research

Semantic transportation planning for food products supply chain ecosystem within difficult geographic zones

Abstract

Purpose – In difficult geographical zones (mountain, intra-cities areas, etc.), many shippers, from small and medium enterprises to individuals, may demand delivery of different food products ( fresh, refrigerated, frozen, etc.) in small quantities. On the other side, carrier companies wish to use their vehicles optimally. Taking into account the perishability constraints (short-shelflife, temperature limits, etc.) of the transported food products and environmentalconstraints (pollution, carbon impact) while consolidatingmultiple kinds of food products to use vehicles optimally is not achieved by current transportation planning solutions. The purpose of this paper is to present an interoperable solution of a marketplace, formed by shippers and carriers, dedicated to the schedule of food transport orders. Design/methodology/approach – This transportation planning system named Interoperable-Pathfinder, Order, Vehicle, Environment and Supervisor (I-POVES) is an interoperable multi-agent system, based on the SCEP (supervisor, customer, environment and producer) model (Archimede and Coudert, 2001). Ontologies are developed to create the planning marketplace comprising demands and offers from different sources (multiple shippers and carriers). Findings – A hierarchy ontology for food products. A transporter system ontology. A global ontology that contains all shared concepts used by local ontologies of both shippers and carriers. I-POVES an interoperable model, which facilitates collaboration between carriers and their shippers through its active agents. Practical implications – I-POVES is tested on a case study from the TECCAS Poctefa project, comprising transport and food companies from both sides of the Pyrenees (France and Spain). Originality/value – There has been much work in the literature on the delivery of products, but very few on the delivery of food products. Work related to delivery of food products focuses mostly on timely delivery for avoiding its wastage. In this paper, constraints related to food products and to environment (pollution and carbon impact) of transport resources are taken into account while planning the delivery

    Similar works