2,930 research outputs found

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Energy efficient multi channel packet forwarding mechanism for wireless sensor networks in smart grid applications

    Get PDF
    Multichannel Wireless Sensor Networks (MWSNs) paradigm provides an opportunity for the Power Grid (PG) to be upgraded into an intelligent power grid known as the Smart Grid (SG) for efficiently managing the continuously growing energy demand of the 21st century. However, the nature of the intelligent grid environments is affected by the equipment noise, electromagnetic interference, and multipath effects, which pose significant challenges in existing schemes to find optimal vacant channels for MWSNs-based SG applications. This research proposed three schemes to address these issues. The first scheme was an Energy Efficient Routing (ERM) scheme to select the best-optimized route to increase the network performance between the source and the sink in the MWSNs. Secondly, an Efficient Channel Detection (ECD) scheme to detect vacant channels for the Primary Users (PUs) with improved channel detection probability and low probability of missed detection and false alarms in the MWSNs. Finally, a Dynamic Channel Assignment (DCA) scheme that dealt with channel scarcities by dynamically switching between different channels that provided higher data rate channels with longer idle probability to Secondary Users (SUs) at extremely low interference in the MWSNs. These three schemes were integrated as the Energy Efficient Multichannel Packet Forwarding Mechanism (CARP) for Wireless Sensor Networks in Smart Grid Applications. The extensive simulation studies were carried through an EstiNet software version 9.0. The obtained experimental simulation facts exhibited that the proposed schemes in the CARP mechanism achieved improved network performance in terms of packets delivery ratio (26%), congestion management (15%), throughput (23%), probability of channel detection (21%), reduces packet error rate (22%), end-to-end delay (25%), probability of channel missed-detection (25%), probability of false alarms (23.3%), and energy consumption (17%); as compared to the relevant schemes in both EQSHC and G-RPL mechanisms. To conclude, the proposed mechanism significantly improves the Quality of Service (QoS) data delivery performance for MWSNs in SG

    Bibliographical review on cyber attacks from a control oriented perspective

    Get PDF
    This paper presents a bibliographical review of definitions, classifications and applications concerning cyber attacks in networked control systems (NCSs) and cyber-physical systems (CPSs). This review tackles the topic from a control-oriented perspective, which is complementary to information or communication ones. After motivating the importance of developing new methods for attack detection and secure control, this review presents security objectives, attack modeling, and a characterization of considered attacks and threats presenting the detection mechanisms and remedial actions. In order to show the properties of each attack, as well as to provide some deeper insight into possible defense mechanisms, examples available in the literature are discussed. Finally, open research issues and paths are presented.Peer ReviewedPostprint (author's final draft

    Low-latency Networking: Where Latency Lurks and How to Tame It

    Full text link
    While the current generation of mobile and fixed communication networks has been standardized for mobile broadband services, the next generation is driven by the vision of the Internet of Things and mission critical communication services requiring latency in the order of milliseconds or sub-milliseconds. However, these new stringent requirements have a large technical impact on the design of all layers of the communication protocol stack. The cross layer interactions are complex due to the multiple design principles and technologies that contribute to the layers' design and fundamental performance limitations. We will be able to develop low-latency networks only if we address the problem of these complex interactions from the new point of view of sub-milliseconds latency. In this article, we propose a holistic analysis and classification of the main design principles and enabling technologies that will make it possible to deploy low-latency wireless communication networks. We argue that these design principles and enabling technologies must be carefully orchestrated to meet the stringent requirements and to manage the inherent trade-offs between low latency and traditional performance metrics. We also review currently ongoing standardization activities in prominent standards associations, and discuss open problems for future research

    Analysis and design of security mechanisms in the context of Advanced Persistent Threats against critical infrastructures

    Get PDF
    Industry 4.0 can be defined as the digitization of all components within the industry, by combining productive processes with leading information and communication technologies. Whereas this integration has several benefits, it has also facilitated the emergence of several attack vectors. These can be leveraged to perpetrate sophisticated attacks such as an Advanced Persistent Threat (APT), that ultimately disrupts and damages critical infrastructural operations with a severe impact. This doctoral thesis aims to study and design security mechanisms capable of detecting and tracing APTs to ensure the continuity of the production line. Although the basic tools to detect individual attack vectors of an APT have already been developed, it is important to integrate holistic defense solutions in existing critical infrastructures that are capable of addressing all potential threats. Additionally, it is necessary to prospectively analyze the requirements that these systems have to satisfy after the integration of novel services in the upcoming years. To fulfill these goals, we define a framework for the detection and traceability of APTs in Industry 4.0, which is aimed to fill the gap between classic security mechanisms and APTs. The premise is to retrieve data about the production chain at all levels to correlate events in a distributed way, enabling the traceability of an APT throughout its entire life cycle. Ultimately, these mechanisms make it possible to holistically detect and anticipate attacks in a timely and autonomous way, to deter the propagation and minimize their impact. As a means to validate this framework, we propose some correlation algorithms that implement it (such as the Opinion Dynamics solution) and carry out different experiments that compare the accuracy of response techniques that take advantage of these traceability features. Similarly, we conduct a study on the feasibility of these detection systems in various Industry 4.0 scenarios

    Big data acquired by Internet of Things-enabled industrial multichannel wireless sensors networks for active monitoring and control in the smart grid industry 4.0

    Get PDF
    Smart Grid Industry 4.0 (SGI4.0) defines a new paradigm to provide high-quality electricity at a low cost by reacting quickly and effectively to changing energy demands in the highly volatile global markets. However, in SGI4.0, the reliable and efficient gathering and transmission of the observed information from the Internet of Things (IoT)-enabled Cyber-physical systems, such as sensors located in remote places to the control center is the biggest challenge for the Industrial Multichannel Wireless Sensors Networks (IMWSNs). This is due to the harsh nature of the smart grid environment that causes high noise, signal fading, multipath effects, heat, and electromagnetic interference, which reduces the transmission quality and trigger errors in the IMWSNs. Thus, an efficient monitoring and real-time control of unexpected changes in the power generation and distribution processes is essential to guarantee the quality of service (QoS) requirements in the smart grid. In this context, this paper describes the dataset contains measurements acquired by the IMWSNs during events monitoring and control in the smart grid. This work provides an updated detail comparison of our proposed work, including channel detection, channel assignment, and packets forwarding algorithms, collectively called CARP [1] with existing G-RPL [2] and EQSHC [3] schemes in the smart grid. The experimental outcomes show that the dataset and is useful for the design, development, testing, and validation of algorithms for real-time events monitoring and control applications in the smart grid

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications
    corecore