93,704 research outputs found

    Hybrid Marker-less Camera Pose Tracking with Integrated Sensor Fusion

    Get PDF
    This thesis presents a framework for a hybrid model-free marker-less inertial-visual camera pose tracking with an integrated sensor fusion mechanism. The proposed solution addresses the fundamental problem of pose recovery in computer vision and robotics and provides an improved solution for wide-area pose tracking that can be used on mobile platforms and in real-time applications. In order to arrive at a suitable pose tracking algorithm, an in-depth investigation was conducted into current methods and sensors used for pose tracking. Preliminary experiments were then carried out on hybrid GPS-Visual as well as wireless micro-location tracking in order to evaluate their suitability for camera tracking in wide-area or GPS-denied environments. As a result of this investigation a combination of an inertial measurement unit and a camera was chosen as the primary sensory inputs for a hybrid camera tracking system. After following a thorough modelling and mathematical formulation process, a novel and improved hybrid tracking framework was designed, developed and evaluated. The resulting system incorporates an inertial system, a vision-based system and a recursive particle filtering-based stochastic data fusion and state estimation algorithm. The core of the algorithm is a state-space model for motion kinematics which, combined with the principles of multi-view camera geometry and the properties of optical flow and focus of expansion, form the main components of the proposed framework. The proposed solution incorporates a monitoring system, which decides on the best method of tracking at any given time based on the reliability of the fresh vision data provided by the vision-based system, and automatically switches between visual and inertial tracking as and when necessary. The system also includes a novel and effective self-adjusting mechanism, which detects when the newly captured sensory data can be reliably used to correct the past pose estimates. The corrected state is then propagated through to the current time in order to prevent sudden pose estimation errors manifesting as a permanent drift in the tracking output. Following the design stage, the complete system was fully developed and then evaluated using both synthetic and real data. The outcome shows an improved performance compared to existing techniques, such as PTAM and SLAM. The low computational cost of the algorithm enables its application on mobile devices, while the integrated self-monitoring, self-adjusting mechanisms allow for its potential use in wide-area tracking applications

    A path planning and path-following control framework for a general 2-trailer with a car-like tractor

    Full text link
    Maneuvering a general 2-trailer with a car-like tractor in backward motion is a task that requires significant skill to master and is unarguably one of the most complicated tasks a truck driver has to perform. This paper presents a path planning and path-following control solution that can be used to automatically plan and execute difficult parking and obstacle avoidance maneuvers by combining backward and forward motion. A lattice-based path planning framework is developed in order to generate kinematically feasible and collision-free paths and a path-following controller is designed to stabilize the lateral and angular path-following error states during path execution. To estimate the vehicle state needed for control, a nonlinear observer is developed which only utilizes information from sensors that are mounted on the car-like tractor, making the system independent of additional trailer sensors. The proposed path planning and path-following control framework is implemented on a full-scale test vehicle and results from simulations and real-world experiments are presented.Comment: Preprin

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table

    Joint received signal strength, angle-of-arrival, and time-of-flight positioning

    Get PDF
    This paper presents a software positioning framework that is able to jointly use measured values of three parameters: the received signal strength, the angle-of-arrival, and the time-of-flight of the wireless signals. Based on experimentally determined measurement accuracies of these three parameters, results of a realistic simulation scenario are presented. It is shown that for the given configuration, angle-of-arrival and received signal strength measurements benefit from a hybrid system that combines both. Thanks to their higher accuracy, time-of-flight systems perform significantly better, and obtain less added value from a combination with the other two parameters

    Advanced real-time indoor tracking based on the Viterbi algorithm and semantic data

    Get PDF
    A real-time indoor tracking system based on the Viterbi algorithm is developed. This Viterbi principle is used in combination with semantic data to improve the accuracy, that is, the environment of the object that is being tracked and a motion model. The starting point is a fingerprinting technique for which an advanced network planner is used to automatically construct the radio map, avoiding a time consuming measurement campaign. The developed algorithm was verified with simulations and with experiments in a building-wide testbed for sensor experiments, where a median accuracy below 2 m was obtained. Compared to a reference algorithm without Viterbi or semantic data, the results indicated a significant improvement: the mean accuracy and standard deviation improved by, respectively, 26.1% and 65.3%. Thereafter a sensitivity analysis was conducted to estimate the influence of node density, grid size, memory usage, and semantic data on the performance

    Inherent Limitations of Hybrid Transactional Memory

    Full text link
    Several Hybrid Transactional Memory (HyTM) schemes have recently been proposed to complement the fast, but best-effort, nature of Hardware Transactional Memory (HTM) with a slow, reliable software backup. However, the fundamental limitations of building a HyTM with nontrivial concurrency between hardware and software transactions are still not well understood. In this paper, we propose a general model for HyTM implementations, which captures the ability of hardware transactions to buffer memory accesses, and allows us to formally quantify and analyze the amount of overhead (instrumentation) of a HyTM scheme. We prove the following: (1) it is impossible to build a strictly serializable HyTM implementation that has both uninstrumented reads and writes, even for weak progress guarantees, and (2) under reasonable assumptions, in any opaque progressive HyTM, a hardware transaction must incur instrumentation costs linear in the size of its data set. We further provide two upper bound implementations whose instrumentation costs are optimal with respect to their progress guarantees. In sum, this paper captures for the first time an inherent trade-off between the degree of concurrency a HyTM provides between hardware and software transactions, and the amount of instrumentation overhead the implementation must incur

    Reactive Planar Manipulation with Convex Hybrid MPC

    Full text link
    This paper presents a reactive controller for planar manipulation tasks that leverages machine learning to achieve real-time performance. The approach is based on a Model Predictive Control (MPC) formulation, where the goal is to find an optimal sequence of robot motions to achieve a desired object motion. Due to the multiple contact modes associated with frictional interactions, the resulting optimization program suffers from combinatorial complexity when tasked with determining the optimal sequence of modes. To overcome this difficulty, we formulate the search for the optimal mode sequences offline, separately from the search for optimal control inputs online. Using tools from machine learning, this leads to a convex hybrid MPC program that can be solved in real-time. We validate our algorithm on a planar manipulation experimental setup where results show that the convex hybrid MPC formulation with learned modes achieves good closed-loop performance on a trajectory tracking problem
    corecore