1,595 research outputs found

    A multi-agent platform for auction-based allocation of loads in transportation logistics

    No full text
    This paper describes an agent-based platform for the allocation of loads in distributed transportation logistics, developed as a collaboration between CWI, Dutch National Center for Mathematics and Computer Science, Amsterdam and Vos Logistics Organizing, Nijmegen, The Netherlands. The platform follows a real business scenario proposed by Vos, and it involves a set of agents bidding for transportation loads to be distributed from a central depot in the Netherlands to different locations across Germany. The platform supports both human agents (i.e. transportation planners), who can bid through specialized planning and bidding interfaces, as well as automated, software agents. We exemplify how the proposed platform can be used to test both the bidding behaviour of human logistics planners, as well as the performance of automated auction bidding strategies, developed for such settings. The paper first introduces the business problem setting and then describes the architecture and main characteristics of our auction platform. We conclude with a preliminary discussion of our experience from a human bidding experiment, involving Vos planners competing for orders both against each other and against some (simple) automated strategies

    Using priced options to solve the exposure problem in sequential auctions

    Get PDF
    We propose a priced options model for solving the exposure problem of bidders with valuation synergies participating in a sequence of online auctions. We consider a setting in which complementary-valued items are offered sequentially by different sellers, who have the choice of either selling their item directly or through a priced option. In our model, the seller fixes the exercise price for this option, and then sells it through a first-price auction. We analyze this model from a decision-theoretic perspective and we show, for a setting where the competition is formed by local bidders (which desire a single item), that using options can increase the expected profit for both sides. Furthermore, we derive the equations that provide minimum and maximum bounds between which the bids of the synergy buyer are expected to fall, in order for both sides of the market to have an incentive to use the options mechanism. Next, we perform an experimental analysis of a market in which multiple synergy buyers are active simultaneously. We show that, despite the extra competition, some synergy buyers may benefit, because sellers are forced to set their exercise prices for options at levels which encourage participation of all buyers.</jats:p

    Simulation and optimization of a multi-agent system on physical internet enabled interconnected urban logistics.

    Get PDF
    An urban logistics system is composed of multiple agents, e.g., shippers, carriers, and distribution centers, etc., and multi-modal networks. The structure of Physical Internet (PI) transportation network is different from current logistics practices, and simulation can effectively model a series of PI-approach scenarios. In addition to the baseline model, three more scenarios are enacted based on different characteristics: shared trucks, shared hubs, and shared flows with other less-than-truckload shipments passing through the urban area. Five performance measures, i.e., truck distance per container, mean truck time per container, lead time, CO2 emissions, and transport mean fill rate, are included in the proposed procedures using real data in an urban logistics case. The results show that PI enables a significant improvement of urban transportation efficiency and sustainability. Specifically, truck time per container reduces 26 percent from that of the Private Direct scenario. A 42 percent reduction of CO2 emissions is made from the current logistics practice. The fill rate of truckload is increased by almost 33 percent, whereas the relevant longer distance per container and the lead time has been increased by an acceptable range. Next, the dissertation applies an auction mechanism in the PI network. Within the auction-based transportation planning approach, a model is developed to match the requests and the transport services in transport marketplaces and maximize the carriers’ revenue. In such transportation planning under the protocol of PI, it is a critical system design problem for decision makers to understand how various parameters through interactions affect this multi-agent system. This study provides a comprehensive three-layer structure model, i.e. agent-based simulation, auction mechanism, and optimization via simulation. In term of simulation, a multi-agent model simulates a complex PI transportation network in the context of sharing economy. Then, an auction mechanism structure is developed to demonstrate a transport selection scheme. With regard of an optimization via simulation approach and sensitivity analysis, it has been provided with insights on effects of combination of decision variables (i.e. truck number and truck capacity) and parameters settings, where results can be drawn by using a case study in an urban freight transportation network. In the end, conclusions and discussions of the studies have been summarized. Additionally, some relevant areas are required for further elaborate research, e.g., operational research on airport gate assignment problems and the simulation modelling of air cargo transportation networks. Due to the complexity of integration with models, I relegate those for future independent research

    Iterative Combinatorial Auction for Carrier Collaboration in Logistic Services

    Get PDF
    In collaborative logistics, multiple carriers form a network to share their transportation capacities. Collaboration among carriers results in improved resource utilization and, therefore, reduced costs. In this thesis, we propose an auction-based model for carrier collaboration in transportation services. The model achieves carrier collaboration through facilitating the negotiation among carriers over a group of shipping orders required by one or a group of shippers. The negotiation is conducted through a combinatorial iterative auction mechanism with the objective of minimizing the carriers’ overall costs. We first present a centralized carrier collaboration problem model in which a central entity has all required information to compute an optimal solution. We then consider a more realistic game theoretic setting where auction-based mechanism is applied to deal with self-interests of carriers. Compared with one-shot auctions, the proposed iterative bidding framework has the properties of reducing carriers’ information revelation and accommodating dynamic changes during the bidding process. Experimental results show that the procurement cost performance and the quality of solutions computed using the proposed iterative auction model is close to that of the optimal solutions

    Semantic transportation planning for food products supply chain ecosystem within difficult geographic zones

    Get PDF
    Purpose – In difficult geographical zones (mountain, intra-cities areas, etc.), many shippers, from small and medium enterprises to individuals, may demand delivery of different food products ( fresh, refrigerated, frozen, etc.) in small quantities. On the other side, carrier companies wish to use their vehicles optimally. Taking into account the perishability constraints (short-shelflife, temperature limits, etc.) of the transported food products and environmentalconstraints (pollution, carbon impact) while consolidatingmultiple kinds of food products to use vehicles optimally is not achieved by current transportation planning solutions. The purpose of this paper is to present an interoperable solution of a marketplace, formed by shippers and carriers, dedicated to the schedule of food transport orders. Design/methodology/approach – This transportation planning system named Interoperable-Pathfinder, Order, Vehicle, Environment and Supervisor (I-POVES) is an interoperable multi-agent system, based on the SCEP (supervisor, customer, environment and producer) model (Archimede and Coudert, 2001). Ontologies are developed to create the planning marketplace comprising demands and offers from different sources (multiple shippers and carriers). Findings – A hierarchy ontology for food products. A transporter system ontology. A global ontology that contains all shared concepts used by local ontologies of both shippers and carriers. I-POVES an interoperable model, which facilitates collaboration between carriers and their shippers through its active agents. Practical implications – I-POVES is tested on a case study from the TECCAS Poctefa project, comprising transport and food companies from both sides of the Pyrenees (France and Spain). Originality/value – There has been much work in the literature on the delivery of products, but very few on the delivery of food products. Work related to delivery of food products focuses mostly on timely delivery for avoiding its wastage. In this paper, constraints related to food products and to environment (pollution and carbon impact) of transport resources are taken into account while planning the delivery

    Resource Allocation through Auction-based Incentive Scheme for Federated Learning in Mobile Edge Computing

    Get PDF
    openMobile Edge Computing (MEC) combinedly with Federated Learning is con- sidered as most capable solutions to AI-driven services. Most of the studies focus on Federated Learning on security aspects and performance, but the re- search is lacking to establish an incentive mechanism for the devices that are connected with a server to perform different task. In MEC, edge nodes would not participate voluntarily in learning process, nodes differ in the accusation of multi-dimensional resources, which also affects the performance of federated learning. In a competitive market scenario, the auction game theory has been widely popular for designing efficient resource allocation mechanisms, as it particularly focuses on regulating the strategic interactions among the self-interested play- ers.In this thesis, I investigate auction-based approach that based on incentive mechanism and encourage nodes to share their resources and take part in train- ing process as well as to maximize the auction revenue. To achieve this research goal, I developed auction mechanism considering the network dynamics and neglecting the devices computation and design a novel generalized first price auction mechanism to encourage participation of connected devices. Furthermore, I studied the K top best-response bidding strategies that maximize the profits of the resource sellers and guarantee the stability and effectiveness of the auction by satisfying desired economic properties. To this end, I validate the performance of the proposed auction mechanisms and bidding strategies through numerical result analysis.Mobile Edge Computing (MEC) combinedly with Federated Learning is con- sidered as most capable solutions to AI-driven services. Most of the studies focus on Federated Learning on security aspects and performance, but the re- search is lacking to establish an incentive mechanism for the devices that are connected with a server to perform different task. In MEC, edge nodes would not participate voluntarily in learning process, nodes differ in the accusation of multi-dimensional resources, which also affects the performance of federated learning. In a competitive market scenario, the auction game theory has been widely popular for designing efficient resource allocation mechanisms, as it particularly focuses on regulating the strategic interactions among the self-interested play- ers.In this thesis, I investigate auction-based approach that based on incentive mechanism and encourage nodes to share their resources and take part in train- ing process as well as to maximize the auction revenue. To achieve this research goal, I developed auction mechanism considering the network dynamics and neglecting the devices computation and design a novel generalized first price auction mechanism to encourage participation of connected devices. Furthermore, I studied the K top best-response bidding strategies that maximize the profits of the resource sellers and guarantee the stability and effectiveness of the auction by satisfying desired economic properties. To this end, I validate the performance of the proposed auction mechanisms and bidding strategies through numerical result analysis

    Hybrid modeling of collaborative freight transportation planning using agent-based simulation, auction-based mechanisms, and optimization

    Get PDF
    This is the author accepted manuscript. The final version is available from SAGE Publications via the DOI in this recordThe sharing economy is a peer-to-peer economic model characterized by people and organizations sharing resources. With the emergence of such economies, an increasing number of logistics providers seek to collaborate and derive benefit from the resultant economic efficiencies, sustainable operations, and network resilience. This study investigates the potential for collaborative planning enabled through a Physical Internet-enabled logistics system in an urban area that acts as a freight transport hub with several e-commerce warehouses. Our collaborative freight transportation planning approach is realized through a three-layer structured hybrid model that includes agent-based simulation, auction mechanism, and optimization. A multi-agent model simulates a complex transportation network, an auction mechanism facilitates allocating transport services to freight requests, and a simulation–optimization technique is used to analyze strategic transportation planning under different objectives. Furthermore, sensitivity analyses and Pareto efficiency experiments are conducted to draw insights regarding the effect of parameter settings and multi-objectives. The computational results demonstrate the efficacy of our developed model and solution approach, tested on a real urban freight transportation network in a major US city

    Real-time optimization of an integrated production-inventory-distribution problem.

    Get PDF
    In today\u27s competitive business environment, companies face enormous pressure and must continuously search for ways to design new products, manufacture and distribute them in an efficient and effective fashion. After years of focusing on reduction in production and operation costs, companies are beginning to look into distribution activities as the last frontier for cost reduction. In addition, an increasing number of companies, large and small, are focusing their efforts on their core competencies which are critical to survive. This results in a widespread practice in industry that companies outsource one or more than one logistics functions to third party logistics providers. By using such logistics expertise, they can obtain a competitive advantage both in cost and time efficiency, because the third party logistics companies already have the equipment, system and experience and are ready to help to their best efforts. In this dissertation, we developed an integrated optimization model of production, inventory and distribution with the goal to coordinate important and interrelated decisions related to production schedules, inventory policy and truckload allocation. Because outsourcing logistics functions to third party logistics providers is becoming critical for a company to remain competitive in the market place; we also included an important decision of selecting carriers with finite truckload and drivers for both inbound and outbound shipments in the model. The integrated model is solved by modified Benders decomposition which solves the master problem by a genetic algorithm. Computational results on test problems of various sizes are provided to show the effectiveness of the proposed solution methodology. We also apply this proposed algorithm on a real distribution problem faced by a large national manufacturer and distributor. It shows that such a complex distribution network with 22 plants, 7 distribution centers, 8 customer zones, 9 products, 16 inbound and 16 outbound shipment carriers in a 12-month planning period can be redesigned within 33 hours. In recent years, multi-agent simulation has been a preferred approach to solve logistics and distribution problems, since these problems are autonomous, distributive, complex, heterogeneous and decentralized in nature and they require extensive intelligent decision making. Another important part in this dissertation involved a development of an agent-based simulation model to cooperate with the optimal solution given by the optimization model. More specifically, the solution given by the optimization model can be inputted as the initial condition of the agent-based simulation model. The agent-based simulation model can incorporate many other factors to be considered in the real world, but optimization cannot handle these as needed. The agent-based simulation model can also incorporate some dynamics we may encounter in the real operations, and it can react to these dynamics in real time. Various types of entities in the entire distribution system can be modeled as intelligent agents, such as suppliers, carriers and customers. In order to build the simulation model more realistic, a sealed bid multiunit auction with an introduction of three parameters a, ß and y is well designed. With the help of these three parameters, each agent makes a better decision in a simple and fast manner, which is the key to realizing real-time decision making. After building such a multi-agent system with agent-based simulation approach, it supports more flexible and comprehensive modeling capabilities which are difficult to realize in a general optimization model. The simulation model is tested and validated on an industrial-sized problem. Numerical results of the agent-based simulation model suggest that with appropriate setting of three parameters the model can precisely represent the preference and interest of different decision makers
    • 

    corecore