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Abstract.  There is a huge amount of information scattered on the World Wide Web. As the information flow 

occurs at a high speed in the WWW, there is a need to organize it in the right manner so that a user can access it 

very easily. Previously the organization of information was generally done manually, by matching the document 

contents to some pre-defined categories. There are two approaches for this text-based categorization: manual and 

automatic. In the manual approach, a human expert performs the classification task, and in the second case 

supervised classifiers are used to automatically classify resources. In a supervised classification, manual interaction 
is required to create some training data before the automatic classification task takes place. In our new approach, 

we intend to propose automatic classification of documents through semantic keywords and building the formulas 

generation by these keywords. Thus we can reduce this human participation by combining the knowledge of a 

given classification and the knowledge extracted from the data. The main focus of this PhD thesis, supervised by 

Prof. Fausto Giunchiglia, is the automatic classification of documents into user-generated classifications. The key 

benefits foreseen from this automatic document classification is not only related to search engines, but also to 
many other fields like, document organization, text filtering, semantic index managing.             

Keywords:  Document classification, Semantic keywords, Categorization methods, Testing methodology.       

                

1 Introduction 

There is a huge amount of information scattered on the World Wide Web. As the information flows in the WWW at a 

high speed, there is a need to organize it in the right manner so that user can access it very easily. Most of the search 

engines classify the documents manually (e.g., Google [30], Yahoo [31], DMOZ [14] [3]). A good definition for text 

categorization can be found at Sebastini [1]: “text categorization (TC-also known as text classification or topic 

spotting) is the task of automatically sorting a set of documents into categories (or classes, or topics) from a 

predefine set”. Classification task is cross-pollinated between Information Retrieval field (IR), and Machine Learning 

field (ML) [1]. Text categorization is required in IR because when a user queries for information in a Web search 

engine, he/she wants information to be filed according to its relevance to his/her query and also to its contents. Text 

categorization also holds a great interest for researchers in the field of ML as it provides an excellent benchmark for 

their own techniques and methodologies [1]. 
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    We discuss two approaches in text categorization field: the manual approach, and the automatic approach. In the 

manual approach, human experts classify the document manually or use classifiers [12, 23, 25, and 28]. Although it 

gives quite accurate results, it is still very difficult to continuously update the information. Furthermore, it is 

expensive to maintain the classifier. Luhn [29] has shown that a statistical analysis of the words in the documents can 

provide some clues to its content. For example, a document that contains the words “boys”, “girl” “teacher”, 

“school”, “arithmetic” “reading” etc., probably deals with education. He also uses the theme of probabilistic and 

human experts for classifying the documents [15, 12]. In the automatic approach, some well-known classification 

methods exist such as decision trees [23], decision rules [23, 24], k-Nearest Neighbor [23], Bayesian approach [12], 

vector-base [28] etc. Document classification systems such as Carrot
2
 [19], Gammasite [20], Wordmap [13], IBM 

intelligent miner [27], Vivisimo [22] etc., are used for classifying the documents. These systems are not considering 

the semantic meaning of keywords extracted from documents. Woods [26] represents the conceptual indexing by 

considering the semantic meaning of words. We can get the keywords by using knowledge representation and natural 

language processing techniques. Then using these keywords we can extract the exact meaning from WordNet [6].We 

call these keywords as “semantic keywords(S-keywords)”, as it contains some information regarding the context of 

our given keywords. These semantic keywords could be used for generating formulas. We could build the formulas 

based on the works of Magnini et al. [4] and Giunchiglia et al. [2]. We can translate natural language by mapping 

“parts of speech (POSs)” and their mutual syntactic relations. We can consider the formulas as logical disjunction 

(∪ ), conjunction (∩ ) and negation (¬ ) of atomic concepts [2, 11] and we also use (#) symbol for distinguishing 

the senses of word. For example, we get a keyword “programming” from a document; we can go through this 

keyword in the WordNet [6] for extracting senses. We get the following senses: “programming#1”, which could be 

interpreted as “setting an order and time for planned events” and “Programming #2”, which could be interpreted as 

“computer programming”. Now we can translate these senses as a logical disjunction like (Programming#1 

∪ Programming#2). We take the most appropriate sense for building the formulas. Similarly, we can use conjunction 

and negation.  

     In my research, I will focus on automatic documents classification for user-generated classifications (we can call it 

as “predefined taxonomy”). Beyond its applicability in search engines, the scope of automatic document classification 

expands in many fields such as documents organization, text filtering, semantic index managing and so on. In our 

approach, we shall analyze the semantic meaning of keywords using WordNet [6] and build the formulas using 

natural language techniques. After building these formulas from the documents, we will run the S-Match/SAT [11] to 

match with existing formulas that we obtain from user-generated classification. 

    The structure of this work is as follows: Section 2 outlines the classification problem and evaluation methodology. 

Section 3 describes the existing methods and document classification systems. In section 4, the main objectives of the 

PhD thesis are defined. Section 5 illustrates the proposed solution which will be carried out during the research. 

2 The Classification Problem and Evaluation Methodology 

2.1 Motivating Example 

 

We can examine the possible situations that can arise when we want to classify the documents under the user-

generated classifications. Let us consider the DMOZ web page directory [14] as a user-generated classification. 

Suppose, we have the book: “Java Enterprise in a Nutshell, second edition”.  We need to classify this book under the 

user-generated classification of Fig.1. However, we only know about the title of book where one of extracted 

keyword is “Java”. 
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If we consider this keyword in WordNet [6], we can extract three senses  

1. Java is an island in Indonesia south of Borneo; 

2. Java is a beverage consisting of an infusion of ground coffee beans; 

3. Java is a simple platform-independent object-oriented programming language; 

 

 
                                                           Java Enterprise in a Nutshell, Second Edition 

 

Fig. 1. A part of the DMOZ web directory (this picture was presented by Giunchiglia et al., [2]). 

 

As a human expert, it is easy to classify documents in the user-generated classification of DMOZ [14]. Our book 

would be placed under node 7 titled “Java” [2]. We can also classify documents automatically using Machine 

Learning [24]. But in these techniques they use supervised and unsupervised classifier for classifying documents with 

a high level of human interaction [7, 8]. In our approach, we will reduce this human interaction by using the semantic 

keywords and build formulas and avoid using the classifiers. 

2.2 Problem 

In our motivating example, we have noted that the classification by a human agent can be performed easily. On the 

other hand a machine needs to understand the query word “Java Enterprise in a Nutshell, second edition” [2]. It is 

difficult for a machine to understand the exact meaning of the word automatically. But if we can provide the data in 

the right way then a machine can provide more accurate answer. In addition, the classification hierarchies are written 

in natural language. It is very hard to automate the classification task, and, as a consequence, standard classification 

approaches measure to manually classifying the object into classes. Let us take the example of open directory project 

DMOZ, a human edited web directory, which “power the core directory services for the most popular portals and 

search engines on the web, including AOL, Netscape, Google, Lycos, DirectHit, and HotBot” [14] and the Dewey 

Decimal Classification System (DCS) [2]. Although these are standards and universal techniques, they have a number 

of limitations [2]: 

� The semantics of a given topic is implicitly codified in a natural language label. These labels must therefore 

be interpreted and disambiguated.  

 

(5)Programming 
Language 

(1)Top 

(2)   Business 

(4)Publishing and Printing 

(6)Books  

(8)Computers 

(3)Computers 

(7)Java 
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� Two nodes may also be ambiguous in the sense. A link connecting the parent node “programming” with 

child node “Java” may or may not mean that 1. The parent node means “computer programming” 2. The 

child node means “Java Programming”. 

� As a consequence of previous two items, the classification task also becomes ambiguous if we use a 

different classifier.  

Now, a research question arises as “how can we classify the document automatically”. We will see some 

techniques in the state-of-art. These techniques are appropriate for automatically classifying the documents 

requiring a high level of human interaction. In our approach we will overcome the limitation of hierarchical and 

manual classifications. We will give a new direction for classifying documents using semantic keywords and 

formulas.  

2.3 Top-down and Bottom-up Approaches 

Classification is not a recent problem. Researchers have been trying to solve it for years. Some of them are successful 

in getting the result by applying the “bottom-up” techniques. In these techniques, they mainly take details of data and 

start placing then in “buckets”. This kind of approach is called an unsupervised approach. At the same time, some of 

them use supervised approach. In this approach, they train the classifier with labelled documents and then use this 

trained classifier to label an unseen document [7, 8].  

    On the other hand, in “top-down” techniques, domain experts analyze the subject matter at hand, and determine the 

category of a given document. For example, there are 10 general topics. Each document is then examined and placed 

in its appropriate pre-existing category. We can also consider the “top-down” approach where we can use user-

generated taxonomy with the meaning of node. By this meaning, we can classify the documents [5, 9].  

2.4 Classification Evaluation 

The most well known mechanism that measures the performance of classification approaches are the calculation of 

precision, recall and F-measure [12], 

Consider,  

             A is the number of documents known belonging to the category and assigned automatically to that category, 

 

            B is the number of documents known not belonging to the category but assigned automatically to that 

category, 

            C is the number of documents known belonging to the category but not assigned automatically to that 

category, 

              

Based on A, B, and C, we measure Precision, and Recall as follows:  

            Recall = A/A+C 

            Precision=A/A+B 

F-measure is a global measure of performance that contains Precision and Recall as follows: 

                   F=
ecisioncall

ecisioncall

PrRe

Pr*Re*2

+

 

       In the computation of performance based measures, experts play the role of the measuring instruments, since they 

define the performance of document classifications.  These measuring instruments are considered for execution time. 
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2.5 Testing methodology  

From the document classification perspective, we distinguish the following categories of methodologies issue: 

-Data set collection: This category includes the size of documents, the data collection methods. 

- Result acquisition. This category includes the method of results, judgments and feedback. 

-Analysis and interpretation: this category includes the comparison with other systems.  

 

3 State-of-the-art 

3.1 Categorization Approaches 

The main two approaches are in the following: 

 

    Manual categorization: The human experts go through the whole process [3] .Although this gives more scalable 

results, it introduces inconsistency during the classification. More specifically, it does not keep changes as soon as 

new document arrive in the taxonomy because human experts are sometime lazy or concentrate other works. 

  

    Automatic categorization: In this case, the methodologies used in the automatic process of categorization are like 

wise not something we would know about at the beginning of our search. By learning more about the various 

methods of automatic categorization in Section 3.2, we can get better understanding of how each of the 

methodologies may be applied to our particular situations. 

3.2 Categorization Methods 

Some of the existing categorization methods include decision trees, decision rules, k-nearest neighbor, Bayesian 

approach, neural networks, regression-based methods, vector-base method etc. We illustrate some of them in the 

following sub-sections. 

3.2.1 Decision Trees 
We can build a manual categorization of the training document in a decision tree by representing a well defined 

true/false-queries where nodes represent questions and leafs represent the corresponding category of documents [23]. 

After having constructed the tree, a new document can easily be categorized by putting it in the root node of the tree 

and by letting it runs to through the query structure until it reaches a certain leaf. The main advantage is that the 

output tree is easy to understand by even those who not familiar with the details of the model. The risk is 

“overfitting” because there is an existence of an alternative tree that categorizes the training data incorrect way. 

3.2.2 k-Nearest Neighbor 

The previous method is based on a learning phase but k-nearest completely skips the learning phase and categorizes 

on-the-fly. The categorization is often performed by comparing the category frequencies of the k-nearest documents. 

The closeness of the documents can be evaluated by the calculating the Euclidian distance between the two vectors. 

     The method is simple. Hence, it does not need any resource for training the documents. The algorithm performs 

well even if the category of specific documents forms more than one cluster. The category may contain more than one 

topic [23], although there is a risk of inadequate categorization for different numbers of training documents per 

category.  
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3.2.3 Bayesian Approaches 
A Bayesian categorization approach is quite challenging. We do not consider the computation part of these methods. 

We find two groups of Bayesian approaches in document categorization: First one is naïve Bayesian approaches and 

second one is non-naïve Bayesian approaches. The naïve approach uses the assumption of word (i.e. feature) 

independence, meaning that the word order is irrelevant and consequently that the presence of one word does not 

affect the presence or absence of another one. This assumption makes the computation of Bayesian approaches more 

efficient. Although the assumption is obviously violated in every language, it has been shown that the classification 

accuracy is not seriously affected by this kind of violations [25]. Nevertheless, several non-naïve Bayesian 

approaches eliminate this assumption [12]. A disadvantage of Bayesian approaches is trained data with supervised 

classifier required a higher level of human interaction [12]. 

3.3  Classification Systems 

3.3.1 Document Classification Systems 
Carrot

2
: The Carrot2 system [21, 19] is a document classification and clustering tool. It has similarity with Vivisimo 

Meta search engine [27]. Carrot
2 

is used as a general search engine for collecting data source and clustered data by 

lingo rock method. It shows result by visualizing the component (dynamic tree in most cases).The search results come 

out as a group. Moreover, the process of discovering clusters is fully automated.  

 

GammaSite: GammaSite [21, 20] is a document classification and categorization tool. It considers supervised 

machine learning techniques for creating the taxonomies and adds documents to categories. Dr. Yiftach Ravid
1
, VP 

R&D of GammaSite, explains, "Our algorithms automatically analyze and understand the content of documents and 

then automatically organize huge amount of textual data into pre -defined categories.  Gamma Ware’s strength lies 

not only in its high precision, but also in the minimal amount of manual effort required to achieve superb results for 

hierarchical categorization". 

 

IBM Intelligent Miner: This tool is used for document classifications. It uses the linguistic analysis technique, and 

vector-based method for clustering and classifying document by pre-determined categories [21, 27].  

 

Vivisimo: This tool is used for clustering the documents. It uses a heuristic algorithm that puts documents together 

based on text similarity. “Vivisimo does not use a predefined taxonomy or controlled, so every cluster description is 

taken from the search results within the cluster. It is not perfect. In fact, it is hard to know even perfection would even 

mean. Thus, sometimes an article will be in placed in a cluster which it does not really match, in the eyes of an 

expert. Or, two different meaning of a word or phrase may be conflated” [21, 22].  

 

Wordmap: This is a commercial tool for classifying documents. It uses Support Vector Machine (SVM) for 

statistical analysis and document classification. In this SVM converts the example documents into vectors that 

classify incoming document to a high level of accuracy. Common file formats such as MSWord, PDF, HTML and 

text are used in the classifier [21, 13]. 

 

 

 

 

 

 
1http://www.content-wire.com/Taxonomies/Index.cfm?ccs=82&cs=677 
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3.3.2 Keyword Extraction Systems 
Kea: Witten et al. [10] implemented their methodology in Kea, an algorithm for automatically extracting keyphrases 

from the text. Kea identifies candidate keyphrases using pre-processing [11], calculates feature value for each 

candidate, and uses a machine learning algorithm to predict which candidates are good keyphrases. The Naïve Bayes 

machine learning scheme first builds a predication model using the training documents with known keyphrases, and 

then uses the model to find keyphrases in new documents. Two features are calculated for each candidate phrase and 

used in training and extraction. They are: TF ×  IDF, a measure of phrase’s frequency in a document compared to its 

rarity in general use and first occurrence, which is the distance into the document of the phrase’s first appearance. 

Kea´s effectiveness has been assessed by counting the keyphrases that were also chosen by the document’s author, 

when a fixed number of keyphrases are extracted. 

 

Barker Approach: Barker [16] describes a system for choosing noun phrases from a document as keyphrases. A 

noun phrase is chosen based on its length, its frequency and the frequency of its head noun. Noun Phrases are 

extracted from a text using a base noun phrase skimmer and an off-the-shelf online dictionary. Barker approaches 

involves human judgment for performing this experiments.  

 

KPSpotter: KPSpotter is an algorithm implementing the methodology proposed by Song et al. [17].After classical 

pre-processing has been applied. The algorithm employs a technique that combines information gain and a data 

mining measure technique introduced in ID3 algorithm [18]. In this sense KPSpotter presents some resemblances 

with extractor. Both algorithms, in fact, use a learner belonging to the same family, i.e., the decision tree [18]. 

4. Objectives of Thesis and Research Challenges 

 In my thesis, I am proposing: 

� Develop an algorithm for automatically generating semantic keywords(S-keywords). 

� Develop an algorithm for generating the formulas from the semantic keywords(S-keywords).  

�  Implementation of both algorithms. 

� Testing and Evaluation using classifications from Google, Yahoo and DMOZ.  

 

We have discussed earlier about the problem of automatic documents classification in user-generated classifications. 

In previous section, we saw different methods and systems for solving the documents classification. Most of the 

systems classify documents manually or in a semi-automated way using a classifier. Also they handle multiple 

documents. In our approach, we will consider a single document and nation of logical AND, logical OR and logical 

Negations for building the formulas suppose,  

 

 

1. Given a set of extracted keywords from documents, it is not clear if it should be logical AND or logical OR 

of these words. For instance, the keywords {skiing, trentino} may mean {skiing and trentino} or {skiing or 

trentino} 

2. If a set of keywords being converted to a formula can be represented as [some formula or A], where A is an 

atomic concept which is not presented in the classification, then the documents will never be classified. 

Otherwise, it will be classified. 

3. If we are using a predefined vocabulary, and if we can find some keywords from the vocabulary, then it is 

likely understood that the document is not about the rest of the keywords in the vocabulary. This is where we 

introduce negations. 
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5. The Proposed Solution 

In Fig. 2. we will consider a single document as input for datamining tools and we get output as a set of keywords. 

After getting these keywords, we consider the semantic meaning of each keyword from WordNet and build the 

formulas. These formulas would be compared with already obtained formulas from the user-generated classifications 

by S-Match /SAT and classify that documents in the user-generated classifications.  

 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  An overview of document classification (proposed solutions).  

 

We describe the following components in below:  

 

 User-generated classifications: At the beginning of our experiment, we start with well-known user-generated 

classifications from Google, Yahoo, and DMOZ etc.  

 Documents: In our section 3, we noticed that most of the systems available at present, are considering only multiple 

documents. We do not find any system which considers a single document. In our work, we will consider a single 

document for processing. During the first phase, we will consider only the text files. Later, we will expand our work 

with documents in the formats PDF, HTML, XML etc. 

Data Mining tools (D-tools):  There are some existing datamining tools like Kea, KPSpotter etc that can extract 

important keyphrases from the documents. These tools extract the important keyphrases with the help of a human 

expert. We will start our experiment with one of these tools, later we can develop our own data mining tools which 

can extract the keywords automatically from text without any help of a human expert. 

Keywords: We will consider the stem word as a keyword, by removing any extra alphabets, but still retaining the 

context of the original keyword. For e.g. “animals” could be replaced with “animal”. 

Oracle: We consider the WordNet as our oracle. We will extract the sense of our keyword by using this oracle. 

Semantic Keywords (S-keywords): For instance, if our keyword is “automobile”, then we can get three senses from 

this word namely {car, bus, truck} 

Formulas from S-keywords: After getting the S-keywords, we consider logical AND, OR or Negation for building 

formulas. 

D- tools Keywords S-keywords Documents 

    oracle 

Formula from S-keywords 

 

 

SAT/S-Match 

Populate  
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S-Match /SAT:  An operator which matches the formula from documents and the formula from the user-generated 

classifications. 

 

We exemplify our work as follows: 

 

Develop an algorithm for automatically generating S-keywords:  

    All the existing tools use manually generated keywords for training the classifier. We will generate keywords        

automatically and check the oracle for getting appropriate meaning of the keywords that we consider as S-keywords. 

Actually this concept comes from conceptual indexing [26]. Example of S-keywords: Consider a keyword 

“automobile”. We know three senses of automobile {car, bus, truck} from WordNet. S-keywords contain the context 

of given keywords. 

 

Develop an algorithm for generating the formulas from S-keywords: 

     After extraction S-keywords, we will generate the formulas [2, 4, and 11]. For example: See our motivation 

example in Section 2.1 

    We can convert this title information by natural language processing as logical disjunction  (∪ ) and conjunction 

(∩ ) Here, we can get the concept of book as  java#3∩ Enterprise#2∩ book#1[2, 11]. This concept can be shown 

by propositional reasoning [2], that set of classification alternative includes all the nodes of corresponding user-driven 

classification. We are considering the nodes n7 and n8 for our discussion here. The discussion about the remaining 

nodes would be addressed in detail in the thesis. Now, we provide two formulas [2] in the nodes n7, n8 whose labels 

l
N

7
 
=

 
computer#∩ programming#∩ language#∩ java# and   labels l

N

8
 
=

 
business# ∩ (publishing #∪ printing#) 

∩ books#∩ computers# 

      We can extract the following knowledge from WordNet: the programming language Java is a kind of 

programming languages, and it is a more specific concept than computers is; books are related to publishing; and 

enterprising are a more specific than business [11]. We can represent this knowledge by the following axioms [2]: 

a1= (java#3⊆ pr_language#1), a2= (java#3⊆ computer#1); a3= (book#1⊆ publishing#1), a4= 

(enterprise#3⊆ business#2); 

    We then translate the axioms and the labels into the logical language as follows: 

   (a1∧ a3∧ a4)→  l
N

8 ;            (a1∧ a2)→  l
N

7 ;  

    Now, we will run the S-Match/SAT on above formulas, and classify the book under the given classification. 
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