21,585 research outputs found

    The Problem of Confirmation in the Everett Interpretation

    Get PDF
    I argue that the Oxford school Everett interpretation is internally incoherent, because we cannot claim that in an Everettian universe the kinds of reasoning we have used to arrive at our beliefs about quantum mechanics would lead us to form true beliefs. I show that in an Everettian context, the experimental evidence that we have available could not provide empirical confirmation for quantum mechanics, and moreover that we would not even be able to establish reference to the theoretical entities of quantum mechanics. I then consider a range of existing Everettian approaches to the probability problem and show that they do not succeed in overcoming this incoherence

    Pseudo Label Selection is a Decision Problem

    Full text link
    Pseudo-Labeling is a simple and effective approach to semi-supervised learning. It requires criteria that guide the selection of pseudo-labeled data. The latter have been shown to crucially affect pseudo-labeling's generalization performance. Several such criteria exist and were proven to work reasonably well in practice. However, their performance often depends on the initial model fit on labeled data. Early overfitting can be propagated to the final model by choosing instances with overconfident but wrong predictions, often called confirmation bias. In two recent works, we demonstrate that pseudo-label selection (PLS) can be naturally embedded into decision theory. This paves the way for BPLS, a Bayesian framework for PLS that mitigates the issue of confirmation bias. At its heart is a novel selection criterion: an analytical approximation of the posterior predictive of pseudo-samples and labeled data. We derive this selection criterion by proving Bayes-optimality of this "pseudo posterior predictive". We empirically assess BPLS for generalized linear, non-parametric generalized additive models and Bayesian neural networks on simulated and real-world data. When faced with data prone to overfitting and thus a high chance of confirmation bias, BPLS outperforms traditional PLS methods. The decision-theoretic embedding further allows us to render PLS more robust towards the involved modeling assumptions. To achieve this goal, we introduce a multi-objective utility function. We demonstrate that the latter can be constructed to account for different sources of uncertainty and explore three examples: model selection, accumulation of errors and covariate shift.Comment: Accepted for presentation at the 46th German Conference on Artificial Intelligenc

    Are black holes about information?

    Get PDF
    Information theory is increasingly invoked by physicists concerned with fundamental physics, including black hole physics. But to what extent is the application of information theory in those contexts legitimate? Using the case of black hole thermodynamics and Bekenstein's celebrated argument for the entropy of black holes, I will argue that information-theoretic notions are problematic in the present case. Bekenstein's original argument, as suggestive as it may appear, thus fails. This example is particularly pertinent to the theme of the present collection because the Bekenstein-Hawking formula for black hole entropy is widely accepted as 'empirical data' in notoriously empirically deprived quantum gravity, even though the laws of black hole thermodynamics have so far evaded empirical confirmation.Comment: 20 pages; forthcoming in Richard Dawid, Radin Dardashti, and Karim Th\'ebault (eds.), Epistemology of Fundamental Physics, Cambridge University Press; minor changes and additions of reference

    The Logic of Experimental Tests, Particularly of Everettian Quantum Theory

    Get PDF
    Claims that the standard methodology of scientific testing is inapplicable to Everettian quantum theory, and hence that the theory is untestable, are due to misconceptions about probability and about the logic of experimental testing. Refuting those claims by correcting those misconceptions leads to various simplifications, notably the elimination of everything probabilistic from fundamental physics (stochastic processes) and from the methodology of testing ('Bayesian' credences)

    Anisotropic finite-size scaling analysis of a three-dimensional driven-diffusive system

    Full text link
    We study the standard three-dimensional driven diffusive system on a simple cubic lattice where particle jumps along a given lattice direction are biased by an infinitely strong field, while those along other directions follow the usual Kawasaki dynamics. Our goal is to determine which of the several existing theories for critical behavior is valid. We analyze finite-size scaling properties using a range of system shapes and sizes far exceeding previous studies. Four different analytic predictions are tested against the numerical data. Binder and Wang's prediction does not fit the data well. Among the two slightly different versions of Leung, the one including the effects of a dangerous irrelevant variable appears to be better. Recently proposed isotropic finite-size scaling is inconsistent with our data from cubic systems, where systematic deviations are found, especially in scaling at the critical temperature.Comment: 12 pages, 14 PS figures, RevTeX; extensively revise

    Mirror Symmetry and Other Miracles in Superstring Theory

    Get PDF
    The dominance of string theory in the research landscape of quantum gravity physics (despite any direct experimental evidence) can, I think, be justified in a variety of ways. Here I focus on an argument from mathematical fertility, broadly similar to Hilary Putnam's 'no miracles argument' that, I argue, many string theorists in fact espouse. String theory leads to many surprising, useful, and well-confirmed mathematical 'predictions' - here I focus on mirror symmetry. These predictions are made on the basis of general physical principles entering into string theory. The success of the mathematical predictions are then seen as evidence for framework that generated them. I attempt to defend this argument, but there are nonetheless some serious objections to be faced. These objections can only be evaded at a high (philosophical) price.Comment: For submission to a Foundations of Physics special issue on "Forty Years Of String Theory: Reflecting On the Foundations" (edited by G. `t Hooft, E. Verlinde, D. Dieks and S. de Haro)

    Consciousness as Integrated Information: A Provisional Philosophical Critique

    Get PDF
    Giulio Tononi (2008) has offered his integrated information theory of consciousness (IITC) as a ‘provisional manifesto’. I critically examine how the approach fares. I point out some (relatively) internal concerns with the theory and then more broadly philosophical ones; finally I assess the prospects for IITC as a fundamental theory of consciousness. I argue that the IITC’s scientific promise does carry over to a significant extent to broader philosophical theorizing about qualia and consciousness, though not as directly as Tononi suggests, since the account is much more focused on the qualitative character of experience rather than on consciousness itself. I propose understanding it as ‘integrated information theory of qualia’(IITQ), rather than of consciousness
    corecore