2,714 research outputs found

    A look at cloud architecture interoperability through standards

    Get PDF
    Enabling cloud infrastructures to evolve into a transparent platform while preserving integrity raises interoperability issues. How components are connected needs to be addressed. Interoperability requires standard data models and communication encoding technologies compatible with the existing Internet infrastructure. To reduce vendor lock-in situations, cloud computing must implement universal strategies regarding standards, interoperability and portability. Open standards are of critical importance and need to be embedded into interoperability solutions. Interoperability is determined at the data level as well as the service level. Corresponding modelling standards and integration solutions shall be analysed

    Enabling Work-conserving Bandwidth Guarantees for Multi-tenant Datacenters via Dynamic Tenant-Queue Binding

    Full text link
    Today's cloud networks are shared among many tenants. Bandwidth guarantees and work conservation are two key properties to ensure predictable performance for tenant applications and high network utilization for providers. Despite significant efforts, very little prior work can really achieve both properties simultaneously even some of them claimed so. In this paper, we present QShare, an in-network based solution to achieve bandwidth guarantees and work conservation simultaneously. QShare leverages weighted fair queuing on commodity switches to slice network bandwidth for tenants, and solves the challenge of queue scarcity through balanced tenant placement and dynamic tenant-queue binding. QShare is readily implementable with existing switching chips. We have implemented a QShare prototype and evaluated it via both testbed experiments and simulations. Our results show that QShare ensures bandwidth guarantees while driving network utilization to over 91% even under unpredictable traffic demands.Comment: The initial work is published in IEEE INFOCOM 201

    Multi-tenant Pub/Sub processing for real-time data streams

    Get PDF
    Devices and sensors generate streams of data across a diversity of locations and protocols. That data usually reaches a central platform that is used to store and process the streams. Processing can be done in real time, with transformations and enrichment happening on-the-fly, but it can also happen after data is stored and organized in repositories. In the former case, stream processing technologies are required to operate on the data; in the latter batch analytics and queries are of common use. This paper introduces a runtime to dynamically construct data stream processing topologies based on user-supplied code. These dynamic topologies are built on-the-fly using a data subscription model defined by the applications that consume data. Each user-defined processing unit is called a Service Object. Every Service Object consumes input data streams and may produce output streams that others can consume. The subscription-based programing model enables multiple users to deploy their own data-processing services. The runtime does the dynamic forwarding of data and execution of Service Objects from different users. Data streams can originate in real-world devices or they can be the outputs of Service Objects. The runtime leverages Apache STORM for parallel data processing, that combined with dynamic user-code injection provides multi-tenant stream processing topologies. In this work we describe the runtime, its features and implementation details, as well as we include a performance evaluation of some of its core components.This work is partially supported by the European Research Council (ERC) un- der the EU Horizon 2020 programme (GA 639595), the Spanish Ministry of Economy, Industry and Competitivity (TIN2015-65316-P) and the Generalitat de Catalunya (2014-SGR-1051).Peer ReviewedPostprint (author's final draft

    Cloud engineering is search based software engineering too

    Get PDF
    Many of the problems posed by the migration of computation to cloud platforms can be formulated and solved using techniques associated with Search Based Software Engineering (SBSE). Much of cloud software engineering involves problems of optimisation: performance, allocation, assignment and the dynamic balancing of resources to achieve pragmatic trade-offs between many competing technical and business objectives. SBSE is concerned with the application of computational search and optimisation to solve precisely these kinds of software engineering challenges. Interest in both cloud computing and SBSE has grown rapidly in the past five years, yet there has been little work on SBSE as a means of addressing cloud computing challenges. Like many computationally demanding activities, SBSE has the potential to benefit from the cloud; ‘SBSE in the cloud’. However, this paper focuses, instead, of the ways in which SBSE can benefit cloud computing. It thus develops the theme of ‘SBSE for the cloud’, formulating cloud computing challenges in ways that can be addressed using SBSE

    Howdah: Load Profiling via In-Band Flow Classification and P4

    Get PDF
    The challenges of managing datacenter traffic increase with the complexity and variety of new Internet and Web applications. Efficient network management systems are often required to thwart delays and minimize failures. In this regard, it appears helpful to identify in advance the different classes of flows that (co)exist in the network, characterizing them into different types according to the different latency/bandwidth requirements. In this paper, we propose Howdah, a traffic identification and profiling mechanism that uses Machine Learning and a congestion-aware forwarding strategy to offer adaptation to different traffic classes with the support of programmable data-planes. With Howdah, sender and gateway elements inject in-band traffic information obtained using supervised learning. When a switch or a router receives a packet, it exploits such host-based traffic classification to adapt to a desirable traffic profile, for example, balancing the load. We compare our solutions against recent traffic engineering solutions and show the efficacy of cooperation between host traffic classification and P4-based switch forwarding policies, reducing packet transmission time in datacenter scenarios
    • 

    corecore