4,072 research outputs found

    Progress in ambient assisted systems for independent living by the elderly

    Get PDF
    One of the challenges of the ageing population in many countries is the efficient delivery of health and care services, which is further complicated by the increase in neurological conditions among the elderly due to rising life expectancy. Personal care of the elderly is of concern to their relatives, in case they are alone in their homes and unforeseen circumstances occur, affecting their wellbeing. The alternative; i.e. care in nursing homes or hospitals is costly and increases further if specialized care is mobilized to patients’ place of residence. Enabling technologies for independent living by the elderly such as the ambient assisted living systems (AALS) are seen as essential to enhancing care in a cost-effective manner. In light of significant advances in telecommunication, computing and sensor miniaturization, as well as the ubiquity of mobile and connected devices embodying the concept of the Internet of Things (IoT), end-to-end solutions for ambient assisted living have become a reality. The premise of such applications is the continuous and most often real-time monitoring of the environment and occupant behavior using an event-driven intelligent system, thereby providing a facility for monitoring and assessment, and triggering assistance as and when needed. As a growing area of research, it is essential to investigate the approaches for developing AALS in literature to identify current practices and directions for future research. This paper is, therefore, aimed at a comprehensive and critical review of the frameworks and sensor systems used in various ambient assisted living systems, as well as their objectives and relationships with care and clinical systems. Findings from our work suggest that most frameworks focused on activity monitoring for assessing immediate risks while the opportunities for integrating environmental factors for analytics and decision-making, in particular for the long-term care were often overlooked. The potential for wearable devices and sensors, as well as distributed storage and access (e.g. cloud) are yet to be fully appreciated. There is a distinct lack of strong supporting clinical evidence from the implemented technologies. Socio-cultural aspects such as divergence among groups, acceptability and usability of AALS were also overlooked. Future systems need to look into the issues of privacy and cyber security

    Central monitoring system for ambient assisted living

    Get PDF
    Smart homes for aged care enable the elderly to stay in their own homes longer. By means of various types of ambient and wearable sensors information is gathered on people living in smart homes for aged care. This information is then processed to determine the activities of daily living (ADL) and provide vital information to carers. Many examples of smart homes for aged care can be found in literature, however, little or no evidence can be found with respect to interoperability of various sensors and devices along with associated functions. One key element with respect to interoperability is the central monitoring system in a smart home. This thesis analyses and presents key functions and requirements of a central monitoring system. The outcomes of this thesis may benefit developers of smart homes for aged care

    Distributed Computing and Monitoring Technologies for Older Patients

    Get PDF
    This book summarizes various approaches for the automatic detection of health threats to older patients at home living alone. The text begins by briefly describing those who would most benefit from healthcare supervision. The book then summarizes possible scenarios for monitoring an older patient at home, deriving the common functional requirements for monitoring technology. Next, the work identifies the state of the art of technological monitoring approaches that are practically applicable to geriatric patients. A survey is presented on a range of such interdisciplinary fields as smart homes, telemonitoring, ambient intelligence, ambient assisted living, gerontechnology, and aging-in-place technology. The book discusses relevant experimental studies, highlighting the application of sensor fusion, signal processing and machine learning techniques. Finally, the text discusses future challenges, offering a number of suggestions for further research directions

    Events of daily living classification on an ambient assisted living environment

    Get PDF
    Dissertação de mestrado em Engenharia EletrĂłnica Industrial e ComputadoresPopulation ageing is a global demographic challenge and countries all around the world are facing significant pressure on their health and social care systems in order to mitigate the effects of it. The emerging social aspect introduced some crucial challenges to society and greater demands on the actual health care sector, which led to the emergence and increased integration of agefriendly innovative welfare technological-based care services for safe and independent ageing, including the assisted living technologies based on Ambient Intelligence (AmI) paradigm and Pervasive HealthCare. The Ambient Assisted Living (AAL) systems intend to provide caregivers with a detailed overview of their Events of Daily Living (EDL), which constitutes a clinical criteria to evaluate activity limitations. This dissertation addresses these challenges and contributes to the Ambient Assisted Living research, by means of a holistic solution composed of a beyond the state-of-the-art AAL technologies, representing a novel approach to assist in the investigation and on the modeling of a subset of Events of Daily Living (EDL), for sustaining independent living and a continual naturalistic assessment of health. The investigation was focused on 1) developing a multisensorial pervasive Research Data Acquistion (RDA) Platform with embedded Ambient Intelligence (AmI), 2) COTS to verify their validity and reliability for healthcare applications. The proposed solution has been thoroughly evaluated in the Ambient Assisted Living Laboratory that showed its effectiveness classifying EDL through the application of the AAL paradigm in the real world.O envelhecimento populacional Ă© um desafio demogrĂĄfico global e os paĂ­ses em todo o mundo estĂŁo sob com enorme pressĂŁo nos seus sistemas de saĂșde a fim de mitigar os efeitos que poderĂŁo advir. O aspecto social emergente introduziu alguns desafios cruciais para a sociedade e uma maior sobrecarga no setor de saĂșde, o que levou ao surgimento e aumento da integração de serviços inovadores de assistĂȘncia social, de modo a que haja um envelhecimento seguro e independente, incluindo as tecnologias de assistĂȘncia Ă  vida com base no paradigma de Ambient Intelligence (AmI) e no Pervasive HealthCare, os sistemas de Ambient Assisted Living (AAL). Eles pretendem fornecer aos profissionais de saĂșde uma visĂŁo detalhada de seu Events of Daily Living (EDL), que constitui um critĂ©rio clĂ­nico para avaliar as limitaçÔes da atividade. Para enfrentar estes desafios, esta dissertação contribui para a pesquisa na ĂĄrea de Ambient Assisted Living, por meio de uma solução holĂ­stica composta por uma tecnologia alĂ©m das tecnologias state-of-the-art, representando uma nova abordagem para auxiliar na investigação e na modelação de um subconjunto de Events of Daily Living (EDL), para sustentar uma vida independente e uma avaliação naturalĂ­stica contĂ­nua da saĂșde. A investigação foi focada em 1) desenvolver uma plataforma multisensorial pervasiva Research Data Acquistion (RDA) com Ambient Intelligence (AmI), 2) COTS para verificar a sua validade e fiabilidade para aplicaçÔes de assistĂȘncia mĂ©dica. A solução proposta foi avaliada no Ambient Assisted Living Laboratory, que mostrou bastante eficĂĄcia ao classificar EDL atravĂ©s da aplicação do paradigma AAL no mundo real

    Recognition of elementary arm movements using orientation of a tri-axial accelerometer located near the wrist

    No full text
    In this paper we present a method for recognising three fundamental movements of the human arm (reach and retrieve, lift cup to mouth, rotation of the arm) by determining the orientation of a tri-axial accelerometer located near the wrist. Our objective is to detect the occurrence of such movements performed with the impaired arm of a stroke patient during normal daily activities as a means to assess their rehabilitation. The method relies on accurately mapping transitions of predefined, standard orientations of the accelerometer to corresponding elementary arm movements. To evaluate the technique, kinematic data was collected from four healthy subjects and four stroke patients as they performed a number of activities involved in a representative activity of daily living, 'making-a-cup-of-tea'. Our experimental results show that the proposed method can independently recognise all three of the elementary upper limb movements investigated with accuracies in the range 91–99% for healthy subjects and 70–85% for stroke patients

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems
    • 

    corecore