11 research outputs found

    A single LC tank based active voltage balancing circuit for battery management system

    Get PDF
    Nowadays, battery operated vehicles and machine power tools are becoming popular due to their simple and compact structure, low operating and maintenance costs, moreover renewable energy utilization facility etc. In order to obtain the necessary operating voltage and current of these devices, many electric cells are combined together in series and parallel combination. A series battery balancing circuit can be used to improve the efficiency of each cell charging and discharging process and consequently increase the lifespan of it. A battery management system (BMS) needs an efficient balancing circuit. This paper presents a high-speed single LC-tank DC to DC converter based electric cell balancing schemes. Since the supercapacitors are equivalent of rechargeable battery; in this research two supercapacitors have been used instead of rechargeable batteries. The voltage balance has been maintained by charging and discharging the supercapacitors through a single LC-tank circuit. As a result, the overall voltage balancing time has been reduced and improved the circuit performance. Experimental result shows that the proposed balancing circuit can reduce the voltage difference between the two supercapacitors from 350 mV to 0 V in 284 seconds, which is less time than the existing system. Satu pengubah resonan sesiri telah direka bagi mengimbangi aras voltan pada kenderaan beroperasikan bateri dan pada mesin jana kuasa yang menjadi semakin popular.Ini kerana strukturnya yang mudah dan kompak, kos operasi dan penyelenggaraan yang rendah, termasuk kemudahan penggunaan tenaga kitar semula dan sebagainya. Bagi mendapatkan voltan dan arus operasi yang sesuai, banyak sel elektrik telah digabungkan bersama dalam gabungan sesiri dan selari. Litar pengimbang bateri sesiri boleh digunakan bagi meningkatkan kecekapan setiap proses pengecasan dan penyahcas sel dan sekaligus meningkatkan jangka hayat sel. Sistem pengurusan bateri (BMS) memerlukan litar pengimbang yang cekap. Kertas ini membentangkan tentang satu pengubah DC-DC tangki-LC berkelajuan tinggi berdasarkan skim pengimbang sel elektrik. Oleh kerana supercapacitors bertindak seperti bateri boleh cas semula; penyelidikan ini telah mengguna pakai dua super-kapasitor dan bukan bateri boleh cas semula. Baki voltan telah dikekalkan dengan mengecas dan menyahcas super-kapasitor menggunakan satu litar tangki-LC. Dengan ini, masa pengimbang keseluruhan voltan dapat dikurangkan dan kecekapan litar dapat ditingkatkan. Hasil eksperimen menunjukkan litar pengimbang yang dicadangkan dapat mengurangkan perbezaan voltan antara dua super-kapasitor dari 350 mV kepada 0 V dalam tempoh 284 saat, kurang daripada masa sistem sedia ada

    Battery charging system incorporating an equalisation circuit for electric vehicles

    Get PDF
    Ph.D. ThesisHybrid electric vehicles (HEVs) and electric vehicles (EVs) are gaining in popularity mainly due to the fact that unlike combustion-powered vehicles, they do not pollute with greenhouse gases and toxic particles. Most HEVs and EVs are powered by lithium-ion battery packs which have high power density and longer cycle lives compared to other battery types. Each pack is made out of many battery cells in series connected and due to manufacturing tolerances and chemical processes in individual cells each cell has its own electric characteristics. In order to achieve a balanced voltage across all cells, a battery management system (BMS) must be employed to actively monitor and balance the cells voltage. On-board battery chargers are installed in HEVs/EVs to charge the lithium-ion battery pack from the grid. This charger converts AC grid voltage into a controllable DC output voltage, but it adds weight to the vehicle, reducing the overall efficiency of an HEV/EV and also increasing its cost. The aim of researches in multi-functional power electronics is to design systems which perform several different functions at the same time. These systems promise cost and weight reductions since only one circuit is used to conduct different functions. An example is the electric drive in an HEV/EV. On one hand, it propels the car forward when driving, while on the other hand the battery can be charged via a modified electric motor and inverter topology. Thus, no additional on-board charger is required. This thesis describes a new multi-functional circuit for HEVs/EVs which combines the functions of voltage equalisation with grid charging. Compared to a drive system, the proposed circuit does not rely on an electric motor to charge the battery. Various battery chargers and equalisation circuits are first compared. Then, the design of the proposed circuit is described and simulation results are presented for charging and voltage balancing. An experimental test rig was built and practical results have been captured and compared with simulation results for validation. The advantages and disadvantages of the proposed circuit are discussed at the end of the thesis. Keywords- Multi-functional system, Battery charging, Voltage equalisation, Lithium-ion batter

    Characterization and emulation of a new supercapacitor-type energy storage device

    Get PDF
    The work in this thesis focuses on the characterization, modeling and emulation of both the supercapacitor and the new supercapattery energy storage device. The characterization involves the selection of dynamic models and experimental methodologies to derive model parameters. The characterizing processes focus on predicting short-term device dynamics, energy retention (self-discharging) and losses and round-trip efficiency. A methodology involving a pulse current method is applied for the first time to identify a model parameter to give fast device dynamic characteristics and a new constant power cycling method is used for evaluating round-trip efficiency. Experimental results are shown for a number of supercapacitor and supercapattery devices and good results are obtained. The derived models from the characterization results are implemented into the emulator system and the emulator system is used to mimic the dynamic characteristics of a scaled-up 1kW supercapattery device. The thesis also addresses voltage equalizing circuits and reports a study that investigates efficiency, a cell voltage deviation and voltage equalizing time for different control methods

    A comprehensive study of key Electric Vehicle (EV) components, technologies, challenges, impacts, and future direction of development

    Get PDF
    Abstract: Electric vehicles (EV), including Battery Electric Vehicle (BEV), Hybrid Electric Vehicle (HEV), Plug-in Hybrid Electric Vehicle (PHEV), Fuel Cell Electric Vehicle (FCEV), are becoming more commonplace in the transportation sector in recent times. As the present trend suggests, this mode of transport is likely to replace internal combustion engine (ICE) vehicles in the near future. Each of the main EV components has a number of technologies that are currently in use or can become prominent in the future. EVs can cause significant impacts on the environment, power system, and other related sectors. The present power system could face huge instabilities with enough EV penetration, but with proper management and coordination, EVs can be turned into a major contributor to the successful implementation of the smart grid concept. There are possibilities of immense environmental benefits as well, as the EVs can extensively reduce the greenhouse gas emissions produced by the transportation sector. However, there are some major obstacles for EVs to overcome before totally replacing ICE vehicles. This paper is focused on reviewing all the useful data available on EV configurations, battery energy sources, electrical machines, charging techniques, optimization techniques, impacts, trends, and possible directions of future developments. Its objective is to provide an overall picture of the current EV technology and ways of future development to assist in future researches in this sector

    Applications of Power Electronics:Volume 2

    Get PDF

    Efficient, High Power Density, Modular Wide Band-gap Based Converters for Medium Voltage Application

    Get PDF
    Recent advances in semiconductor technology have accelerated developments in medium-voltage direct-current (MVDC) power system transmission and distribution. A DC-DC converter is widely considered to be the most important technology for future DC networks. Wide band-gap (WBG) power devices (i.e. Silicon Carbide (SiC) and Gallium Nitride (GaN) devices) have paved the way for improving the efficiency and power density of power converters by means of higher switching frequencies with lower conduction and switching losses compared to their Silicon (Si) counterparts. However, due to rapid variation of the voltage and current, di/dt and dv/dt, to fully utilize the advantages of the Wide-bandgap semiconductors, more focus is needed to design the printed circuit boards (PCB) in terms of minimizing the parasitic components, which impacts efficiency. The aim of this dissertation is to study the technical challenges associated with the implementation of WBG devices and propose different power converter topologies for MVDC applications. Ship power system with MVDC distribution is attracting widespread interest due to higher reliability and reduced fuel consumption. Also, since the charging time is a barrier for adopting the electric vehicles, increasing the voltage level of the dc bus to achieve the fast charging is considered to be the most important solution to address this concern. Moreover, raising the voltage level reduces the size and cost of cables in the car. Employing MVDC system in the power grid offers secure, flexible and efficient power flow. It is shown that to reach optimal performance in terms of low package inductance and high slew rate of switches, designing a PCB with low common source inductance, power loop inductance, and gate-driver loop are essential. Compared with traditional power converters, the proposed circuits can reduce the voltage stress on switches and diodes, as well as the input current ripple. A lower voltage stress allows the designer to employ the switches and diodes with lower on-resistance RDS(ON) and forward voltage drop, respectively. Consequently, more efficient power conversion system can be achieved. Moreover, the proposed converters offer a high voltage gain that helps the power switches with smaller duty-cycle, which leads to lower current and voltage stress across them. To verify the proposed concept and prove the correctness of the theoretical analysis, the laboratory prototype of the converters using WBG devices were implemented. The proposed converters can provide energy conversion with an efficiency of 97% feeding the nominal load, which is 2% more than the efficiency of the-state-of-the-art converters. Besides the efficiency, shrinking the current ripple leads to 50% size reduction of the input filter inductors

    Emerging Converter Topologies and Control for Grid Connected Photovoltaic Systems

    Get PDF
    Continuous cost reduction of photovoltaic (PV) systems and the rise of power auctions resulted in the establishment of PV power not only as a green energy source but also as a cost-effective solution to the electricity generation market. Various commercial solutions for grid-connected PV systems are available at any power level, ranging from multi-megawatt utility-scale solar farms to sub-kilowatt residential PV installations. Compared to utility-scale systems, the feasibility of small-scale residential PV installations is still limited by existing technologies that have not yet properly address issues like operation in weak grids, opaque and partial shading, etc. New market drivers such as warranty improvement to match the PV module lifespan, operation voltage range extension for application flexibility, and embedded energy storage for load shifting have again put small-scale PV systems in the spotlight. This Special Issue collects the latest developments in the field of power electronic converter topologies, control, design, and optimization for better energy yield, power conversion efficiency, reliability, and longer lifetime of the small-scale PV systems. This Special Issue will serve as a reference and update for academics, researchers, and practicing engineers to inspire new research and developments that pave the way for next-generation PV systems for residential and small commercial applications

    Balancing control for grid-scale battery energy storage systems

    Get PDF
    Grid-scale battery energy storage systems (BESSs) are becoming increasingly attractive as the connection of a BESS has been shown to improve the dynamic behaviours of the power grid. A key problem with BESSs is the potential for poor utilisation of mismatched cells and reliability issues resulting from the use of a large number of cells in series. This thesis proposes a technique for state-of-charge balancing of many thousands of cells individually (i.e. not in packs) using a tightly integrated power electronic circuit coupled with a new control system design. Cells are organised in a hierarchical structure consisting of modules, sub-banks, banks and phases. The control strategy includes five levels of balancing: balancing of cells within a module, balancing of modules within a sub-bank, sub-banks within a bank, banks in a phase and balancing between phases. The system seeks to maximise the accessible state-of-charge range of each individual cell, thereby enhancing the overall capacity of the system. The system is validated in simulation for a 380 kWh BESS using 2835 lithium-ion cells where charge balancing is demonstrated for mismatched cells. A ‘peak sharing’ concept is implemented to manage voltage constraints so that alternative modules assume a portion of the load when certain modules are not capable of meeting the demand. An experimental validation has been performed to demonstrate the effectiveness of the balancing control. This work is intended to address the challenges of eventual scaling towards a 100 MWh+ BESS, which may be composed of hundreds of thousands of individual cells
    corecore