3,783 research outputs found

    Multiparameter actuation of a neutrally-stable shell: a flexible gear-less motor

    Full text link
    We have designed and tested experimentally a morphing structure consisting of a neutrally stable thin cylindrical shell driven by a multiparameter piezoelectric actuation. The shell is obtained by plastically deforming an initially flat copper disk, so as to induce large isotropic and almost uniform inelastic curvatures. Following the plastic deformation, in a perfectly isotropic system, the shell is theoretically neutrally stable, owning a continuous manifold of stable cylindrical shapes corresponding to the rotation of the axis of maximal curvature. Small imperfections render the actual structure bistable, giving preferred orientations. A three-parameter piezoelectric actuation, exerted through micro-fiber-composite actuators, allows us to add a small perturbation to the plastic inelastic curvature and to control the direction of maximal curvature. This actuation law is designed through a geometrical analogy based on a fully non-linear inextensible uniform-curvature shell model. We report on the fabrication, identification, and experimental testing of a prototype and demonstrate the effectiveness of the piezoelectric actuators in controlling its shape. The resulting motion is an apparent rotation of the shell, controlled by the voltages as in a "gear-less motor", which is, in reality, a precession of the axis of principal curvature.Comment: 20 pages, 9 figure

    Demonstrator for Selectively Compliant Morphing Systems with Multi-stable Structures

    Get PDF
    The field of morphing wings presents significant potential for increasing the efficiency of aircraft. Conventional designs used in the industry limit the adaptability of aerodynamic surfaces to address an engineering trade-off between load-carrying and compliance. This same trade-off remains a factor in morphing wings, which must also balance weight considerations while attempting to remain competitive with conventional designs. The current state-of-the-art in morphing wings is briefly described in this work. This is followed by an investigation into a new application of the principle of selective stiffness, by which local changes in stiffness may be applied to affect the global structural characteristics. In this manner, this trade-off is addressed by providing the ability to allow a deformation mode when undergoing shape change and restrict it when sustained load-carrying is required. This principle has previously been explored using pre-stressed composite laminates to produce a bi-stable structure with unique curvature in each stable state. Geometrically bi-stable structures are explored for the same purpose in this research. Three types of bi-stable element are explored and presented. The last of these is then embedded in a simple airfoil concept. The placement and geometry of this element are optimized, and a physical model is produced using additive manufacturing. This physical model is finally mechanically tested to assess the stiffness in each stable state of the embedded element

    A Distributed Coordinated Control Scheme for Morphing Wings with Sampled Communication

    Get PDF
    AbstractTo investigate the control of morphing wings by means of interacting effectors, this article proposes a distributed coordinated control scheme with sampled communication on the basis of a simple morphing wing model, established with arrayed agents. The control scheme can change the shape of airfoil into an expected one and keep it smooth during morphing. As the interconnection of communication network and the agents would make the behavior of the morphing wing system complicated, a diagrammatic stability analysis method is put forward to ensure the system stability. Two simulations are carried out on the morphing wing system by using MATLAB. The results stand witness to the feasibility of the distributed coordinated control scheme and the effectiveness of the diagrammatic stability analysis method

    A review of modelling and analysis of morphing wings

    Get PDF
    Morphing wings have a large potential to improve the overall aircraft performances, in a way like natural flyers do. By adapting or optimising dynamically the shape to various flight conditions, there are yet many unexplored opportunities beyond current proof-of-concept demonstrations. This review discusses the most prominent examples of morphing concepts with applications to two and three-dimensional wing models. Methods and tools commonly deployed for the design and analysis of these concepts are discussed, ranging from structural to aerodynamic analyses, and from control to optimisation aspects. Throughout the review process, it became apparent that the adoption of morphing concepts for routine use on aerial vehicles is still scarce, and some reasons holding back their integration for industrial use are given. Finally, promising concepts for future use are identified

    Aeroelastic Tailoring of Transport Aircraft Wings: State-of-the-Art and Potential Enabling Technologies

    Get PDF
    This paper provides a brief overview of the state-of-the-art for aeroelastic tailoring of subsonic transport aircraft and offers additional resources on related research efforts. Emphasis is placed on aircraft having straight or aft swept wings. The literature covers computational synthesis tools developed for aeroelastic tailoring and numerous design studies focused on discovering new methods for passive aeroelastic control. Several new structural and material technologies are presented as potential enablers of aeroelastic tailoring, including selectively reinforced materials, functionally graded materials, fiber tow steered composite laminates, and various nonconventional structural designs. In addition, smart materials and structures whose properties or configurations change in response to external stimuli are presented as potential active approaches to aeroelastic tailoring

    Distributed Propulsion Aircraft with Aeroelastic Wing Shaping Control for Improved Aerodynamic Efficiency

    Get PDF
    This study presents an aeroelastic wing shaping control concept for distributed propulsion aircraft. By leveraging wing flexibility, wing-mounted distributed propulsion can be used to re-twist wing shapes in-flight to improve aerodynamic efficiency. A multidisciplinary approach is used to develop an aero-propulsive-elastic model of a highly flexible wing distributed propulsion transport aircraft. The conceptual model is used to evaluate the aerodynamic benefit of the distributed propulsion aircraft. The initial conceptual analysis shows that an improvement in the aerodynamic efficiency quantity of lift-to-drag ratio L/D is possible with the proposed aeroelastic wing shaping control for distributed propulsion aircraft. Two concepts are studied: single-generator configuration and dual-generator configuration with four propulsors per wing. The baseline aircraft model is NASA Generic Transport Model. A fan performance analysis is developed for propulsion sizing. Cruise performance analysis is conducted to evaluate the potential improvement in the cruise range for the configurations under study. A flutter analysis is performed to address the potential flutter issue as the propulsors are placed toward the wing tip which would cause a reduction in the wing natural frequencies. Flight control considerations are addressed in the context of the engine-out requirement, yaw and roll controls, and yaw damping augmentation using differential thrust
    • …
    corecore