚
)

and 𝜆 = (𝜆


1
, 𝜆


2
, . . . , 𝜆



𝑚
), where 𝜆

𝑖
= 𝜆


𝑖
for 𝑖 ̸= 𝑘 and 𝜆

𝑘
̸= 𝜆


𝑘
.

Then, if 𝜆
𝑘
< 𝜆


𝑘
, 𝑏
𝑘
≥ 𝑏


𝑘
, and if 𝜆

𝑘
> 𝜆


𝑘
, 𝑏
𝑘
≤ 𝑏


𝑘
.

Let b be the capacity of the given problem instance and let
b∗ be the capacity obtained by LMMKP with 𝜆. By the above
theorem, if 𝑏∗

𝑘
> 𝑏
𝑘
, choosing 𝜆 = (𝜆

1
, . . . , 𝜆



𝑘
, . . . , 𝜆

𝑚
)

such that 𝜆
𝑘
> 𝜆
𝑘
and applying LMMKP with 𝜆 makes the

value of 𝑏∗
𝑘
smaller. Itmakes the 𝑘th constraint satisfied or the

exceeded amount for the 𝑘th capacity decreased. Of course,
another constraint may become violated by this operation.
Also, which 𝜆

𝑘
to be changed is at issue in the case that

several constraints are not satisfied. Hence, it is necessary to
set efficient rules about which 𝜆

𝑘
to be changed and how

much to change it. If good rules are made, we can find out
better Lagrange multipliers than randomly generated ones
quickly.

We selected the method that chooses a random number
𝑘(≤ 𝑚) and increases or decreases the value of 𝜆

𝑘
by the

above theorem iteratively. In each iteration, a capacity vector
b∗ is obtained by applying LMMKP with 𝜆. If b∗ ≤ b,
all constraints are satisfied and hence the best solution is
updated. Since the possibility to find a better capacity exists,
the algorithmdoes not stop here. Instead, it chooses a random
number 𝑘 and decreases the value of 𝜆

𝑘
. If b∗ ≰ b, we focus

on satisfying constraints preferentially. For this, we choose
a random number 𝑘 among the numbers such that their
constraints are not satisfied and increase 𝜆k hoping the 𝑘th
value of corresponding capacity to be decreased and then
the 𝑘th constraint to be satisfied. We set the amount of 𝜆

𝑘
’s

change to be the fixed value 𝛿.
Most Lagrangian heuristics for discrete problems have

focused on obtaining good upper bounds, but this algorithm
is distinguished in that it primarily pursues finding feasible
solutions. Algorithm 2 shows the pseudo code of this local
improvement heuristic. It takes𝑂(𝑛𝑚𝑁) time, where𝑁 is the
number of iterations.

The direction by our local improvement heuristic looks
similar to that by the subgradient algorithm described in
Section 2.2, but the main difference lies in that, in each
iteration, the subgradient algorithm changes all coordinate
values by the subgradient direction but our local improve-
ment heuristic changes only one coordinate value. Conse-
quently, this couldmake our local improvement heuristic find
lower boundsmore easily than subgradient algorithm usually
producing upper bounds.

2.5. Investigation of the Lagrangian Space. Thestructure of the
problem space is an important factor to indicate the problem
difficulty, and the analysis of the structure helps efficient
search in the problem space [25–27]. Recently Puchinger et al.
[28] gave some insight into the solution structure of 0-1MKP.
In this subsection, we conduct some experiments and get
some insight into the global structure of the 0-1MKP space.

In Section 2.1, we showed that there is a correspondence
between binary solution vector and Lagrange multiplier
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R-CONS(0-1MKP instance)
{

𝜆← 0;
𝐼 ← {1, 2, . . . , 𝑛};
do
𝑘 ← random integer in [1, 𝑚];
for 𝑖 ∈ 𝐼
𝛼
𝑖
← (V
𝑖
− ∑
𝑚

𝑗=1
𝜆
𝑗
𝑤
𝑗𝑖
)/𝑤
𝑘𝑖
;

𝜆
𝑘
← 𝜆
𝑘
+min

𝑖∈𝐼
𝛼
𝑖
;

𝐼 ← 𝐼 \ {arg min
𝑖∈𝐼
𝛼
𝑖
};

(x∗, b∗) = LMMKP(𝜆);
until x∗ satisfies all the constraints;
return 𝜆;

}

Algorithm 1: Randomized constructive heuristic [13, 19].

LocalImprovementHeuristic(𝜆, 0-1MKP instance)
{

for 𝑖 ← 1 to 𝑁

(x∗, b∗) ← LMMKP(𝜆);
𝐼 ← {𝑖 : 𝑏

∗

𝑖
≤ 𝑏
𝑖
} and 𝐽 ← {𝑖 : 𝑏

∗

𝑖
> 𝑏
𝑖
};

if 𝐼 = {1, 2, . . . , 𝑚}

update the best solution;
choose a random element 𝑘 among 𝐼;
𝜆
𝑘
← 𝜆
𝑘
− 𝛿;

else
choose a random element 𝑘 among 𝐽;
𝜆
𝑘
← 𝜆
𝑘
+ 𝛿;

return 𝜆 corresponding to the best solution;
}

Algorithm 2: Local improvement heuristic.

vector. Strictly speaking, there cannot be a one-to-one cor-
respondence in the technical sense of bijection. The binary
solution vector has only binary components, so there are only
countably many such vectors. But the Lagrange multipliers
are real numbers, so there are uncountably many Lagrange
multiplier vectors. Several multiplier vectors may correspond
to the same binary solution vector.Moreover, somemultiplier
vectors may have multiple binary solution vectors.

Instead of directly finding an optimal binary solution, we
deal with Lagrange multipliers. In this subsection, we empir-
ically investigate the relationship between binary solution
space and Lagrangian space (i.e., {x

𝜆
s} and {𝜆s}).

We made experiments on nine instances (𝑚 ⋅ 𝑛) chang-
ing the number of constraints (𝑚) from 5 to 30 and the
number of objects from 100 to 500. We chose a thousand
of randomly generated Lagrange multipliers and plotted,
for each pair of Lagrange multiplier vectors, the relation
between the Hamming distance in binary solution space and
the Euclidean distance in Lagrangian space. Figure 1 shows
the plotting results. The smaller the number of constraints
(𝑚) is, the larger the Pearson correlation coefficient (𝜌) is.
We also made the same experiments on locally optimal
Lagrange multipliers. Figure 2 shows the plotting results.

Locally optimal Lagrange multipliers show much stronger
correlation than randomly generated ones. They show strong
positive correlation (much greater than 0.5). It means that
binary solution space and locally optimal Lagrangian space
are roughly isometric.The results show that both spaces have
similar neighborhood structures. So this hints that it is easy
to find high-quality Lagrange multipliers satisfying all the
capacity constraints by using memetic algorithms on locally
optimal Lagrangian space. That is, memetic algorithms can
be a good choice for searching Lagrangian space directly.

2.6. Proposed Memetic Algorithm. A genetic algorithm (GA)
is a problem-solving technique motivated by Darwin’s the-
ory of natural selection in evolution. A GA starts with a
set of initial solutions, which is called a population. Each
solution in the population is called a chromosome, which
is typically represented by a linear string. This population
then evolves into different populations for a number of
iterations (generations). At the end, the algorithm returns
the best chromosome of the population as the solution to
the problem. For each iteration, the evolution proceeds in
the following. Two solutions of the population are chosen
based on some probability distribution. These two solutions
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Figure 1: Relationship between distances on solution space and those on Lagrangian space (among randomly generated Lagrangian vectors).
∗
𝑥-axis: distance between Lagrangian vectors, 𝑦-axis: distance between binary solution vectors, and 𝜌: Pearson correlation coefficient.

are then combined through a crossover operator to produce
an offspring. With low probability, this offspring is then
modified by a mutation operator to introduce unexplored
search space into the population, enhancing the diversity of
the population. In this way, offsprings are generated and they
replace part of or the whole population.The evolution process
is repeated until a certain condition is satisfied, for example,
after a fixed number of iterations. A GA that generates a
considerable number of offsprings per iteration is called a
generational GA, as opposed to a steady-state GA which
generates only one offspring per iteration. If we apply a local
improvement heuristic typically after the mutation step, the
GA is called amemetic algorithm (MA). Algorithm 3 shows a
typical generational MA.

We propose an MA for optimizing Lagrange multipli-
ers. It conducts search using an evaluation function with
penalties for violated capacity constraints. Our MA provides
an alternative search method to find a good solution by
optimizing𝑚 Lagrangemultipliers instead of directly dealing
with binary vectors with length 𝑛 (𝑚 ≪ 𝑛).

The general framework of an MA is used in our study. In
the following, we describe each part of the MA.

Encoding. Each solution in the population is represented
by a chromosome. Each chromosome consists of 𝑚 genes
corresponding to Lagrange multipliers. A real encoding is
used for representing the chromosome 𝜆.

Initialization.TheMA first creates initial chromosomes using
R-CONS described in Section 2.3. We set the population size
𝑃 to be 100.

Mating and Crossover. To select two parents, we use a random
mating scheme. A crossover operator creates a new offspring
by combining parts of the parents. We use the uniform
crossover.

Mutation. After the crossover, mutation operator is applied to
the offspring. We use a gene-wise mutation. After generating
a random number 𝑟 from 1 to 𝑚, the value of each gene is
divided by 𝑟.
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Figure 2: Relationship between distances on solution space and those on Lagrangian space (among locally optimal Lagrangian vectors).
∗
𝑥-axis: distance between Lagrangian vectors, 𝑦-axis: distance between binary solution vectors, and 𝜌: Pearson correlation coefficient.

create an initial population of a fixed size 𝑃;
do

for 𝑖 ← 1 to 𝑃/2

choose parent1
𝑖
and parent2

𝑖
from population;

𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔
𝑖
← crossover(parent1

𝑖
, parent2

𝑖
);

mutation(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔
𝑖
);

apply a local improvement heuristic to 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔
𝑖
;

replace(population, {𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔
𝑖
});

until (stopping condition)
return the best individual;

Algorithm 3: Framework of our memetic algorithm.

Local Improvement. We use a local improvement heuristic
described in Section 2.4. The number of iterations (𝑁) is set
to be 30,000. We set 𝛿 to 0.0002.

Replacement and Stopping Condition. After generating 𝑃/2

offspring, our MA chooses the best 𝑃 individual among the
total 3𝑃/2 ones as the population of the next generation. Our
MA stops when the number of generations reaches 100.

Evaluation Function. Our evaluation function is to find a
Lagrange multiplier vector 𝜆 that has a high fitness satisfying
the capacity constraints as much as possible. In our MA, the
following is used as the objective function tomaximize, which
is the function obtained by subtracting the penalty from the
objective function of the 0-1MKP:

k
𝑇x∗ − 𝛾 ∑

b∗
𝑖
>b
𝑖

(b∗
𝑖
− b
𝑖
) , (6)
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Table 1: Results of local search heuristics on benchmark data.

Instance CONS [10] R-CONS [13, 19] R-CONS-L
Result1 Best2 Ave2 CPU3 Best2 Ave2 CPU3

5.100–0.25 13.70 9.71 22.32 2.20 2.47 3.20 286
5.100–0.50 7.25 5.73 14.00 1.57 1.10 1.35 292
5.100–0.75 5.14 3.70 7.98 0.87 0.72 0.83 278
Average (5.100−∗) 8.70 6.38 14.77 1.55 1.43 1.79 285
5.250–0.25 6.77 7.62 17.65 13.23 0.92 1.03 703
5.250–0.50 5.27 4.94 11.27 9.24 0.49 0.56 722
5.250–0.75 3.55 3.02 6.26 5.06 0.26 0.29 679
Average (5.250−∗) 5.20 5.19 11.73 9.18 0.56 0.63 701
5.500–0.25 4.93 7.80 15.27 53.00 0.48 0.50 1414
5.500–0.50 2.65 4.18 9.45 36.56 0.20 0.22 1464
5.500–0.75 2.22 2.63 5.43 19.75 0.14 0.15 1367
Average (5.500−∗) 3.27 4.87 10.05 36.44 0.27 0.29 1415
Average (5.∗−∗) 5.72 5.48 12.18 15.72 0.75 0.91 800
10.100–0.25 15.88 11.49 22.93 3.66 2.75 6.30 536
10.100–0.50 10.01 7.75 14.76 2.63 1.47 3.68 543
10.100–0.75 6.57 3.61 8.05 1.42 0.91 2.02 532
Average (10.100−∗) 10.82 7.62 15.25 2.57 1.71 4.00 537
10.250–0.25 11.26 10.32 17.26 22.19 1.22 3.87 1321
10.250–0.50 6.49 6.46 11.51 15.65 0.58 2.07 1344
10.250–0.75 4.16 3.43 6.05 8.40 0.36 1.23 1306
Average (10.250−∗) 7.30 6.74 11.61 15.41 0.72 2.39 1323
10.500–0.25 8.27 9.59 14.91 88.30 0.64 2.89 2641
10.500–0.50 5.26 5.56 9.28 67.33 0.27 1.39 2686
10.500–0.75 3.49 3.28 5.24 32.50 0.22 0.90 2601
Average (10.500−∗) 5.67 6.14 9.81 62.71 0.37 1.73 2642
Average (10.∗−∗) 7.93 6.83 12.22 26.90 0.93 2.71 1501
30.100–0.25 16.63 11.75 22.02 9.55 5.06 9.17 1365
30.100–0.50 10.31 7.51 14.57 6.80 2.80 5.52 1374
30.100–0.75 6.60 4.20 7.97 3.79 1.64 3.22 1363
Average (30.100−∗) 11.18 7.82 14.85 6.71 3.17 5.97 1367
30.250–0.25 13.32 11.36 17.01 58.46 4.42 6.84 3364
30.250–0.50 8.19 6.71 10.87 40.51 2.36 4.11 3388
30.250–0.75 4.45 3.56 5.86 21.73 1.44 2.39 3348
Average (30.250−∗) 8.65 7.21 11.25 40.23 2.74 4.45 3366
30.500–0.25 10.34 9.39 14.02 228.56 4.00 5.94 6726
30.500–0.50 6.80 6.17 9.20 157.49 2.23 3.69 6755
30.500–0.75 3.82 3.34 4.90 83.43 1.27 2.14 6659
Average (30.500−∗) 6.99 6.30 9.37 156.49 2.50 3.92 6713
Average (30.∗−∗) 8.94 7.11 11.82 67.81 2.80 4.78 3815
Total average 7.53 6.47 12.08 36.81 1.50 2.80 2039
1Since CONS is a deterministic algorithm, each run always outputs the same result.
2Results from 1,000 runs.
3Total CPU seconds on Pentium III 997MHz.

where 𝛾 is a constant which indicates the degree of penalty,
and we used a fixed value 0.7.

3. Experiments

We made experiments on well-known benchmark data pub-
licly available from the OR-Library [29], which are the same
as those used in [6]. They are composed of 270 instances
with 5, 10, and 30 constraints. They have different numbers

of objects and different tightness ratios. The tightness ratio
means 𝛼 such that 𝑏

𝑗
= 𝛼∑

𝑛

𝑖=1
𝑤
𝑗𝑖
for each 𝑗 = 1, 2, . . . , 𝑚.

The class of instances are briefly described below.

𝑚.𝑛 − 𝛼: 𝑚 constraints, 𝑛 objects, and tightness ratio
𝛼. Each class has 10 instances.

The proposed algorithms were implemented with gcc
compiler on a Pentium III PC (997MHz) using Linux
operating system. As the measure of performance, we
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Table 2: Results of memetic Lagrangian heuristic on benchmark data.

Instance Multistart R-CONS-L1 Memetic Lagrangian heuristic Number improved/number equalled
Result CPU2 Result CPU2

5.100–0.25 2.40 1435 2.32 1466 0/0
5.100–0.50 1.08 1471 1.08 1500 0/0
5.100–0.75 0.72 1394 0.72 1431 0/0
Average (5.100−∗) 1.40 1433 1.37 1466 Total 0/0
5.250–0.25 0.92 3513 0.92 3619 0/0
5.250–0.50 0.49 3606 0.49 3748 0/0
5.250–0.75 0.26 3395 0.25 3529 0/0
Average (5.250−∗) 0.56 3505 0.56 3632 Total 0/0
5.500–0.25 0.48 7072 0.48 7124 0/0
5.500–0.50 0.20 7318 0.20 7546 0/0
5.500–0.75 0.14 6846 0.14 6985 0/0
Average (5.500−∗) 0.27 7079 0.27 7218 Total 0/0
Average (5.∗−∗) 0.74 4006 0.73 4105 Total 0/0
10.100–0.25 2.45 2679 2.27 2630 0/0
10.100–0.50 1.46 2717 1.14 2650 0/1
10.100–0.75 0.89 2657 0.69 2598 0/0
Average (10.100−∗) 1.60 2684 1.37 2626 Total 0/1
10.250–0.25 1.14 6599 0.88 6441 0/0
10.250–0.50 0.57 6718 0.45 6558 0/0
10.250–0.75 0.35 6535 0.24 6408 0-1
Average (10.250−∗) 0.69 6617 0.52 6469 Total 0/1
10.500–0.25 0.58 13196 0.50 12811 0/0
10.500–0.50 0.27 13425 0.24 13057 0/0
10.500–0.75 0.21 13006 0.14 12750 0/0
Average (10.500−∗) 0.35 13209 0.29 12873 Total 0/0
Average (10.∗−∗) 0.88 7504 0.73 7323 Total 0/2
30.100–0.25 4.92 6824 3.19 6796 0/3
30.100–0.50 2.67 6870 1.43 7052 0/3
30.100–0.75 1.56 6817 0.89 6780 0/2
Average (30.100−∗) 3.05 6837 1.84 6876 Total 0/8
30.250–0.25 4.24 16819 1.28 16799 2/2
30.250–0.50 2.23 16941 0.59 16958 0/0
30.250–0.75 1.40 16742 0.34 16837 0/0
Average (30.250−∗) 2.62 16834 0.74 16865 Total 2/2
30.500–0.25 3.81 33630 0.68 33414 2/0
30.500–0.50 2.13 33802 0.29 33737 1/0
30.500–0.75 1.24 33318 0.19 33440 0/0
Average (30.500−∗) 2.39 33583 0.39 33530 Total 3/0
Average (30.∗−∗) 2.69 19085 0.99 19090 Total 5/10
Total average 1.44 10198 0.82 10173 Total 5/12
1Multistart R-CONS-L returns the best result from 5,000 independent runs of R-CONS-L.
2Average CPU seconds on Pentium III 997MHz.

used the percentage difference-ratio 100 × |𝐿𝑃 𝑜𝑝𝑡𝑖𝑚𝑢𝑚 −

𝑜𝑢𝑡𝑝𝑢𝑡|/𝑜𝑢𝑡𝑝𝑢𝑡 which was used in [6], where 𝐿𝑃 𝑜𝑝𝑡𝑖𝑚𝑢𝑚

is the optimal solution of the linear programming relaxation
overR. It has a value in the range of [0, 100]. The smaller the
value is, the smaller the difference from the optimum is.

First, we compared constructive heuristics and local
improvement heuristic. Table 1 shows the results of CONS,

R-CONS, and R-CONS-L, where R-CONS-L starts with a
solution produced by R-CONS and locally improves it by the
local improvement heuristic described in Section 2.4.We can
see that R-CONS-L largely improves the results of R-CONS.

Next, to verify the effectiveness of the proposed MA,
we compared the results with a multistart method using R-
CONS-L. Multistart R-CONS-L returns the best result from
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5,000 independent runs of R-CONS-L. Table 2 shows the
results of multistart R-CONS-L and our MA. The proposed
MA outperformed multistart R-CONS-L.

The last column in Table 2 corresponds to the numbers of
improved and equalled results compared with the best results
of [6]. Surprisingly, the proposed memetic algorithm could
find better results than one of the state-of-the-art genetic
algorithms [6] for some instances with 30 constraints (5 best
over 90 instances).

4. Concluding Remarks

In this paper, we tried to find good feasible solutions by using
a newmemetic algorithm based on Lagrangian relaxation. To
the best of the author’s knowledge, it is the first trial to use a
memetic algorithm when optimizing Lagrange multipliers.

The Lagrangian method guarantees optimality with the
capacity constraints which may be different from those of
the original problem. But it is not easy to find Lagrange
multipliers that accord with all the capacity constraints.
Through empirical investigation of Lagrangian space, we
knew that the space of locally optimal Lagrangian vectors
and that of their corresponding binary solutions are roughly
isometric. Based on this fact, we applied amemetic algorithm,
which searches only locally optimal Lagrangian vectors,
to the transformed problem encoded by real values, that
is, Lagrange multipliers. Then we could find high-quality
Lagrange multipliers by the proposed memetic algorithm.
We obtained a significant performance improvement over R-
CONS and multistart heuristic.

In recent years, there have been researches showing better
performance than Chu and Beasley [6] on the benchmark
data of 0-1MKP [4, 5, 8, 9, 11–13]. Although the presented
memetic algorithm did not dominate such state-of-the-
art methods, this study could show the potentiality of
memetic search on Lagrangian space. Becausewe used simple
genetic operators, we believe that there is room for further
improvement on our memetic search. The improvement
using enhanced genetic operators tailored to real encoding,
for example, [30], will be a good future work.
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[20] A. Fréville, “The multidimensional 0-1 knapsack problem: an
overview,” European Journal of Operational Research, vol. 155,
no. 1, pp. 1–21, 2004.



10 Discrete Dynamics in Nature and Society
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