22,912 research outputs found

    Dimensional enrichment of statistical linked open data

    Get PDF
    On-Line Analytical Processing (OLAP) is a data analysis technique typically used for local and well-prepared data. However, initiatives like Open Data and Open Government bring new and publicly available data on the web that are to be analyzed in the same way. The use of semantic web technologies for this context is especially encouraged by the Linked Data initiative. There is already a considerable amount of statistical linked open data sets published using the RDF Data Cube Vocabulary (QB) which is designed for these purposes. However, QB lacks some essential schema constructs (e.g., dimension levels) to support OLAP. Thus, the QB4OLAP vocabulary has been proposed to extend QB with the necessary constructs and be fully compliant with OLAP. In this paper, we focus on the enrichment of an existing QB data set with QB4OLAP semantics. We first thoroughly compare the two vocabularies and outline the benefits of QB4OLAP. Then, we propose a series of steps to automate the enrichment of QB data sets with specific QB4OLAP semantics; being the most important, the definition of aggregate functions and the detection of new concepts in the dimension hierarchy construction. The proposed steps are defined to form a semi-automatic enrichment method, which is implemented in a tool that enables the enrichment in an interactive and iterative fashion. The user can enrich the QB data set with QB4OLAP concepts (e.g., full-fledged dimension hierarchies) by choosing among the candidate concepts automatically discovered with the steps proposed. Finally, we conduct experiments with 25 users and use three real-world QB data sets to evaluate our approach. The evaluation demonstrates the feasibility of our approach and shows that, in practice, our tool facilitates, speeds up, and guarantees the correct results of the enrichment process.Peer ReviewedPostprint (author's final draft

    A unified view of data-intensive flows in business intelligence systems : a survey

    Get PDF
    Data-intensive flows are central processes in today’s business intelligence (BI) systems, deploying different technologies to deliver data, from a multitude of data sources, in user-preferred and analysis-ready formats. To meet complex requirements of next generation BI systems, we often need an effective combination of the traditionally batched extract-transform-load (ETL) processes that populate a data warehouse (DW) from integrated data sources, and more real-time and operational data flows that integrate source data at runtime. Both academia and industry thus must have a clear understanding of the foundations of data-intensive flows and the challenges of moving towards next generation BI environments. In this paper we present a survey of today’s research on data-intensive flows and the related fundamental fields of database theory. The study is based on a proposed set of dimensions describing the important challenges of data-intensive flows in the next generation BI setting. As a result of this survey, we envision an architecture of a system for managing the lifecycle of data-intensive flows. The results further provide a comprehensive understanding of data-intensive flows, recognizing challenges that still are to be addressed, and how the current solutions can be applied for addressing these challenges.Peer ReviewedPostprint (author's final draft

    BlogForever D2.6: Data Extraction Methodology

    Get PDF
    This report outlines an inquiry into the area of web data extraction, conducted within the context of blog preservation. The report reviews theoretical advances and practical developments for implementing data extraction. The inquiry is extended through an experiment that demonstrates the effectiveness and feasibility of implementing some of the suggested approaches. More specifically, the report discusses an approach based on unsupervised machine learning that employs the RSS feeds and HTML representations of blogs. It outlines the possibilities of extracting semantics available in blogs and demonstrates the benefits of exploiting available standards such as microformats and microdata. The report proceeds to propose a methodology for extracting and processing blog data to further inform the design and development of the BlogForever platform

    Towards the Automatic Classification of Documents in User-generated Classifications

    Get PDF
    There is a huge amount of information scattered on the World Wide Web. As the information flow occurs at a high speed in the WWW, there is a need to organize it in the right manner so that a user can access it very easily. Previously the organization of information was generally done manually, by matching the document contents to some pre-defined categories. There are two approaches for this text-based categorization: manual and automatic. In the manual approach, a human expert performs the classification task, and in the second case supervised classifiers are used to automatically classify resources. In a supervised classification, manual interaction is required to create some training data before the automatic classification task takes place. In our new approach, we intend to propose automatic classification of documents through semantic keywords and building the formulas generation by these keywords. Thus we can reduce this human participation by combining the knowledge of a given classification and the knowledge extracted from the data. The main focus of this PhD thesis, supervised by Prof. Fausto Giunchiglia, is the automatic classification of documents into user-generated classifications. The key benefits foreseen from this automatic document classification is not only related to search engines, but also to many other fields like, document organization, text filtering, semantic index managing
    • 

    corecore