94 research outputs found

    A study of the communication cost of the FFT on torus multicomputers

    Get PDF
    The computation of a one-dimensional FFT on a c-dimensional torus multicomputer is analyzed. Different approaches are proposed which differ in the way they use the interconnection network. The first approach is based on the multidimensional index mapping technique for the FFT computation. The second approach starts from a hypercube algorithm and then embeds the hypercube onto the torus. The third approach reduces the communication cost of the hypercube algorithm by pipelining the communication operations. A novel methodology to pipeline the communication operations on a torus is proposed. Analytical models are presented to compare the different approaches. This comparison study shows that the best approach depends on the number of dimensions of the torus and the communication start-up and transfer times. The analytical models allow us to select the most efficient approach for the available machine.Peer ReviewedPostprint (published version

    Compile-Time Estimation of Communication Costs in Multicomputers

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryOffice of Naval Research / N00014-91-J-1096National Science Foundation / NSF MIP 86-57563 PYINational Aeronautics and Space Administration / NASA NAG 1-61

    Automatic Selection of Dynamic Data Partitioning Schemes for Distributed Memory Multicomputers

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryNational Aeronautics and Space Administration / NASA NAG 1-613Advanced Research Projects Agency (ARPA) / DAA-H04-94-G-027

    A design methodology for portable software on parallel computers

    Get PDF
    This final report for research that was supported by grant number NAG-1-995 documents our progress in addressing two difficulties in parallel programming. The first difficulty is developing software that will execute quickly on a parallel computer. The second difficulty is transporting software between dissimilar parallel computers. In general, we expect that more hardware-specific information will be included in software designs for parallel computers than in designs for sequential computers. This inclusion is an instance of portability being sacrificed for high performance. New parallel computers are being introduced frequently. Trying to keep one's software on the current high performance hardware, a software developer almost continually faces yet another expensive software transportation. The problem of the proposed research is to create a design methodology that helps designers to more precisely control both portability and hardware-specific programming details. The proposed research emphasizes programming for scientific applications. We completed our study of the parallelizability of a subsystem of the NASA Earth Radiation Budget Experiment (ERBE) data processing system. This work is summarized in section two. A more detailed description is provided in Appendix A ('Programming Practices to Support Eventual Parallelism'). Mr. Chrisman, a graduate student, wrote and successfully defended a Ph.D. dissertation proposal which describes our research associated with the issues of software portability and high performance. The list of research tasks are specified in the proposal. The proposal 'A Design Methodology for Portable Software on Parallel Computers' is summarized in section three and is provided in its entirety in Appendix B. We are currently studying a proposed subsystem of the NASA Clouds and the Earth's Radiant Energy System (CERES) data processing system. This software is the proof-of-concept for the Ph.D. dissertation. We have implemented and measured the performance of a portion of this subsystem on the Intel iPSC/2 parallel computer. These results are provided in section four. Our future work is summarized in section five, our acknowledgements are stated in section six, and references for published papers associated with NAG-1-995 are provided in section seven

    Centre for Information Science Research Annual Report, 1987-1991

    Get PDF
    Annual reports from various departments of the AN

    Compilation techniques for multicomputers

    No full text
    This thesis considers problems in process and data partitioning when compiling programs for distributed-memory parallel computers (or multicomputers). These partitions may be specified by the user through the use of language constructs, or automatically determined by the compiler. Data and process partitioning techniques are developed for two models of compilation. The first compilation model focusses on the loop nests present in a serial program. Executing the iterations of these loop nests in parallel accounts for a significant amount of the parallelism which can be exploited in these programs. The parallelism is exploited by applying a set of transformations to the loop nests. The iterations of the transformed loop nests are in a form which can be readily distributed amongst the processors of a multicomputer. The manner in which the arrays, referenced within these loop nests, are partitioned between the processors is determined by the distribution of the loop iterations. The second compilation model is based on the data parallel paradigm, in which operations are applied to many different data items collectively. High Performance Fortran is used as an example of this paradigm. Novel collective communication routines are developed, and are applied to provide the communication associated with the data partitions for both compilation models. Furthermore, it is shown that by using these routines the communication associated with partitioning data on a multicomputer is greatly simplified. These routines are developed as part of this thesis. The experimental context for this thesis is the development of a compiler for the Fujitsu AP1000 multicomputer. A prototype compiler is presented. Experimental results for a variety of applications are included
    • …
    corecore