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The sharing economy is a peer-to-peer economic model characterized by people and 

organizations sharing resources. With the emergence of such economies, an increasing 

number of logistics providers seek to collaborate and derive benefit from the resultant 

economic efficiencies, sustainable operations, and network resilience. This study 

investigates the potential for collaborative planning enabled through a Physical Internet-

enabled logistics system in an urban area that acts as a freight transport hub with several e-

commerce warehouses. Our collaborative freight transportation planning approach is 

realized through a three-layer structured hybrid model that includes agent-based 

simulation, auction mechanism, and optimization. A multi-agent model simulates a 

complex transportation network, an auction mechanism facilitates allocating transport 

services to freight requests, and a simulation optimization technique is used to analyze 

strategic transportation planning under different objectives. Furthermore, sensitivity 

analyses and Pareto efficiency experiments are conducted to draw insights regarding the 

effect of parameter settings and multi-objectives. The computational results demonstrate 

the efficacy of our developed model and solution approach, tested on a real urban freight 

transportation network in a major US city. 

Keywords: Hybrid modelling, multi-objective optimization, agent-based simulation, 

physical internet, auction-based mechanism 

1. Introduction 

Freight transportation plays a vital part in moving goods among manufacturers, 

distributors, retailers, and consumers along regional and global supply chains. 

Meanwhile, freight transportation planning entails the challenge of adapting to uncertain 

market changes and increasing customer demands as it involves a complex coordination 

of process operations and resource allocations. Particularly with e-commerce, businesses 



 

continue to experience rapid growth. For example, the US Department of Commerce, in 

its quarterly e-commerce sales report, estimated that retail e-commerce sales for the third 

quarter of 2019 were $154.5 billion, and this was 5% more than the second quarter of 

2019; compared to this, the corresponding increase in total retail sales was only 1.4% 

between Q3 and Q2, 2019.1 To meet this rise in demand, companies continue to invest in 

new, expanded and upgraded facilities. In this regard, logistics providers are typically 

inclined to collaborate vertically along supply chains, focusing on lowering costs and 

improving efficiency to increase profits.2 The technological strides related to innovations 

in vertical collaborations have led to substantive economic contributions with low-cost 

international shipping, same-day or on-demand delivery services, and real-time tracking 

of freight. Vertical collaborations are made possible through a redesign of existing 

organization structures which improve coordination, decision making, and planning; this 

prompts increased knowledge sharing and the development of a more flexible and 

reactive supply chain, better strategic planning, higher vehicle fill rates, reduced 

transportation costs, increased customer satisfaction, etc.3-4 Horizontal collaborations also 

have environmental benefits. For example, Srinivasan and Leveque report that about one 

in four trucks in Europe and the US drives empty and, if loaded, it carries just above half 

of its transport capacity on average.5 Sharing can mitigate the issue by higher utilization 

of vehicles and reducing traffic congestion that directly correlates to an environmental 

benefit of lowering carbon emissions. Many efforts have been made, for instance, to 

reduce and control the presence and mobilization of freight vehicles, to eliminate wastes 

due to a lack of resource sharing, and to improve urban transportation systems.6-7  

The sharing economy is a peer-to-peer economic model characterized by people 

and organizations sharing resources. With the advent of the sharing-based economy, an 

organized collaboration may comprise individual entities working collectively towards a 

common goal; such collaboration is frequently facilitated through an online platform. 

Towards this end, the Physical Internet (PI) has been introduced as a potential framework 

to enable an efficient and sustainable Logistics Web based on physical and operational 

interconnectivity through the integration of encapsulation, interfaces, and protocols.8 

Inspired by its digital counterpart (the Internet) and its ability to route TCP/IP packets 

through a network of computers and routers, PI promotes horizontal collaboration by 

facilitating the freight movement via shared facilities and consolidating shipments in a 

decentralized system. 



 

This paper investigates horizontal collaboration in freight transportation planning 

using a hybrid modeling approach that combines multiple methods from operations 

research and computer simulation. The primary motivation for this work is the dearth of 

literature on integrated, network-based models. Ferrell et al. present a critical review of 

collaborations in logistics planning and state that most research in network-based models 

has been limited to modeling a specific design characteristic of horizontal collaboration, 

e.g., scheduling of vehicles, pricing or lane exchange.9 Studies that considered integrating 

multiple characteristics demonstrated by supply chain collaborations, e.g., combining 

routing and scheduling with pricing issues, or combining routing and pricing with facility 

sharing, remain relatively few. Such integrated quantitative models would better capture 

the potential gains realized through horizontal freight transportation strategies and justify 

investments in the underlying business models. Motivated by this observation, we 

contribute to the literature by developing an integrated model at an operational level 

(network flow) as well as a strategic level (pricing mechanism). Our aim is to first model 

the open and shared PI-enabled logistics system, and second, to evaluate the potential of 

such a system in collaborative freight transportation planning among multiple 

stakeholders in the supply chain. For this integrated modeling, we propose the combined 

application of analytical techniques, namely auction-based pricing mechanisms, agent-

based simulation, and optimization. Our hybrid modeling methodology leverages the 

strengths of these individual (and interdisciplinary) techniques.10 It provides a solution 

that best applies to the collaborative freight transportation planning scenario that we 

present in this paper. The hybrid method is used to model an urban area that has a number 

of logistics clusters serving as hubs for various transportation networks with multiple 

warehouses operated by e-commerce businesses.  

The overall contribution of this paper is the development of an integrated model 

for freight transportation planning for horizontal collaborations, which considers the 

operational-level characteristics of the freight network and the higher-level pricing 

scheme. Three major points are summarized: First, we design an auction mechanism as 

the communication protocol between shippers and carriers. In this mechanism, the 

bidding price is determined as a function of traveling cost and truckload fill rate. Second, 

we develop an agent-based simulation model, based on a logistics system enabled by PI, 

to demonstrate the benefit of cooperation among service providers and solve a real urban 

freight transportation network problem in a simulation optimization framework. Third, 

we develop a hybrid model that combines the auction mechanism with the simulation 



 

model to represent the interaction among shippers and carriers, matching transport 

requests and service vehicles in a transport exchange.   

The remainder of the paper is organized as follows. Section 2 reviews the 

literature on collaborative freight transportation planning and auction mechanism, and 

provides the relevant simulation background. Section 3 describes the development of a 

hybrid model that consists of three layers (simulation, auction, and optimization). Our 

simulation optimization approach is the subject of Section 4. Section 5 presents the 

computational results of sensitivity analysis and multi-objective experiments. Section 6 

is our concluding section, where we discuss the implications of this study and suggest 

directions for future research. 

2. Related literature 

2.1. Collaborative freight transportation 

Vertical collaboration has been a vital part of supply chain planning for decades, One of 

its primary intentions is to increase profits and reduce operational costs. Distinct from 

vertical collaboration along the supply chain, horizontal collaboration in logistics is a 

concerted practice among organizations that have parallel relationships at the same 

echelon of the logistics process, performing similar activities or providing similar 

services that can benefit economies of scale by cooperation. Some examples of horizontal 

collaboration in logistics include joint route planning, manufacturers consolidation 

centers, and purchasing groups. Of late, there has been a shift towards horizontal 

collaboration logistics where individual logistics providers seek and share economic 

shipping solutions by bundling volumes across various supply chains.11 The proactive 

sharing of transport is part of the PI initiative,12 which is defined as an interconnected 

transportation network and collaborative freight logistics system. More specifically, the 

Physical Internet protocol, analogous to the digital Internet, focuses on handling 

standardized PI-containers on the path through shared hubs in the interconnected logistic 

networks, resulting in an efficient use of transportation facilities and vehicle capacities 

as well as lowering greenhouse gas emissions.13-14 

Collaborative freight transportation planning (CFTP) intends to improve a series 

of operations and joint decision-making processes on suitable allocation of resources in 

Supply Webs.15 Transit centers provide freight consolidation and cross-docking 

functionalities instead of direct peer-to-peer delivery from origin to destination.16 

Coalition trucks planning extends to reallocation of transport requests among the carriers 



 

to achieve freight consolidation to maximize profits,17 rather than only to minimize 

individual carrier costs associated with vehicle routings. Several large-scale studies have 

demonstrated further evidence on the potential of PI to realize substantial gains in 

efficiency and sustainability. Hakimi et al.18 study a fast-moving consumer goods 

(FMCG) industry in France and indicate that PI significantly improves the transportation 

efficiency (17% increase in vehicle fill rate), decrease costs (30%), and reduce CO2 

emissions (up to 60% reduction). Meller et al.19 estimate that the average distance traveled 

would decrease by 20-30% and the inventory at the retailer could be reduced by 33% in 

a PI-enabled logistics network.  

In contrast with vertical cooperation in supply chains, which has been the focus 

of academics and practitioners for a long time, we note that the literature on horizontal 

collaboration in logistics is relatively scarce. A survey by Cruijssen et al.20 on potential 

opportunities and impediments for horizontal cooperation indicated that horizontal 

collaboration could be realized by assessing the benefits of joint route planning. They 

assert that the expected outcome would include improving the productivity of core 

activities and reducing supporting activity costs for logistics service providers. Krajewska 

et al.21 proposed finding vehicle routes for carrier collaboration by solving a multi-depot 

routing and scheduling problem with time windows while minimizing the total cost to 

meet customer requests. More recently, Fazili et al.22 compared the performance of a 

collaborative transportation system with those of a convention logistics system and an 

intermediate hybrid logistic system based on Monte-Carlo simulation within a sequential 

optimization framework. They reported that the collaborative transportation system 

reduces truck driving distance and greenhouse gas emissions, whereas container transfers 

are increased. Gansterer and Hartl provided a structured review of collaborative vehicle 

routing, including centralized collaborative planning, decentralized planning without 

auctions, and auction-based decentralized planning.23 

As discussed in Section 1, this paper adds to the freight transportation literature a 

unique solution approach that integrates a multi-agent simulation framework in 

conjunction with an optimization and an auction mechanism. Further, our computational 

results on the benefits of truck utilization and driving distance reinforce the current 

literature on PI. 



 

2.2. Auction mechanism 

Auctions mandate a bidding process that serves as an exchange of shipping service 

requests and provisions. As such, in a decentralized freight transportation network, it is 

worth addressing how to dynamically match requests with offers in each transit center 

while globally optimizing the transport flow in the network. Solving a centralized vehicle 

routing problem alone is not sufficient for efficient transportation planning with CFTP 

routing auctions and agent-based simulation (discussed in Section 2.3) would enable the 

combined application of three well-defined Operations Research techniques through a 

hybrid modelling framework24 for collaborative freight transportation planning. Douma 

et al.17 apply revenue management to agent-based transportation planning, and develop 

a dynamic programming and approximation approach to price loads in a single-leg 

problem. Qiao et al.25 propose a less-than-truckload dynamic pricing problem in PI where 

the first-price sealed-bid auction mechanism is adopted and applied in a single-transport 

problem. Request quantity, carrier capacity, and transportation cost are the factors 

considered in the optimal pricing decision. Pan et al.26 present rules, auction mechanism, 

as well as bidding and auctioning agents in a simulation framework for transport service 

allocation in PI.  

Exchange mechanisms can be applied in CFTP scenarios to reallocate 

complementary requests from different carriers.27 A scheme of horizontal logistics 

cooperation is applied to find a solution for corresponding pooling games in the study by 

Xu et al.28 Berger and Bierwirth simplify their exchange mechanism approach by 

relaxing capacity restriction imposed on a pickup and delivery problem, and compared 

the costs of no collaboration, collaboration with centralized control, and collaboration 

with decentralized control.29 However, the challenges associated with making 

information visible across organizations (e.g., inter-organization data sharing and 

information visibility) and carrier enforcement (e.g., forcing carriers to follow optimal 

exchange prices) make the approach difficult to consider in practical CFTP scenarios. 

Pan et al. assert that compared to capacity exchange mechanism, auction mechanism is 

arguably more suitable to the scope of CFTP, albeit with the aforementioned 

disadvantages. In general, auction theories can be applied for decision making on choices 

of, e.g., carriers and hubs. Nevertheless, this approach has not been used and validated 

by PI network structures using real data. To this end, our study demonstrates the efficacy 



 

of an auction-based simulation approach to PI logistics and provides accurate 

performance assessments of the system. 

2.3. Simulation and simulation optimization 

Computer modelling and simulation (M&S) refers to a computer model of a system of 

interest, which could be either an existing/real-world system or an imaginary/future 

system, and its execution over digital computers through a series of experiments 

developed to help better understand a complex system. The ability of simulation to 

replicate system behaviors and interactions among modeling components makes it an 

attractive tool for performance assessments, inferences, as well as predictions.30 Given 

that simulation requires suitable data inputs and provides observations of corresponding 

outputs,31 it serves a host of other purposes such as performing tasks with any potential 

risk, experiencing certain scenarios in advance, verifying an existence proof, or 

discovering new and unexpected relationships. 

As an analytical decision support tool, computer simulation can be largely 

categorized as discrete event simulation (DES), system dynamics (SD), agent-based 

simulation (ABS), or a hybrid of these techniques (e.g., DES and SD, ABS and DES).24 

Each simulation method is known to effectively target a set of particular type of problems. 

A DES model represents the system whose state changes occur at discrete points of time, 

and focus on evaluating the expected performance measures under uncertainty, whereas 

SD modeling is more suitable for understanding the nonlinear behavior of complex 

systems using stocks and flows (often in conjunction with differential equations), 

particularly the state changes occur continuously over time. In comparison with the 

previous two approaches, ABS is useful to model a system from the agents' point of view 

and enables modeling heterogeneous and autonomous agents acting independently in the 

environment as well as the emergence of self-organization.33 (See Section 3.1.1.) 

The continuing strides in computer technology, both in terms of hardware and 

software, has immensely contributed to the field of M&S. It has led to the development 

of increasingly complex models and has enabled faster execution of simulations. 

Simulation has been recognized as one of the most frequently used OR techniques and 

used as a decision-making tool, to model complex real-world systems, estimate 

performance measures, and find optimal responses. Simulation optimization is a process 

of search for the best input configuration without evaluating every possibility.34  While 

simulation optimization seeks to obtain information relevant to an objective function 



 

using minimum resources, it is more than merely enumerating a finite number of 

experiments and considering some inputs as a selection of configurations. Rather, 

simulation optimization techniques dictate the sequence of experiments in order to 

calculate the best input factors within an acceptable tolerance or a time limit.35  

Due to the nature of the stopping criteria in simulation runs and the inefficiency 

of exhausting all possible input combinations, a global optimum is not guaranteed. 

However, heuristic algorithms can be used to overcome such barriers as stalling at a local 

optimum by searching over a wide solution space.36 Using these procedures, the 

optimization strategy takes the output of a validated simulation model, provides feedback 

on the progress toward achieving a different input parameter setting, then adjusts the 

inputs as necessary to improve the output. Simulation optimization methods are broadly 

classified into six major categories: gradient-based search methods; stochastic 

optimization; response surface methodology; metaheuristics; A-Teams; and statistical 

methods. For example, statistical procedures include ranking and selection and multiple 

comparison. More specifically, multiple comparison techniques provide an ordinal 

ranking of simulation configurations, while ranking and selection techniques indicate a 

magnitude of measurement to distinguish between configurations. 

Banks et al.37 break down the approaches toward simulation optimization into four 

categories: asymptotic convergence to the optimum; optimality under deterministic 

counterpart (mathematical programming); a prespecified probability of correct selection 

(from a set of alternatives); robust heuristics (combinatorial search algorithms). In the 

literature, there are also several comprehensive survey papers that discuss foundations, 

theoretical developments, as well as applications of a variety of techniques and 

approaches.38 

3. Hybrid modeling framework 

Hybrid modelling (HM) is a combined application of simulation with methods and 

techniques from disciplines such as applied computing, computer science/applied 

computing, engineering, data science, and operations research/management science. 

Compared to hybrid simulation (HS), which refers to the combined application of discrete 

and continuous simulation approaches such as SD, DES, and ABS to a single simulation 

study (see Brailsford et al.39 for a recent review of literature on this topic). HM is broader 

in scope.  HM advocates the use of cross-disciplinary approaches, including 

interdisciplinary research paradigms, frameworks, methodologies, techniques, and tools 



 

to one or more stages of a simulation study (e.g., conceptual modeling, model 

implementation, model execution, scenario development, etc.) with the objective of 

creating the best possible representation of the system of interest.40 Mustafee and Powell 

in their paper24 titled “From Hybrid Simulation to Hybrid Systems Modelling” outline 

the difference between HS and HM approaches and present a unifying HS-HM conceptual 

representation. This unification includes four types of hybrid models (Types A to D). 

Types A to C are the various forms of HS.  

 Type A (multi-methodology HS) is a combined application of continuous and 

discrete simulation approaches (e.g., SD and ABS);  

 Type B (multi-technique HS) is a combined application of two discrete simulation 

approaches, e.g., ABS and DES. 

 Type C is multi-methodology, multi-technique HS, which is both Type A and 

Type B. For example, the combined application of ABS, DES, and SD. 

 Type D is HM, which is a combined application of computer simulation 

approaches (SD, DES, ABS) with methods and techniques from the broader 

Operations Research/Management Science (ORMS) discipline. 

The hybrid model that we present in this paper is of Type D. The overarching HM is 

realized through a combined application of auction mechanisms (used frequently in 

Economics) with an ABS snf optimization approach. Why is an integrated approach 

necessary? Ferrell et al. outline that a need for integrated quantitative models would better 

capture the potential gains that can be realized through horizontal freight transportation 

strategies.9 In our study, we implement a hybrid model comprising an agent-based 

simulation of a decentralized transport network in level one (simulation level; Section 

3.1.1), an auction mechanism to determine a winner in the bidding process for shipping 

services in level two (auction level; Section 3.1.2), and an optimal search process in level 

three (optimization level; Section 3.1.3). 

3.1. Multi-layer structure 

The structure of our model is layered in three levels of hierarchy from simulation to 

auction and to optimization (Figure 1). We develop an agent-based model using the 

simulation software AnyLogic to represent an interconnected urban logistics system. 



 

 Figure 1. A hybrid model consisting of three levels (simulation, auction, and 

optimization). 

3.1.1. Simulation level 

Computer-based simulation modeling has been widely used to gain insights and conduct 

analysis, by explicating complex system behaviors and stochastic interactions among 

components in the logistics and transportation domains.41 ABS aids to model individual 

agents their decision-making behaviors and rules. By observing the effects of agent 

attributes and interactions, ABS offers flexibility to understand the system as a whole 

and elicit emerging system-wide changes. In an agent-based modeling framework of 

logistics, large-scale complex interacting nodes, facilities, transport entities or even 

decision makers, as part of a distributed system, work intelligently at a local level.31 

Using ABS, Serrano-Hernandez et al. address the evolution of horizontal cooperation 

over time and also its impact on costs and CO2 emissions;42 and Sarraj et al. propose and 

test a multi-agent simulation model to assess the potential of using PI protocols that can 

improve a transportation system.14 

Our developed model is decentralized in a simulated environment using 

geographic information system (GIS) where trucks deliver containers through a transport 



 

network with hubs. The model places warehouses at the locations of e-commerce 

companies and generate an outbound flow of goods. Freights from outside the boundary 

are transported through gateways into the city. Hubs are mainly located close to the 

intersections of major highways and warehouse-dense areas, thereby reducing the times 

required for consolidation of shipments. When freight instances occur in the urban 

logistics system, they are either distributed to gateways or transhipped to other 

transportation nodes for outbound shipment. Representing a basic unit of freights in the 

system, the model generates containers at warehouses and from gateways, and eventually 

leave the system when they reach their destinations. Trucks pick up containers and deliver 

directly to destinations or move to hubs for a further consolidation of shipments. 

3.1.2. Auction level 

In a collaborative transportation system, shippers benefit from selecting their carriers, and 

the allocation of shipping services to a designated carrier becomes important. The 

communication between shippers and carriers follows auction-based principles by 

matching transport requests with services. When a container needs transportation, it sends 

a request to available trucks and selects one based on the auction criteria. To achieve 

revenue maximization for carriers and cost minimization for shippers, we propose a 

bidding process to allocate shippers to carriers, who are acting as bidders and auctioneers, 

respectively. The simulation model then calls an optimization subroutine as a truck-

selection method in each bidding process. Within such a framework, the logistics 

information of each carrier (e.g., cost rate, revenue expectation, and capacity) is also 

considered, and subsequently, these factors serve as parameters in the next optimization 

level. 

Figure 2 illustrates the improvement in carrier transportation routes and 

fulfilments after an exchange of containers in Hub 3 between Carriers 1 and Carriers 2. 

Carrier 1 starts from Hub 1 with three containers on board, whose destinations are Hubs 

3, 4, and 5, respectively. Along its route, Carrier 1 stops at Hub 3 to deliver one container 

and to pick up one additional container for Hub 5. Carrier 1 then stops at Hub 4 to offload 

one container, and finally it delivers the last two containers to Hub 5.  Similarly, Carrier 

2 starts at Hub 2 with three containers and delivers them to Hubs 4 and 5, respectively. 

Figure 2(b) shows an exchange at Hub 3 by switching a container meant for Hub 5 (in 

black) from Carrier 2 to Carrier 1, as well as a container heading for Hub 4 (in white) 

from Carrier 1 to Carrier 2. Hence, Figure 2(b) presents a better scenario of increasing 



 

the utilization of truckload and saving travel distance. This method amplifies the 

efficiency of transporting goods by further utilizing a coalition of carrier vehicles.  

 Figure 2. Routing plan before (a) and after (b) exchange (switching) of containers 

between Carrier 1 and Carrier 2 at Hub 3. 

3.1.3. Optimization level 

A simulation optimization approach is employed in this study to determine the most 

relevant decision variables for transportation planning in a stochastic system. By 

simulating various multiple scenarios where input decisions change and randomized 

samplings are required, the model identifies the best case based on performance measures 

by comparing objective values.  

In search of improved objective values, an optimization module is integrated with 

the simulation software used in this study. The module employs a combination of 

strategies based on scatter search and tabu search, combined with configuring and training 

neural networks for screening out candidate solutions likely to perform poorly. More 

specifically, similar to genetic algorithms, scatter search is a population-based procedure 

that generates offspring by incorporating past evaluations. These new candidate solutions 

produced by metaheuristics are passed on for evaluation in iteration. Subsequently, the 

neural network works as a screening mechanism to eliminate particular candidates whose 

objective function values are predicted to “not improve” the current solution (no 

additional simulation runs are performed to determine these candidate solutions as neural 

networks are being used for inductive learning). The screening decision is made based on 

an amount exceeding the risk level, i.e., deviations from the best solution found up to that 

point. Moreover, we formulate and solve optimization problems as single or multi-



 

objective models according to key performance metrics related to time and cost. This is 

further discussed in detail in Section 4. 

3.2. Agent representation 

This section describes three key agent classes that are the building blocks of the ABS 

model, namely the container agent, the truck agent, and the hub agent. 

3.2.1. Container agent 

A container agent represents a basic unit of freight shipped within the capacity of a truck. 

In the context of PI, our model assumes that containers are of a standard size in volume 

when estimating truck shipment loads. This differs from the hybrid ABS-CLS study by 

Mustafee and Bischoff where containers have verying dimensions and load-bearing 

capacity.43 Figure 3 depicts a logic of state flows of a container agent. Container agents 

are created from warehouses and other gateways, and the shortest route is determined for 

the container to pass through a network of hubs, and the container exits the system when 

it reaches a destination. The state of LookForATruck indicates that a container sends a 

request for a current leg of its trip and selects a preferred truck. Then the container waits 

to be picked up by a truck (state: WaitForTheTruck), and finally the container is loaded 

on the truck (state: InTruck). When the container arrives at a hub, it is sorted for its next 

ride while seeking an available truck if necessary. If a current stop location is the 

container’s final destination, its trip ends and the container is removed. This procedure 

repeats until all containers reach their final destinations. 



 

 Figure 3. State flows of a container agent. 

3.2.2. Truck agent 

Figure 4 depicts the process of a truck that transports and responds to the requests from 

containers. All instances of a truck agent are initially generated at the start of a simulation 

run. In the state WaitForARideRequest, truck agents are idle with an empty schedule. 

Once a ride request is accepted and entered in the schedule, the agent changes its state to 

Loading and WaitForContainers. Trucks respond to the transport requests of containers, 

and make a sequence of rides. Note that a truck agent adds a container to a scheduled ride 



 

only if additional capacity is available. A truck undocks (state: Undocking) from the 

current hub and leaves for a next stop within a specific time window. After completing a 

ride to a hub (this is after states: Moving, Docking, Unloading), the truck can bid on the 

auction for a next ride. For a modeling purpose, it is assumed that all truck agents have 

the same volume capacity and move at a constant speed. 

 Figure 4. State flows of a truck agent. 

3.2.3. Hub agent 

Hub agents are placed in the system as an input to the simulation model. They can be in 

any one of the following seven states shown in Figure 5, namely, DockTrucks (dock a 

truck in a loading bay); UnloadTrucks (unload a truck and receive containers); InHub (let 

a truck wait in a loading bay); SortContainers (sort arrived containers for their next ride); 

WaitForPickup (let containers wait for pickup by an assigned truck); InTruck (load a 

truck with the assigned containers); and UnDock (undock a truck from a loading bay and 

release from the hub). 



 

 Figure 5. State flows of a hub agent. 

Each PI-hub serves as not just a loading or transhipment facility but also as a 

service point where containerized shipments are reallocated to a more efficient way at 

lower price. Section 3.3 takes a closer look at the auction process that allows for such 

modeling capability. 

3.3. Auction process 

A goal of CFTP is to maximize carrier’s joint profits while meeting delivery requests 

under a framework of collaborative fulfilments. In other words, it is to achieve synergistic 

benefits by a coalition of LTL (less than truckload) carriers rather than maximizing 

individual benefits. Agent-based transportation planning takes advantage of decentralized 

operations and dynamic processes. Figure 6 shows its structure pertaining to the auction 



 

mechanism. Shippers send out transport requests, and carriers bid on them in an auction 

where travel cost factors are considered in (re)assigning a container to a truck at hubs 

under a given time window. The auction process considers the remaining capacities of a 

truck, i.e., the truckload utilization, when determining a winner of most cost savings. 

Figure 6. In a PI transportation system, relationships between carriers and shippers are 

established through an auction mechanism. 

We design an auction protocol to include bidders and auctioneers, represented as 

trucks (carriers) and containers (shippers), respectively. A carrier makes a bid for each 

feasible request with a bidding price based on transport cost and expected profits. A 

shipper takes the role of an auctioneer and facilitates container allocations and route 

selections while satisfying carrier capacity. Table 1 shows a procedure of a stop-by-stop 

auction scheme; containers stop at hubs and initiate an auction at each stop. 

Table 1. An algorithmic procedure of auction exchange. 

Step 1. (Initial routing)  

Set the route for each container at its origin. 

Step 2. (Requesting) 

At each stop, the container can make a request for auctioning. 

Step 3. (Bidding and auctioneering) 

Carriers propose their bidding price; shippers consider these bids in a pool of 

auction. 

Step 4. (Incentive) 

If the same truck wins a bid, then the associated setup costs are waived. 

Step 5. (Assignment) 

     Assign the container based on a winner determination program. 

Else, go to Step 2. 

 



 

Step 1 provides initial routing by finding the shortest path of a container at the 

point in time when it is first generated in the network. A ride is transporting of containers 

(by a truck) from one stop to another (these stops are also known as hubs). A route refers 

to the path of a container with a sequence of stops that include an origin and a destination. 

We use the Dijkstra’s shortest path algorithm to generate the initial node sequences 

between departure and arrival hubs along the path. 

In Step 2, shippers make transport requests that comprise a selection pool in the 

auction for carriers. Compatible requests are grouped along the portion of the route in 

common. Prior to describing the auction model, we first define the notations as follows. 

Notations: 

T     Set of total trucks in the auction, indexed by t. 

R     Set of total requests in the auction, indexed by r. 

𝑅𝑡   Set of requests that can be served by a truck t ∈ T, 𝑅𝑡 ⊆ 𝑅. 

𝑑𝑟   Distance of a request r ∈ R. 

𝑛𝑟   Number of containers of a request r ∈ R 

𝑓𝑡    Load fill rate at bidding by a truck t ∈ T. 

𝑐𝑓
𝑡    Fixed/processing cost of a truck t ∈ T. 

𝑐𝑣
𝑡     Distance-volume based variable cost of a truck t ∈ T. 

𝑇𝐶𝑟
𝑡 Transportation cost of a truck t for a request 𝑟 ∈ 𝑅𝑡, t ∈ T. 

𝑃𝑟
𝑡    Bidding price by a truck t for a request 𝑟 ∈ 𝑅𝑡, t ∈ T. 

𝑃𝐴𝑟
𝑡  Payment to a truck t by a request 𝑟 ∈ 𝑅𝑡, t ∈ T. 

Once requests are generated, Step 3 populates bidding prices for each request by 

auctioneers. The transportation cost of truck t for request r, 𝑇𝐶𝑟
𝑡, is defined in Equation 

(1). 

𝑇𝐶𝑟
𝑡 = 𝑐𝑓

𝑡 + 𝑐𝑣
𝑡(1 − 𝑓𝑡)𝑑𝑟𝑛𝑟 , ∀ 𝑟 ∈ 𝑅𝑡, 𝑡 ∈ 𝑇                             (1) 

where the transportation cost consists of fixed cost and variable cost associated with the 

current truckload utilization, travel distance, and number of containers for the request. 

Based on the cost function and an expected profit factor, a bidding price by the carrier for 

a request r, 𝑃𝑟
𝑡, is set by Equation (2). 

𝑃𝑟
𝑡 = 𝑇𝐶𝑟

𝑡(1 + 𝑚𝑡)                                                  (2) 

where m is a margin rate of bidding price by carrier t. 

In Step 4, shippers determine the payment to carriers, which is defined for a given 

request r as 𝑃𝐴𝑟
𝑡  in Equation (3). 



 

𝑃𝐴𝑟
𝑡  = {

𝑃𝑟
𝑡  – 𝑐𝑓

𝑡, 𝑖𝑓 𝑎 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑠𝑡𝑎𝑦𝑠 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑡𝑟𝑢𝑐𝑘;

 𝑃𝑟
𝑡 ,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                       

                (3) 

where the processing cost 𝑐𝑓
𝑡 incurs at a hub. If a truck wins the bid for the same shipment 

consecutively, it incentivizes a continuity of shipments by waiving the associated 

processing cost. 

The winner determination program (WDP) selects the winning bid in Step 5.21 In  

the case where no winner can be determined in the auction process, a container waits for 

a given time limit, and then reverts to the Step 2. A WDP problem is formulated as 

follows: 

Minimize  ∑ ∑ 𝑃𝐴𝑟
𝑡  𝑥𝑟

𝑡
𝑟∈𝑅𝑡∈𝑇                                                                (4) 

                            subject to 

∑ 𝑥𝑟
𝑡

𝑡∈𝑇 = 1, ∀ 𝑟 ∈ 𝑅                                                          (5) 

      ∑ 𝑥𝑟
𝑡

𝑟∈𝑅 ≤ 1, ∀ 𝑡 ∈ 𝑇                                                          (6) 

      𝑥𝑟
𝑡 ∈ {0,1}, ∀ 𝑡 ∈ 𝑇, ∀ 𝑟 ∈ 𝑅                                               (7) 

where the objective function (4) minimizes a total cost for allocating all requests. 

Constraint (5) assigns each request to exactly one truck, while Constraint (6) ensures that 

each carrier will win at most one request. 𝑥𝑟
𝑡 is a binary decision variable with its value 

of one if request r is allocated to carrier t, and zero otherwise in Constraint (7). 

The WDP is solved using a Java package of IBM ILOG CPLEX that includes an 

optimization routine called by the simulation model. We take into consideration feasible 

request constraints in the simulation process module including time window constraint, 

truckload capacity, and travel speed. While a winner to each request is optimally 

determined during the simulation run, system-wide performance metrics are measured by 

a simulation-optimization approach as discussed in Section 4. 

4. Simulation optimization approach 

Multiple inputs of logistics system components have variable effects on the model 

outcomes concerning efficiency and sustainability. This includes parameters such as fixed 

and variable costs, arrival rates of containers, time-window constraints, as well as 

decision variables (e.g., truck capacity). To find a set of decision values that result in 

optimality, we take an optimization via simulation approach using OptQuest, which 

guides the search path for optimal solutions in the simulation model. 



 

4.1. Model parameters and variables 

Parameters related to containers include arrival rates at gateways and warehouses. Truck-

related parameters include the number of trucks, truck capacity, truck speed, and a 

maximum wait time. Parameters associated with hubs include docking time, loading time, 

and sorting time. Table 2 shows a list of parameters along with their initial values. We 

assume that the indicative values of cost parameters are based on the estimation of shares 

of all containers in the PI system. The variable cost consists of fuel cost and other 

externality costs, while the fixed/setup cost involves sorting and (un)loading costs. 

Table 2. Parameters and initial values. 

Parameter Value 

Truck speed 50 km/h 

Maximum wait time 2 hours 

Dock time 5 minutes 

Load time 5 minutes 

Sort time 15 minutes 

Arrival rate in warehouses  1.8 containers/hour 

Arrival rate in gateways 18 containers/hour 

Variable cost rate $1/km-container 

Fixed /setup cost $3/container 

Profit margin 15% 

Number of warehouses 26 

Number of gateways 5 

Number of hubs 13 

Number of airport 1 

 

The lower and upper bounds on decision variables are set while taking discrete 

integer values in ranges of 5 ≤ truck capacity ≤ 10 and 25 ≤ number of trucks ≤ 50. These 

restrictions are imposed to reduce the search domain of the solution space and thereby 

find an optimal solution in reasonable times. 

4.2. Objectives  

A cost-associated objective is most common in freight transportation planning and is the 

main focus of this study. Additionally, time- and environment-driven objectives are also 



 

considered. This section describes three individual objectives (Objectives 1-3) as 

performance measures of interest. 

To maximize economic savings, the first objective is conversely to minimize the 

average truck distance per container delivered as in Equation (8). 

Objective 1: 𝑀𝑖𝑛
𝐷

{
total truck distance

total number of containers shipped
} =

∑ 𝑏𝑡𝑡∈𝑇

∑ 𝑛𝑡
𝑐

𝑡∈𝑇
                           (8) 

where D is the decision space of variables in the system, i.e., truck capacity and truck 

numbers. bt is the travel distance of truck t, and 𝑛𝑡
𝑐 is the number of containers shipped 

by truck t. 

The next objective is to minimize the average truck lead time per container and 

calculated as total truck lead time divided by the number of containers shipped. 

Objective 2: 𝑀𝑖𝑛
𝐷

{
total truck lead time

total number of containers shipped
} =

∑ 𝑙𝑡𝑡∈𝑇

∑ 𝑛𝑡
𝑐

𝑡∈𝑇
                          (9) 

where lt is the lead time of truck t. 

The objective of environmental sustainability is formulated as the number of 

containers shipped divided by the total amount of truck space. 

Objective 3: 𝑀𝑎𝑥
𝐷

{
total truckload 

total amount of truck space
} =

∑ 𝑛𝑡
𝑐

𝑡∈𝑇

𝑛𝑡𝑐𝑎𝑝𝑡
                                  (10) 

where 𝑛𝑡 is the number of trucks and capt is the capacity of truck t in terms of containers. 

We also investigate multi-objective problems by considering two or three 

objectives concurrently. Objectives 4-6 in Table 3 are bi-objectives that considers any 

two of Objective 1-3, whereas Objective 7 combines all three objectives. The multi-

objective optimization utilizes weights to find the Pareto front in the trade space. For 

example, 𝜔, 𝜆, 𝜃, 𝜑 ∈ [0,1] control weight distributions to respective Objectives 4-7. 

Table 3. Formulations of bi/multi-objectives. 

Objective Formulation 

4 𝑀𝑖𝑛
𝐷

{ ∑ 𝜔 ∗ travel cost +  (1 − 𝜔) ∗ (lead time)}    

5 𝑀𝑖𝑛
𝐷

{ ∑ 𝜆 ∗ travel cost −  (1 − 𝜆) ∗ (truckload utilization)}    

6 𝑀𝑖𝑛
𝐷

{ ∑ 𝜃 ∗ lead time −  (1 − 𝜃) ∗ (truckload utilization)}    

7 𝑀𝑖𝑛
𝐷

{ ∑ 𝜑1 ∗ travel cost + 𝜑2 ∗ lead time − (1 − 𝜑1 − 𝜑2) ∗

(truckload utilization)}    



 

5. Computational experiments 

For simulation runs, we determine the number of replications required to limit a relative 

error 𝛽 using the following approximation of Equation (11). 

𝑛𝑟(𝛽) = 𝑚𝑖𝑛 {𝑖 ≥ 𝑛𝑟: 𝛿 =
𝑡𝑖−1,1−𝛼/2√𝑆2(𝑛0)/𝑖

|�̅�(𝑛0)|
≤ 𝛽′}                       (11) 

where i is the number of replications subject to 𝛽 and 𝛽′ = 𝛽/(1 + 𝛽) is the adjusted 

relative error threshold. With 𝛽 = 0.05 (or 𝛽′ ≈ 0.048) and a confidence interval of 95%, 

ten replications (i = 10) suffice to contain the value of 𝛿 no more than 𝛽′. Table 4 provides 

the relevant statistics. In addition, a batch means method is used to find a warm-up period 

required to reach steady states. The mean value of the warm-up period over ten 

replications is two days, and we estimate performance metrics after determining the 

length of the warm-up period, the length of a batch, and the number of batches. 

Table 4. Sample means and variances with ten replications. 

performance measures �̅� (sample mean) 𝑆2 (sample variance) 𝛿 

average truck distance per 

container 

13.7km 0.520 0.038 

average lead time of a 

container 

3.5hour 0.039 0.040 

 

The model is implemented using a real urban transport network that includes the 

outbound and transhipment flows of 26 e-commerce warehouses in Louisville, Kentucky 

in the US. For model validation, the output performance measures are compared on truck 

distance per container and average lead time per container with the statistics collected 

from actual data as baseline (Table 5). The baseline scenario with a selection method of 

“closest truck first” achieves the minimum average truck distance per container, while 

the other scenario with an “earliest truck first” selection method attains the minimum 

average lead time per container. The performance of the proposed model is comparable 

between these two baseline scenarios. It is noted that the CFTP values in both metrics are 

relatively close (within a 3% difference) to those resulting from the baseline scenario with 

a closeness selection method. This is due, in part, to the bidding price being set 

considering the cost associated with travel distance rather than travel time.  

Table 5. Copmarison of performance measures comparison between the two baseline 

scenarios and the proposed CFTP model. 



 

Scenario Selection method 

Average truck 

distance per 

container (km) 

Gap 

percent 

relative 

to CFTP 

Average lead 

time of a 

container 

(hour) 

Gap 

percent 

relative to 

CFTP 

Baseline Closest truck first 13.4 -2.2% 3.6 2.9% 

 Earliest truck first 14.2 3.6% 3.2 -8.6% 

CFTP Auction mechanism 13.7 - 3.5 - 

 

In addition, to assess the robustness of our proposed CFTP model involving PI, 

we consider varying the input parameter values of the variable cost and the number of 

warehouses by taking into account changes in gas price and supply chain infrastructure, 

respectively. In Table 6, when either of the two input variables is changed, there is little 

or no impact on average truck utilization for CFTP which is directly related to the 

shipping demand and capacity supply. On the other hand, the average lead time for CFTP 

decreases by 9.4% and 2.5% when the number of warehouses in the simulation model 

increases from 18 to 26 and further from 26 to 34, respectively. Having additional 

warehouses can accommodate more trucks bidding close to the point where the shipping 

demand occurs. This means a reduction in wait time for a package, which contributes to 

a decrease in the total lead times overall. Furthermore, as the variable cost increases from 

$0.5 to $1 and to $2, the average lead time slightly decreases by one to three percentage 

points. This is due in part to the cost structure that incentivize keeping the same packages 

in the same vehicle through warehouse exchange locations, which is all the more 

attractive when the variable cost rises. 

Table 6. Comparison of baseline and CFTP regarding driving time and truck utilization 

corresponding to change of the input parameter. 

    Average driving time (hr)   Average truck utilization 
  Baseline CFTP  Baseline CFTP 

Number of 
warehouses 

18 0.95 0.83   58.7% 77.3% 

26 0.89 0.81  61.5% 77.4% 

34 0.82 0.74   63.1% 77.7% 

Variable 
cost ($/km-
container) 

0.5 0.89 0.82  61.9% 77.2% 

1 0.88 0.81  62.5% 77.4% 

2 0.84 0.79   64.8% 77.4% 

 



 

The following section (Section 5.1) uses sensitivity analysis to demonstrate the 

fidelity of our model in relation to each performance measure. Section 5.2 presents 

experiments in the search of Pareto frontiers with the multi-objectives listed in Table 3. 

5.1. Sensitivity analysis 

Sensitivity analyses are conducted to assess the effects of individual parameters on each 

of Objectives 1-3. The experiments are set up by changing one parameter at a time while 

keeping the other parameters unchanged. We use forward differencing to compute the 

changes in the objective function value when increasing one percent of a selected 

parameter.  

The solution to Objective 1 of the average truck distance per container is D(truck 

capacity, truck numbers)=[9, 27] and the objective value is 1,264.73. Figure 7 illustrates 

the result of a one-way sensitivity analysis of cost-related Objective 1. Most of the 

parameters have substantial impacts on the objective function value. Profit margin plays 

an inhibiting role in the minimization process with a 0.95% increase of objective function 

value, so do variable cost and fixed cost by 0.65% and 0.46%, respectively. Bidding price 

rises due to the increase of cost factors and profit margin, which leads to less collaborating 

shipments but more individual direct shipments, thereby increasing the overall travel 

distance. In contrast, the other parameters enhance the collaboration and contribute to 

reducing the objective value, particularly maximum wait time (-1.43%), arrival rate in 

warehouses (-1.39%), and arrival rate in gateways (-0.67%). As a result, the average truck 

distance per container decreases. Longer maximum wait time and higher truck speed 

allow carriers to have sufficient time to allocate shipments in the auction. A higher arrival 

rate increases the number of containers, and subsequently, the number of requests in the 

bidding process. The arrival rates in warehouses have a relatively more significant impact 

(-1.39%) when compared to arrival rates in gateways due to the higher truckload fill rates 

during pickup in warehouses. 

The solution to Objective 2 of the average truck lead time per container is D(truck 

capacity, truck numbers)=[10, 50] and the optimal objective value is 0.81 hour. Figure 8 

shows the result of sensitivity analysis for each of the parameters and their effects on 

Objective 2. Arrival rates in warehouses and gateways affect the number of containers in 

the system for a given time of period, resulting in decreases of 0.42% and 0.33% on 

average lead time per container, respectively. However, time-related factors greatly affect 

the objective value. For example, a 1% increase of maximum wait time extends the 



 

average lead time per container by 1.32%, while the same additional amount of sorting 

time spent in hubs inflates by as much as 1.04%. Cost-related factors including profit 

margin, variable cost, and fixed cost, have little impact on Objective 2.  

The solution to Objective 3 of the average truckload utilization is D(truck 

capacity, truck numbers)=[8, 32] and the optimal objective value is 0.77. Figure 9 shows 

sensitivity analysis for each of the parameters and their effects on the objective. The 

maximum waiting time allowed in the hub plays an important role in inducing a 

collaboration of shipments and increasing the truckload utilization by 1.73%. Higher 

arrival rates of containers from warehouses and gateways are more likely to fill the vacant 

truck space during pickups and backhauls. On the other hand, increasing profit margin, 

variable, or fixed cost has a negative effect on Objective 3, resulting in a decrease in 

truckload utilization by 0.85%, 1.20%, and 0.91%, respectively. This decrease in 

truckload utilization is not surprising as these factors reduce opportunities for 

collaborating shipments 

 Figure 7. Effects of increasing parameters by one percent on the Objective 1 value of 

average truck distance per container. 



 

 Figure 8.  Effects of increasing parameters by one percent on the Objective 2 value of 

average truck lead time per container. 

Figure 9. Effects of increasing parameters by one percent on the Objective 3 value of 

average truckload utilization. 



 

5.2. Multi-objective optimization 

Next, we design a set of experiments to explore the trade space that provides relative 

valuations of multiple objectives concurrently, and we take a weighted sum approach to 

find Pareto efficiency. Three experiments are developed by focusing on any two of 

Objectives 1-3; that is, Objectives 4-6 as defined in Table 3. The weighting factors 𝜔, 𝜆, 

and 𝜃 are varied from 0 to 1 with a step interval of 0.05. Figure 10 plots a Pareto frontier 

for each of the bi-objective optimization scenarios along the trade-off lines between 

objectives. 

 



 

Figure 10. Pareto front efficiencies in trade-spaces: (a) between truck distance per 

container and lead time per container (Objective 4); (b) between truck distance per 

container and truckload utilization (Objective 5); (c) between truckload utilization and 

lead time per container (Objective 6). 

As 𝜔, 𝜆, and 𝜃 increase from 0 to 1, Figure 10(a) – which relates to Objective 4 

– indicates the relationship between two competing Objectives 1 and 2 while there is a 

higher density of observations with more than two hours of average lead time per 

container. On the other hand, Figures 10(b) and 10(c) – which relate to Objectives 5 and 

6, respectively – show that higher truckload utilization accommodates an increase of truck 

distance or lead time per container, implicating the complementary relationships between 

each pair. There are still some unpopulated sections along the Pareto front in all three 

cases. As 𝜔, 𝜆, and 𝜃 approach one, the points slowly converge to lower ends; 

particularly in Figure 10(b), 19 coincident points are on the left end. To achieve more 

suitably scaled relationships between the various objective criteria, multi-objective 

optimization is transformed into a single objective. More specifically, while keeping one 

single objective, the remaining measure(s) becomes constraints that are subject to a range 

of values obtained from the weighted sum approach in Figure 10.  

Figure 11(a) illustrates the relevant results on the objective of average truck 

distance per container when limiting lead time per container in the range of [0.8, 2.8]. In 

this case, the longer average lead time allows carriers to consolidate more shipments and 

therefore facilitates achieving the less average truck distance per container in the system. 

Figure 11(b) shows the higher utilization of truckload, enabling shorter average truck 

distance per container with a minimum value reached at 0.7 truckload utilization where 

D(truck capacity, truck numbers)=[9, 44]. Beyond this point, however, higher truckload 

utilization (0.78) incurs a farther truck distance with the optimal solution of less 

resources: D(truck capacity, truck numbers)=[8, 35]. It can be seen from Figure 11(c) that 

a higher truckload utilization indicates a longer average lead time per container. A truck 

can load more containers by raising the maximum limit of its fill rate which, in turn, 

entails potentially accruing additional times from the point of individual containers. 



 

Figure 11. (a) truck distance per container subject to lead time per container; (b) truck 

distance per container subject to truckload utilization; and (c) lead time per container 

subject to truckload utilization. 



 

Finally, the objective value of average truck distance per container decreases as 

the constraints of average lead time and truckload utilization are relaxed. As shown in 

Figure 12, the lower average truck distance in the system is attributed to a longer average 

lead time and higher truckload utilization. We also note that the problem becomes 

infeasible when the average lead time per container is less than 0.9 hours and the average 

truckload utilization is greater than 0.66. This implies that the optimal solution cannot be 

obtained at both extreme ends of the two objectives simultaneously. 

Figure 12. Average truck distance per container under the values of average lead time 

per container and average truckload utilization (Objective 7; Table 3). 

6. Discussions 

For freight transport planning, a PI-enabled logistics system has the potential to allocate 

and reallocate logistical resources such as containers, trucks and hubs in efficient and are 

environmentally sustainable ways. It achieves this through shared, open, and 

collaborative networks. Given that capacity sharing is a fundamental concept and core 

driver of the proposed PI modeling framework, increasing utilization and efficient load 

capacity consolidation becomes a focal point of our simulation study. In this paper, to 

address the prospect of PI, we develop a hybrid model that combines simulation with 

techniques used in the wider OR literature, namely, auction mechanisms and 

optimization. The hybrid model consists of a multi-agent simulation embedded with an 

optimization routine to represent the complex interplay involving uncertainty in a 

collaborative freight transportation system. Our model adopts an auction mechanism 

designed for assigning requests more efficiently to consolidate transports. To measure the 

effects of parameter settings in the system, a set of sensitivity analyses are conducted on 



 

three single objectives, i.e., average truck distance per container, average truck lead time 

per container, and average truckload utilization.  

Some of the benefits of PI include lower truck driving distances and, 

consequently, faster transportation of loads from origins to destinations. From an 

environmental standpoint, a decrease in driving distance also contributes to a reduction 

in CO2 emissions. Nevertheless, under the PI scheme, it is observed that the number of 

container exchanges at hubs increases due to the higher instances of loading and 

unloading as indicated in Figures 7-9 with respect to the maximum wait time limit. We 

also note that the success of a PI-enabled logistic system is highly dependent on carrier 

profit margins, which would dictate their participation in the sharing scheme. Moreover, 

four multi-objectives have been explored by selectively combining them. When 

considering the joint effects of multiple objectives, some of the insights gleaned from our 

computational results are: 

 There are trade-offs in the optimal solutions of decision variables including truck 

number and truck capacity, with regard to the objectives of average truck distance per 

container and average truckload utilization. The corresponding results indicate that 

more trucks and larger capacities contribute to a shorter average truck lead time per 

container. 

 Parameters such as maximum wait time and arrival rate have positive impacts on 

enhancing the collaboration. The results from the sensitive analysis support these 

findings (in relation to Objectives 1-3). On the contrary, cost factors including profit 

margin, variable cost, and fixed cost adversely affect minimizing objective values.  

 In multi-objective scenarios, relationships under multiple criteria assessment in 

collaborating shipments can be inferred as in Section 5.2.  A longer average lead time 

allows carriers to achieve the less average truck distance per container. Increasing 

utilization of truckload gives the added benefit of shortening the average truck 

distance per container. Nevertheless, there is a trade-off between truckload utilization 

and lead time per container. 

Fazili et al. reported driving times of routes required to transport containers from 

origin to destination with or without PI consideration, and the scenario with PI indicates 

an advantage of the average driving time being reduced by about 5.6%.22 This is 

comparable to our result presented in Table 6, which shows an average decrease in driving 



 

time of 9.7%.  Also, when PI is implemented in their model, Sarraj et al. claimed that the 

transportation fill rate gains up to 17% from a current level of 59% utilization of the load 

capacity of conventional transportation means.14 On a par with these results, the average 

truck utilization presented in Table 6 shows an average improvement of 15.3% across all 

six scenarios when a collaborative agreement of PI is in place. 

Our findings also support recent practices that have evolved in the logistics 

industry for sharing space for freight transport in general. Multi-customer warehouses 

enable logistics providers to take advantage of economies of scale. For example, DHL 

operates warehouse space sharing in a single warehouse site where the logistics provider 

can use fewer resources to meet the needs of multiple customers. With integrated supply 

chain management, they developed a platform called DHL Spaces where e-commerce 

companies can operate a more flexible omnichannel warehousing strategy.44 On the 

forefront of transport capacity sharing, the digital freight companies such as Freightos, 

Convoy, and Loadsmart are brokering between shippers and carriers by matching loads 

with available capacity. Following a sharing economy approach, they provide the market 

access and transaction processing for both shippers and carriers, and facilitate effective 

sharing by embracing the openness and scale of transport capacity. 

The limitations of this research are now discussed. First, the formulation of WDP 

in the auction mechanism considers only factors related to cost and truck fill rate. In 

future, our hybrid model can include other criteria in the truck selection stage. Second, 

the multi-objective optimization model (Section 4.2) used a simple weighted sum 

approach to determine the efficient Pareto frontiers. However, there are other methods 

such as Goal Programming (GP)45 and Multiobjective Evolutionary Algorithm based on 

Decomposition (MOEA/D),46 which could be explored and compared in future studies. 

Future work could also extend the hybrid model to include the evaluation of 

logistics and supply-chain performance using Colored Petri Net based simulation 

approach.47 In addition, determining the weights of various objectives could reflect 

qualitative criteria in conjunction with a further understanding of stakeholders. For 

instance, Sencer and Karaismailoglu used analytical hierarchy process (AHP) to evaluate 

the criteria weights, both quantitative and qualitative, and rank alternatives resulting from 

the output of their simulation model.48 This is a separate procedure of the solution 

approach whereas an optimization routine is embedded on our simulation model in an 

integrated fashion. It would be worthwhile to compare the computational efficiency as 

well as the solution quality between the two methodologies. In another recent study, 



 

Sadeghi et al.49 developed a simulation model to discover bottlenecks in a port’s rail 

container transport process and find beneficial configurations for use of rail for fast and 

large handling. Due to the fact that trains can bring considerably more goods than trucks, 

delivering cargo via the railway system would increase ports’ handling capacities. As a 

result of the study, it was discovered that the port of interest could increase the share of 

rail up to 8% without spending on equipment or infrastructure, although optimization was 

not employed. A more general overview of the use of simulation and optimization for 

transportation systems is provided in De La Torre et al.50 

While the logistics industry will continue to remain disruptive with innovations 

and technology development in the foreseeable future, its stakeholders have an essential 

role in paving the way for the sharing economy. In our day-to-day life, we observe the 

abundance of idle resources and sharing instead of owning becoming a growing trend, 

and logistics can serve as one of the main drivers of this advancement. 
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