2,446 research outputs found

    Constraint-driven RF test stimulus generation and built-in test

    Get PDF
    With the explosive growth in wireless applications, the last decade witnessed an ever-increasing test challenge for radio frequency (RF) circuits. While the design community has pushed the envelope far into the future, by expanding CMOS process to be used with high-frequency wireless devices, test methodology has not advanced at the same pace. Consequently, testing such devices has become a major bottleneck in high-volume production, further driven by the growing need for tighter quality control. RF devices undergo testing during the prototype phase and during high-volume manufacturing (HVM). The benchtop test equipment used throughout prototyping is very precise yet specialized for a subset of functionalities. HVM calls for a different kind of test paradigm that emphasizes throughput and sufficiency, during which the projected performance parameters are measured one by one for each device by automated test equipment (ATE) and compared against defined limits called specifications. The set of tests required for each product differs greatly in terms of the equipment required and the time taken to test individual devices. Together with signal integrity, precision, and repeatability concerns, the initial cost of RF ATE is prohibitively high. As more functionality and protocols are integrated into a single RF device, the required number of specifications to be tested also increases, adding to the overall cost of testing, both in terms of the initial and recurring operating costs. In addition to the cost problem, RF testing proposes another challenge when these components are integrated into package-level system solutions. In systems-on-packages (SOP), the test problems resulting from signal integrity, input/output bandwidth (IO), and limited controllability and observability have initiated a paradigm shift in high-speed analog testing, favoring alternative approaches such as built-in tests (BIT) where the test functionality is brought into the package. This scheme can make use of a low-cost external tester connected through a low-bandwidth link in order to perform demanding response evaluations, as well as make use of the analog-to-digital converters and the digital signal processors available in the package to facilitate testing. Although research on analog built-in test has demonstrated hardware solutions for single specifications, the paradigm shift calls for a rather general approach in which a single methodology can be applied across different devices, and multiple specifications can be verified through a single test hardware unit, minimizing the area overhead. Specification-based alternate test methodology provides a suitable and flexible platform for handling the challenges addressed above. In this thesis, a framework that integrates ATE and system constraints into test stimulus generation and test response extraction is presented for the efficient production testing of high-performance RF devices using specification-based alternate tests. The main components of the presented framework are as follows: Constraint-driven RF alternate test stimulus generation: An automated test stimulus generation algorithm for RF devices that are evaluated by a specification-based alternate test solution is developed. The high-level models of the test signal path define constraints in the search space of the optimized test stimulus. These models are generated in enough detail such that they inherently define limitations of the low-cost ATE and the I/O restrictions of the device under test (DUT), yet they are simple enough that the non-linear optimization problem can be solved empirically in a reasonable amount of time. Feature extractors for BIT: A methodology for the built-in testing of RF devices integrated into SOPs is developed using additional hardware components. These hardware components correlate the high-bandwidth test response to low bandwidth signatures while extracting the test-critical features of the DUT. Supervised learning is used to map these extracted features, which otherwise are too complicated to decipher by plain mathematical analysis, into the specifications under test. Defect-based alternate testing of RF circuits: A methodology for the efficient testing of RF devices with low-cost defect-based alternate tests is developed. The signature of the DUT is probabilistically compared with a class of defect-free device signatures to explore possible corners under acceptable levels of process parameter variations. Such a defect filter applies discrimination rules generated by a supervised classifier and eliminates the need for a library of possible catastrophic defects.Ph.D.Committee Chair: Chatterjee, Abhijit; Committee Member: Durgin, Greg; Committee Member: Keezer, David; Committee Member: Milor, Linda; Committee Member: Sitaraman, Sures

    Adaptive Integrated Circuit Design for Variation Resilience and Security

    Get PDF
    The past few decades witness the burgeoning development of integrated circuit in terms of process technology scaling. Along with the tremendous benefits coming from the scaling, challenges are also presented in various stages. During the design time, the complexity of developing a circuit with millions to billions of smaller size transistors is extended after the variations are taken into account. The difficulty of analyzing these nondeterministic properties makes the allocation scheme of redundant resource hardly work in a cost-efficient way. Besides fabrication variations, analog circuits are suffered from severe performance degradations owing to their physical attributes which are vulnerable to aging effects. As such, the post-silicon calibration approach gains increasing attentions to compensate the performance mismatch. For the user-end applications, additional system failures result from the pirated and counterfeited devices provided by the untrusted semiconductor supply chain. Again analog circuits show their weakness to this threat due to the shortage of piracy avoidance techniques. In this dissertation, we propose three adaptive integrated circuit designs to overcome these challenges respectively. The first one investigates the variability-aware gate implementation with the consideration of the overhead control of adaptivity assignment. This design improves the variation resilience typically for digital circuits while optimizing the power consumption and timing yield. The second design is implemented as a self-validation system for the calibration of diverse analog circuits. The system is completely integrated on chip to enhance the convenience without external assistance. In the last design, a classic analog component is further studied to establish the configurable locking mechanism for analog circuits. The use of Satisfiability Modulo Theories addresses the difficulty of searching the unique unlocking pattern of non-Boolean variables

    Design and debugging of multi-step analog to digital converters

    Get PDF
    With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. The trend of increasing integration level for integrated circuits has forced the A/D converter interface to reside on the same silicon in complex mixed-signal ICs containing mostly digital blocks for DSP and control. However, specifications of the converters in various applications emphasize high dynamic range and low spurious spectral performance. It is nontrivial to achieve this level of linearity in a monolithic environment where post-fabrication component trimming or calibration is cumbersome to implement for certain applications or/and for cost and manufacturability reasons. Additionally, as CMOS integrated circuits are accomplishing unprecedented integration levels, potential problems associated with device scaling – the short-channel effects – are also looming large as technology strides into the deep-submicron regime. The A/D conversion process involves sampling the applied analog input signal and quantizing it to its digital representation by comparing it to reference voltages before further signal processing in subsequent digital systems. Depending on how these functions are combined, different A/D converter architectures can be implemented with different requirements on each function. Practical realizations show the trend that to a first order, converter power is directly proportional to sampling rate. However, power dissipation required becomes nonlinear as the speed capabilities of a process technology are pushed to the limit. Pipeline and two-step/multi-step converters tend to be the most efficient at achieving a given resolution and sampling rate specification. This thesis is in a sense unique work as it covers the whole spectrum of design, test, debugging and calibration of multi-step A/D converters; it incorporates development of circuit techniques and algorithms to enhance the resolution and attainable sample rate of an A/D converter and to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover and compensate for the errors continuously. The power proficiency for high resolution of multi-step converter by combining parallelism and calibration and exploiting low-voltage circuit techniques is demonstrated with a 1.8 V, 12-bit, 80 MS/s, 100 mW analog to-digital converter fabricated in five-metal layers 0.18-µm CMOS process. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. Microscopic particles present in the manufacturing environment and slight variations in the parameters of manufacturing steps can all lead to the geometrical and electrical properties of an IC to deviate from those generated at the end of the design process. Those defects can cause various types of malfunctioning, depending on the IC topology and the nature of the defect. To relive the burden placed on IC design and manufacturing originated with ever-increasing costs associated with testing and debugging of complex mixed-signal electronic systems, several circuit techniques and algorithms are developed and incorporated in proposed ATPG, DfT and BIST methodologies. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. With the use of dedicated sensors, which exploit knowledge of the circuit structure and the specific defect mechanisms, the method described in this thesis facilitates early and fast identification of excessive process parameter variation effects. The expectation-maximization algorithm makes the estimation problem more tractable and also yields good estimates of the parameters for small sample sizes. To allow the test guidance with the information obtained through monitoring process variations implemented adjusted support vector machine classifier simultaneously minimize the empirical classification error and maximize the geometric margin. On a positive note, the use of digital enhancing calibration techniques reduces the need for expensive technologies with special fabrication steps. Indeed, the extra cost of digital processing is normally affordable as the use of submicron mixed signal technologies allows for efficient usage of silicon area even for relatively complex algorithms. Employed adaptive filtering algorithm for error estimation offers the small number of operations per iteration and does not require correlation function calculation nor matrix inversions. The presented foreground calibration algorithm does not need any dedicated test signal and does not require a part of the conversion time. It works continuously and with every signal applied to the A/D converter. The feasibility of the method for on-line and off-line debugging and calibration has been verified by experimental measurements from the silicon prototype fabricated in standard single poly, six metal 0.09-µm CMOS process

    Design of a Mobile Transceiver for Precision Indoor Location

    Get PDF
    This thesis documents the design and implementation process for the next generation of the WPI Precision Personnel Location (PPL) system hardware. The driving goal of the new hardware was to support a new method of radio frequency location developed at WPI referred to as Transactional Array Reconciliation Tomography (TART). This new method is based on a time of arrival (TOA) technique as opposed to the previous Singular Value Array Reconciliation Tomography (SART), which uses time difference of arrival (TDOA). The use of a TOA method requires additional timing information and necessitates a bidirectional (transmit and receive) multicarrier transaction. The design of the new transceiver that can function as both a mobile locator and a static reference unit is the main focus of this thesis. This redesign also addressed previous hardware issues that have been exposed through extensive use in real world testing

    High Voltage and Nanoscale CMOS Integrated Circuits for Particle Physics and Quantum Computing

    Get PDF

    Design and Development of a Multi-Purpose Input Output Controller Board for the SPES Control System

    Get PDF
    This PhD work has been carried out at the Legnaro National Laboratories (LNL), one of the four national labs of the National Institute for Nuclear Physics (INFN). The mission of LNL is to perform research in the field of nuclear physics and nuclear astrophysics together with emerging technologies. Technological research and innovation are the key to promote excellence in science, to excite competitive industries and to establish a better society. The research activities concerning electronics and computer science are an essential base to develop the control system of the Selective Production of Exotic Species (SPES) project. Nowadays, SPES is the most important project commissioned at LNL and represents the future of the Lab. It is a second generation Isotope Separation On-Line (ISOL) radioactive ion beam facility intended for fundamental nuclear physics research as well as experimental applications in different fields of science, such as nuclear medicine; radio-pharmaceutical production for therapy and diagnostic. The design of the SPES control system demands innovative technologies to embed the control of several appliances with different requirements and performing different tasks spanning from data sharing and visualization, data acquisition and storage, networking, security and surveillance operations, beam transport and diagnostic. The real time applications and fast peripherals control commonly found in the distributed control network of particle accelerators are accompanied by the challenge of developing custom embedded systems. In this context, the proposed PhD work describes the design and development of a multi-purpose Input Output Controller (IOC) board capable of embedding the control of typical accelerator instrumentation involved in the automatic beam transport system foreseen for the SPES project. The idea behind this work is to extend the control reach to the single device level without losing in modularity and standardization. The outcome of the research work is a general purpose embedded computer that will be the base for standardizing the hardware layer of the frontend computers in the SPES distributed control system. The IOC board is a Computer-on-Module (COM) carrier board designed to host any COM Express type 6 module and is equipped with a Field Programmable Gate Array (FPGA) and user application specific I/O connection solutions not found in a desktop pc. All the generic pc functionalities are readily available in off-the-shelf modules and the result is a custom motherboard that bridges the gap between custom developments and commercial personal computers. The end user can deal with a general-purpose pc with a high level of hardware abstraction besides being able to exploit the on-board FPGA potentialities in terms of fast peripherals control and real time digital data processing. This document opens with an introductory chapter about the SPES project and its control system architecture and technology before to describe the IOC board design, prototyping, and characterization. The thesis ends describing the installation in the field of the IOC board which is the core of the new diagnostics data readout and signal processing system. The results of the tests performed under real beam conditions prove that the new hardware extends the current sensitivity to the pA range, addressing the SPES requirements, and prove that the IOC board is a reliable solution to standardize the control of several appliances in the SPES accelerators complex where it will be embedded into physical equipment, or in their proximity, and will control and monitor their operation replacing the legacy VME technology. The installation in the field of the IOC board represents a great personal reward and crowns these years of busy time during which I turned what was just an idea in 2014, into a working embedded computer today

    Electronic systems for intelligent particle tracking in the High Energy Physics field

    Get PDF
    This Ph.D thesis describes the development of a novel readout ASIC for hybrid pixel detector with intelligent particle tracking capabilities in High Energy Physics (HEP) application, called Macro Pixel ASIC (MPA). The concept of intelligent tracking is introduced for the upgrade of the particle tracking system of the Compact Muon Solenoid (CMS) experiment of the Large Hadron Collider (LHC) at CERN: this detector must be capable of selecting at front--end level the interesting particle and of providing them continuously to the back-end. This new functionality is required to cope with the improved performances of the LHC when, in about ten years' time, a major upgrade will lead to the High Luminosity scenario (HL-LHC). The high complexity of the digital logic for particle selection and the very low power requirement of 95% in particle selection and a data reduction from 200 Tb/s/cm2 to 1 Tb/s/cm2. A prototype, called MPA-Light, has been designed, produced and tested. According to the measurements, the prototype respects all the specications. The same device has been used for multi-chip assembly with a pixelated sensor. The assembly characterization with radioactive sources conrms the result obtained on the bare chip

    Operational experience, improvements, and performance of the CDF Run II silicon vertex detector

    Full text link
    The Collider Detector at Fermilab (CDF) pursues a broad physics program at Fermilab's Tevatron collider. Between Run II commissioning in early 2001 and the end of operations in September 2011, the Tevatron delivered 12 fb-1 of integrated luminosity of p-pbar collisions at sqrt(s)=1.96 TeV. Many physics analyses undertaken by CDF require heavy flavor tagging with large charged particle tracking acceptance. To realize these goals, in 2001 CDF installed eight layers of silicon microstrip detectors around its interaction region. These detectors were designed for 2--5 years of operation, radiation doses up to 2 Mrad (0.02 Gy), and were expected to be replaced in 2004. The sensors were not replaced, and the Tevatron run was extended for several years beyond its design, exposing the sensors and electronics to much higher radiation doses than anticipated. In this paper we describe the operational challenges encountered over the past 10 years of running the CDF silicon detectors, the preventive measures undertaken, and the improvements made along the way to ensure their optimal performance for collecting high quality physics data. In addition, we describe the quantities and methods used to monitor radiation damage in the sensors for optimal performance and summarize the detector performance quantities important to CDF's physics program, including vertex resolution, heavy flavor tagging, and silicon vertex trigger performance.Comment: Preprint accepted for publication in Nuclear Instruments and Methods A (07/31/2013

    System Test and Noise Performance Studies at The ATLAS Pixel Detector

    Get PDF
    The central component of the ATLAS Inner Tracker is the pixel detector. It consists of three barrel layers and three disk-layers in the endcaps in both forward directions. The innermost barrel layer is mounted at a distance of about 5~cm from the interaction region. With its very high granularity, truly two-dimensional hit information, and fast readout it is well suited to cope with the high densities of charged tracks, expected this close to the interaction region. The huge number of readout channels necessitates a very complex services infrastructure for powering, readout and safety. After a description of the pixel detector and its services infrastructure, key results from the system test at CERN are presented. Furthermore the noise performance of the pixel detector, crucial for high tracking and vertexing efficiencies, is studied. Measurements of the single-channel random noise are presented together with studies of common mode noise and measurements of the noise occupancy using a random trigger generator
    • …
    corecore