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Abstract

An important problem facing numerous research projects on parallelizing compilers for distributed 
memory machines is that of automatically determining a suitable data partitioning scheme for a pro
gram. Any strategy for automatic data partitioning needs a mechanism for estimating the performance 
of a program under a given partitioning scheme, the most crucial part of which involves determining 
the communication costs incurred by the program. In this paper, we decribe a methodology for esti
mating the communication costs at compile-time as functions of the numbers of processors over which 
various arrays are distributed. We also describe a strategy for making program transformations that 
expose opportunities for combining of messages, leading to considerable savings in the communication 
costs. For certain loops with constant dependences, the compiler can detect the possibility of pipelining, 
and thus estimate communication costs more accurately than it could otherwise. These results are of 
great significance to any parallelization system supporting numeric applications on multicomputers. In 
particular, they lay down a framework for effective synthesis of communication on multicomputers from 
sequential program references.
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Contract NASA NAG 1-613.
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1 Introduction

Distributed memory multiprocessors (multicomputers) are increasingly being used for providing high levels of 
performance for scientific applications. These machines offer significant advantages over the shared memory 
multiprocessors with regard to cost and scalabilty, however, they are also more difficult to program. Much 
of that difficulty is due to their lack of a single global address space. Hence, the last few years have seen 
considerable research effort [9, 10, 16, 3, 14] aimed at providing a shared name space to the programmer, 
with the task of generating messages relegated to the compiler. Most of these parallelization systems ac
cept a program written in a sequential or shared-memory language augmented with annotations specifying 

distribution of data, and generate the target program for the multicomputer.

It is widely accepted that with such parallelization systems, the most challenging step in programming 
for multicomputers is determining the “right” data partitioning scheme. It is the data partitioning scheme 
which determines whether or not independent computations are executed on different processors, and when 
interprocessor communication is required to carry out a computation. Since the performance of a program 
depends critically on the data distribution scheme, most of the parallelization systems leave it to the pro
grammer to decide. However, the task of determining a good data distribution scheme manually can be 
extremely difficult and tedious. Recently several researchers [13, 11, 2, 8] have addressed this problem of 
automatically determining a proper data partitioning scheme, or of providing help to the user in this task.

Any strategy for automatic data partitioning needs a mechanism for estimating the performance of a 
program to evaluate a data partitioning scheme (or some parameters related to the scheme). The most 

crucial part of that involves determining the communication costs incurred while executing the program. In 
this paper, we decribe a methodology for estimating the communication costs as functions of the numbers 
of processors over which various arrays are distributed.

R elated W ork Some of the ideas underlying our approach to estimating communication costs are closely 
related to those developed for automatically generating communication from sequential or shared memory 
language programs for multicomputers. The Kali system [10] and the Parascope system [2] perform analysis 
of source references to determine the communication induced by the data partitioning scheme for each 
loop. Li and Chen [11] introduce the notion of matching source program references with syntactic patterns 
associated with aggregate communication routines to generate communication in the Crystal system. They 
also define a metric based on those communication primitives to estimate communication costs. In these 
systems, the support for automatic data partitioning is based on trying out different possibilities regarding 
certain “standard” array partitionings, and using a performance estimation module to return estimates of 
the communication cost. The system uses these estimates to select the data partitioning scheme that leads 
to the best performance.
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Motivation for this work We approach the problem of automatic data partitioning in a different man
ner, and correspondingly need a slightly more sophisticated mechanism for estimating communication costs. 
We deal with constraints [8], which represent only partial specifications of a data partitioning scheme. Hence, 
we need estimates of communication costs in a parameterized form, i.e., as functions of data distribution 
parameters not specified by the constraints. We do not attempt to explicitly evaluate different partitioning 
schemes because such a method would be prohibitively expensive if the number of candidate schemes is 
large. Instead, we record constraints indicated by different loops in the program, and then combine selected 
constraints in a consistent manner. Each constraint specifies only a few parameters pertaining to the dis
tribution of an array, and the parameters left unspecified by one constraint may be selected by combining 
that constraint with others specifying those parameters. We have performed a study of real-life scientific 

application programs (Fortran programs taken from the Linpack and Eispack libraries and the Perfect Club 
Benchmark Suite [4]), and have found the idea of using constraints to be extremely useful [7].

Different constraints may impose conflicting requirements on the distribution of various arrays. In order 
to resolve those conflicts, we associate a measure of quality with each constraint. Depending on the kind of 
constraint, we use one of the following two quality measures -  the penalty in execution time, or the actual 
execution time. For constraints which are finally either satisfied or not satisfied by the data distribution 
scheme, we use the first measure which estimates the penalty paid in execution time if that constraint is not 
honored. For constraints specifying the distribution of an array dimension over a number of processors, we 
use the second measure which expresses the execution time as a simple function of the number of processors. 
The ideas presented in this paper were developed as part of our effort to come up with a methodology to 
determine the quality measures of various constraints at compile-time. However, the results we obtain are 
of great significance to any parallelization system for multicomputers, since our techniques can be applied 
to generate communication using appropriate primitives, and also to estimate the cost of communication.

Organization of the Paper The rest of this paper is organized as follows. Section 2 describes our 
abstract machine model, how distribution functions are specified for arrays, and introduces some terms 
that we shall use throughout the paper. Section 3 presents an algorithm to determine accurately when 
communication may be taken out of a loop. In that section, we also present a methodology for applying 
transformations on loops to expose opportunities for combining messages. Section 4 describes how, given an 

assignment statement appearing in an arbitrary number of loops (which need not be perfectly nested inside 
one another), the compiler estimates the costs of communications required to carry out that computation. 
The procedure for that sis described in this section assumes that there is only a single reference to each array 

appearing on the right hand side of the assignment statement. Section 5 describes how multiple references 
to an array in a single assignment statement are handled. Section 6 describes how the compiler detects 

opportunities for pipelining a given computation and modifies the estimates of communication costs to take 
into account the speedup due to pipelining. Finally, conclusions along with a discussion on future work are
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presented in Section 7.

2 Background and Terminology

Distribution of arrays on target machine The abstract target machine we assume is a 2-D grid of 
jVi * N-i processors. Such a topology can easily be embedded on almost any distributed memory machine. To 
simply the notation describing distribution of arrays, we regard the topology conceptually as a D-dimensional 
grid (D  is the maximum dimensionality of any array used in the program), and later set the values of 

N3 to 1.

We describe the distribution of an array by using a separate distribution function for each of its dimensions 
[7]. Each array dimension gets mapped to a unique dimension of the processor grid (if that grid dimension 
has only one processor, the array dimension is said to be sequentialized) and is distributed in a cyclic or 
contiguous manner, or it may be replicated. The distribution function chosen finally for an array dimension 

conveys all of this information.

The first aspect which gets determined regarding data distribution is the alignment of array dimensions. 
Two array dimensions are said to be aligned if they get distributed on the same processor grid dimension. We 
describe how communication costs incurred while executing a loop are estimated, given information about 
the alignment of array dimensions. Determining the quality measure of a constraint on alignment of two 
array dimensions then simply becomes a matter of evaluating communication costs for the cases when the 
particular array dimensions are aligned and when they are not, and taking the difference of the two. The 
communication costs are expressed as functions of the number of processors on which various aligned array 
dimensions are distributed, and sometimes, also of the method of partitioning, contiguous or cyclic.

Communication Primitives Our system uses array reference patterns to determine which communi

cation routines out of a given library of routines best realize the required communication for various loops, 
a notion first introduced by Li and Chen [11] for synthesis of communication. We have made significant 
extensions to the ideas presented in their work, as we shall show later. We assume that the following 
communication routines are supported by the operating system or by the run-time library:

• Transfer : sending a message from a single source to a single destination processor.

• OneTo Many Multicast : multicasting a message to all processors along the specified dimension(s) of the 
processor grid.

• Reduction : reducing (in the sense of the APL reduction operator) data using a simple associative 
operator, over all processors lying on the specified grid dimension(s).
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Primitive Cost on Hypercube
Transfer(m) 0  (m)
Reduction(m, seq) 0 (m* log num(seq))
OneToManyMulticast(m, seq) 0 (m* log num(seq))
ManyToManyMulticast(m, seq) 0 (m* num(seq))

Table 1: Costs of communication primitives on the hypercube architecture

• ManyTo Many Multicast : replicating data from all processors on the given grid dimension(s) on to 

themselves.

Table 1 shows the cost complexities of functions corresponding to these primitives on the hypercube 
architecture. The parameter m denotes the message size in words, seq is a sequence of numbers representing 
the numbers of processors in various dimensions over which the aggregate communication primitive is carried 
out. The function num applied to a sequence simply returns the total number of processors represented by 
that sequence, namely, the product of all the numbers in that sequence. An important aspect of the definition 
of primitives other than Transfer is that the processors over which the multicast (or reduction) operation is 
carried out include the processor from which multicast takes place (or the processor on which the reduced data 
is placed). This definition imposes the requirement that the cost functions Reduction, OneToManyMulticast, 
and ManyToManyMulticast return a zero when the number of processors involved is one. This is a convenient 
way of ensuring that any term for costs of communication among processors over which an array dimension 
is distributed evaluates to zero when that array dimension is sequentialized. Handling this boundary case 
correctly is very important since we always obtain communication-cost expressions in terms of the numbers 
of processors over which those dimensions are distributed, and eventually, all except for a maximum of two 
dimensions of each array are sequentialized. For communication-cost terms involving the Transfer function, 
we shall show later how this boundary case is handled correctly.

Subscript Types For establishing constraints and determining their quality measures, we limit our 
attention to statements appearing in loops that involve assignment to arrays, since all scalar variables are 
replicated on all processors. An array reference pattern is characterized by the loops in which the statement 
appears, and the kind of subscript expressions used to index various dimensions of the array. Each subscript 

expression is assigned to one of the following categories:

• constant: if the subscript expression evaluates to a constant at compile time.

• index: if the subscript expression reduces to the form C i * i +  C2, where c\, c2 are constants and i is a 
loop index. Note that induction variables corresponding to a single loop index also fall in this category.

• variable: this is the default case, and signifies that the compiler has no knowledge of how the subscript
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expression varies with different iterations of the loop.

For subscripts of the type index or variable, we define a parameter called dependence-level, which is 
the level of the innermost loop on which the subscript expression depends, i.e., changes its value. For a 
subscript of the type index, that is simply the level of the loop that corresponds to the index appearing in 

the expression.

Dependence Information The information regarding all data dependences in a program is available to 
the compiler in the form of a data dependence graph. Associated with each dependence edge representing a 
dependence from statement SI to statement S2, both nested in n loops, is a direction vector (¿i, ¿ 2, . . . ,  dn), 
where d,- E { < , = , > , < , > ,  *} [15]. The direction vector describes the direction of dependence for each
loop, with d\ describing the direction of dependence for the outermost loop, and successive components of 
the vector describing directions for the inner loops. The forward direction “< ” implies that the dependence 
is from an earlier to a later iteration of the corresponding loop, “= ” implies that the dependence does not 
cross an iteration boundary, and “> ” means that the dependence crosses an iteration boundary backwards. 
The other four directions are simply combinations of these three basic directions, and are associated with 
imprecision in data dependence tests. In Fortran do loops, a backward direction can occur only if there is a 
forward direction in an outer loop. Another way this fact is often expressed is that every legal direction vector 
has to be non-negative, where the directions and “> ” are expressed as +1,0  and —1, respectively.

For simplicity, the only dependences we consider in this paper are the data dependences in a program. 
Control dependences can be handled by converting them to data dependences [1], or by using a different 
program representation, the program dependence graph [5] instead of a data dependence graph.

3 Combining of Communication

On current multicomputers, the start-up cost for sending a message is much greater than the per-element 
cost. Hence combining messages, particularly those being sent in different iterations of a loop, is an important 
optimization goal in most parallelization systems for multicomputers [9, 16, 3].

Our approach to combining messages builds up on the idea of using the loop distribution transformation 
[12], which has been used by other researchers [2, 6] on loops with cross-iteration dependences for achieving 
the same goal. We extend that work, and show how a combination of loop distribution for completely parallel 
( doall) loops and loop permutation making a parallel loop the innermost loop enables the use of aggregate 
communication primitives for as many loops as possible. First, let us see how loop distribution helps in 
combining messages. Consider a loop in which a given statement computes the values of data items that 
are used by another statement in the same loop, and this leads to communication during each iteration. If

5



the loop can legally be distributed over these statements, the communication can now be done between the 

resulting loops.

The first step taken by the compiler after building the data dependence graph is to determine for each 
loop whether it can be concurrentized or not. A loop at level k is marked sequential if there is at least 
one dependence edge between nodes representing statements in that loop that has a direction vector of 

(di, d2, • • •, dn) satisfying the following properties: (i) dk € {< , <, # , *} (ii) Vt in [1, k -  1], di £ {< , >, ^ }. 
These conditions check for the existence of a cross-iteration dependence that it is not satisfied by the 
sequentiality of an outer loop. The significance of ignoring a dependence in the “> ” direction at level k 

lies in the fact that a “> ” direction can occur only when there is a “< ” direction occuring at an outer level 
[15]. In the rest of the paper, we shall use the term “parallel loop” to mean a loop marked concurrent in 

this step.

For each loop (say, at level k) that is marked sequential, we conceptually define a graph Gk to represent 
the relevant part of the complete dependence graph for that loop. The nodes included in Gk are those 
corresponding to statements in the body of that loop. An edge between these nodes present in the original 
dependence graph is included in Gk if and only if the associated direction vector (c?i, d2, . . . ,  dn) satisfies the 

following properties: (i) dk ±  “> ” (ii) Vi in [1 , k -  £ {< , >, # }-  These conditions once again ensure
that any dependence that is satisfied by the sequentiality of an outer loop is ignored. The compiler identifies 

the strongly connected components in each such graph Gk “built” for a loop at level k.

Let us now consider a statement SI of the form array_element =  rhs.expression appearing inside a loop 
at level k. Each array appearing in the rhs.expression could potentially be involved in the interprocessor 
communication required to carry out this computation. In this section, we only describe how to determine 
for each array whether the communication required (if any) can be taken out of the given loop. How that 
knowledge helps us estimate the actual cost of communication shall be explained in the following sections. 
The algorithm to determine whether communication involving an array B appearing in the rhs.expression 

can be combined (taken out of the loop) consists of the following steps:

1. If the loop is marked parallel, then return with the answer that communication can be combined.

2. Check all the dependence edges in the graph Gk incident on the node corresponding to SI, and coming 
from a node in the same strongly connected component as the given node. If any of these dependence 
edges is due to the array B or any variable being used in its subscripts (when the subscript is of the 
type variable), then the communication cannot be combined, otherwise it can be combined.

The existence of a dependence edge due to array B incident on the node for SI implies that the values of 
some elements of B that may be involved in communication are computed within the loop. Further, if that 
edge comes from a node belonging to the same strongly connected component, the communication has to be
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do i =  1, n
do j  =  2, n

A (itj )  =  F (A (i ,j  -  1), B (iJ  -  1)) (SI) 
B ( i , j ) = F ( A ( i J ) , A { i , j - l ) )  (S2)

enddo
D(i) =  HÄ(i,n),D(¡ - 1 ) )  (S3)

enddo

Figure 1 : Original program segment

done within that loop to honor the data dependence. However, if the edge comes from a node belonging to 
a different strongly connected component, by distributing the loop over these components, we can take the 
communication out of the loop. If there is no dependence edge in Gk due to B incident on the node, there 
is no other statement in the loop that writes into an element of B before it gets used at Si. In that case, 
communication involving the elements of B can be done before executing the loop. Before taking a decision 
on combining communication, another condition we check for is that the value of any variable that governs 
which element of B gets used in SI should also be available outside the loop. That is the reason for our 
checking the dependence edges due to such variables also in step 2 of the algorithm.

The need for step 1 arises when a parallel loop appears outside another loop that has communication 
taking place inside it, or when there are intra-iteration dependences within the parallel loop. Unless the 
program is transformed, each iteration of the parallel loop has communication taking place inside it. Step 1 is 
based on the observation that in such cases, the program can always be transformed so that no communication 
needs to be done inside the parallel loop. The two transformations that ensure such a behavior are:

1. Distribution of a parallel loop over statements constituting its body.

2. Loop permutation that makes a parallel loop the innermost loop in a perfectly nested loop structure.

It is well known that these transformations are always valid [15]. After the distribution of a parallel loop 
over various statements in its body (that may themselves be loops), whenever that loop surrounds another 
loop that happens to have repeated communications taking place inside it, we transform the loop structure 
so that the parallel loop becomes the innermost loop in that nest. Once a parallel loop has been made the 
innermost loop, by distributing it whenever necessary over statements inside it, communication can be taken 
out of that loop.

The usefulness of these transformations is illustrated by the program segment shown in Figure 1. The 

dependence graph for this program segment is shown in Figure 2. Without any transformation, none of the 
loops can be parallelized. However, in the graph G\ that we build corresponding to the z-loop, the j-loop
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Figure 2: Dependence graph for the example program segment

do j  =  2, n

A (iJ ) =  H A (',  i ~  1). B(*. j  -  1)) (SI)
enddo
do i =  1, n

B (i ,j )  = F ( A ( i , j ) , A ( i , j -  1)) (S2)
enddo 

enddo 
do i =  1, n

D(i) =  n), D(i -  1)) (S3)
enddo

Figure 3: Transformed program segment

statements and the statement S3 belong to different strongly connected components, and hence the ¿-loop 

can be distributed over them. In the resultant perfectly nested loop structure with statements SI and S2, 
the ¿-loop is marked parallel and the ¿-loop is marked sequential. Hence, we transform this loop structure to 

make the ¿-loop the innermost loop. The communication involving the A  values in statement S2 still occurs 

inside the ¿-loop. By distributing the ¿-loop further over statements SI and S2, that communication can 
now be taken out of the inner loop. The final program segment corresponding to which the parallel version 

incurs much lower communication overhead is shown in Figure 3.
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4 Communication Costs for an Assignment Statement

For each statement in a loop in which the assignment to an array A uses values of an array B or A itself, 
we express estimates of the communication costs as functions of the numbers of processors on which various 
array dimensions are distributed. If the expression on the right hand side ( rhs) of the assignment statement 
involves multiple arrays, the same analysis is repeated for each array. In this section, we describe how 
communication costs corresponding to a single reference to a rhs array are estimated. Section 5 describes 
how we handle the case when the rhs has multiple references to the same array.

If the rhs array is different from the Ihs array, the first task at hand is to determine which dimensions of 
the two arrays should get aligned. The algorithm for that consists of the following steps. First, we match 
all pairs of dimensions for which the subscripts are of the type index and both subscripts correspond to the 
same loop index (indicated by identical values of dependence-level recorded with each subscript). In that 
step, we also match dimensions corresponding to subscripts with the same constant value. Next, we match 
dimensions for which one or both the subscripts are of the type variable, provided they have the same value 
of dependence-level. The remaining subscripts are now simply paired up on the basis of the order in which 
they are seen in a left-to-right scan of subscripts. If the number of dimensions in the two arrays are different, 
some dimensions in the array with greater dimensionality get matched to a “missing” dimension.

4.1 Identification of Communication Terms

To estimate the communication costs associated with an assignment statement, we first identify terms rep
resenting a “contribution” from each pair of subscripts for the aligned dimensions. Whenever at least one 
subscript in that pair is of the type index or variable, the term represents a contribution from one of the 
enclosing loops identified by the value of dependence-level. A loop enclosing a statement makes a contribution 
to its costs even if no subscript in any array reference in that statement identifies it as the innermost loop in 
which it changes its value. Once all the contribution terms have been obtained, we compose them together 
using definite rules to determine the overall communication costs involved in executing that statement in 
the program.

Determining these contributions to communication costs is based on the idea, proposed by Li and Chen 
[11], of matching reference patterns in the program to those associated with various communication prim
itives. We are able to handle a much more comprehensive set of patterns than those described in [11]. 
For contributions from a loop, we first apply the algorithm described in the previous section to determine 
whether communication can be taken out of the loop. For cases when that can be done, Table 2 lists the 
terms contributed by the pair of subscripts corresponding to aligned dimensions. We assume that all loops 
have been normalized, i.e., they have a stride of one, and that each loop index used as a subscript in an array

9



LHS RHS Commn. Term Type Parameters

i i SizeChange d =  rii/Ni
i i ±  Cl (i) SizeChange

(ii) (Ni > 1 )  Transfer
d =  ni/Ni 
d =  ci

i vari Many ToMany Multicast d =  ni/N i,p=  AT/
vari i ManyToManyMulticast d =  ni/NI ,p =  Ni
vari vari ManyToManyMulticast d =  ni/N i,p=  Ni
i or vari ci or missing OneToManyMulticast d — 1, p =  NI
ci or missing i Reduction, or 

Transfer
d =  ni/N i,p=  Ni 
product =  Ni — 1, d =  rii/Ni

ci or missing vari Reduction, or 
Transfer

d =  rii/Ni,p— Ni 
product — Ni — 1, d =  rii/Ni

i or vari j  or varj ManyToManyMulticast d =  ni/Ni,p =  Ni

Table 2: Terms for Aggregate Communication

reference varies so as to sweep over the entire range of elements along that dimension. The selection of the 
communication primitive used in a communication term is based on the kind of subscripts appearing in the 
left hand side ( Ihs) and the right hand side (rhs) references. We use i and j  to denote different loop indices, 
ci and C2 to denote different constants; uar,- and varj represent subscripts of the type variable with their 
dependence-level values corresponding to loops with indices i and j  respectively. In the entries for parameters 
of various communication terms, rii represents the loop range, and iVj represents the number of processors 
on which the aligned pair of array dimensions is distributed. The parameter d denotes the message size, 
and p denotes the number of processors involved. Most of the entries for communication terms indicate 
the primitive to be used. SizeChange, however, is not a communication primitive, it is merely a term that 
modifies the data size parameter of other primitives when the overall communication cost is determined from 

various contributing terms.

For a subscript in the rhs reference varying in a loop, if there is no matching array dimension in the Ihs 
reference, or if the corresponding subscript on Ihs is a constant, the choice of the communication primitive 
depends on whether the rhs operands are involved in a reduction operation. In case of a reduction operation, 
the necessary communication may be carried out using the Reduction routine rather than multiple Transfers, 

which would be more expensive.

Whenever the subscript is of the type variable (i.e., unpredictable at compile time), and yet communi
cation can be taken out of the loop, we assume that communication is carried out based on the following 

philosophy: each processor, before executing the loop, sends all the values that might be needed by the 
destination processor, even though at that time it is not known which values would actually get used. For 
instance, consider the following loop:

10



LHS RHS Comma. Term Parameters

i i None not applicable
i i ±  Cl Transfer product =  ci * (iVj — 1), d =  1
i vari or ci or missing Transfer product =  rii, probability =  (1 — l/Ni), d =  1
vari var{ or i or ci or missing Transfer product =  n,-,probability — (1 — l/Nj), d — 1
ci or missing vari or i Transfer product =  rii, probability =  (1 — 1/Ni),d =  1

Table 3: Terms for Repeated Communication

LHS RHS Commn. Term Type Parameters
ci or missing C2 or missing Transfer probability — 1 — 1 /Ni,d =  1
Cl Cl None not applicable

Table 4: Terms for Loop-Independent Communication

do i =  1, n
A(i) =  B(D (i)) 

enddo

If each processor on which array B is distributed sends the entire section it owns to all the processors on 
which A is distributed, repeated communication inside the loop can be avoided even though the D (i) values 
are unknown at compile time. Such an approach has an obvious disadvantage that it may lead to excessive 
wastage of memory on processors. In case memory space is at a premium, we may instead choose to carry 
out communication inside the loop, so that each processor receives only the values that it actually needs.

Table 3 describes the terms contributed by loops when communication has to be done repeatedly inside 
them. Many entries corresponding to the term for Transfer routine have a parameter probability associated 
with them. This parameter estimates the probability of the source and the destination processors for the 
intended Transfer routine being different. For simplicity, the compiler assumes that any two arbitrary 
elements along a given array dimension belong to the same processor with a probability of 1 /Nr, where 
Ni is the number of processors on which that array dimension is distributed. Hence, if the value of one 
of those elements is needed by the processor holding the other element, the probability that interprocessor 
communication is required is 1 — 1/iVj. This elegantly takes care of the case Ni =  1, since the term for 
interprocessor communication vanishes when the array dimension is sequentialized.

Table 4 describes the terms contributed by a pair of subscripts corresponding to aligned dimensions, 
when both the subscripts are constants, and hence loop-independent.

11



do ¿1 =  1, ni

do */ =  1, ni 
do i/+1 =  1, nf+i

do im — 1, nm

Si

Figure 4: Statement involving communication

4.2 Combining of Communication Terms

We have shown in the previous section that by moving the parallel loops to inner levels, we can always 

ensure for any statement that each loop from which communication can be taken outside is relatively inner 
to a loop which has communication taking place inside it. Consider the statement nested inside loops shown 
in Figure 4. All loops at levels / +  1 to m are those from which communication can be taken outside, while 
loops at levels 1 to / are those which have communication taking place inside them. We shall now describe 
how the communication costs involved in executing that statement are determined from the communication 
terms obtained for various loops and for the loop-independent subscript pairs.

Aggregate Communication We first determine the costs associated with calls to various aggregate 

communication primitives contributed by the loops at levels / +  1 to m. These calls get placed inside 
the loop at level /, just before entering the loop at level / +  1. Any terms coming from different loops 
that use the same primitive are combined as shown in Table 5. In the entries for the resultant term, 
the operation “o” represents the concatenation of sequences. We distinguish between a SizeChange term 

occurring by itself and one appearing in conjunction with a (conditional) Transfer primitive by using the 
superscripts 1 and 2, respectively, with those terms. Following the combination shown in Table 5, let the 

remaining terms be: SizeChange1 (di), SizeChange2^ ) ,  Transfer(ci), . . . ,  Transfer^-), R eduction^, seq3), 
OneToManyMulticast(d4, seq^), ManyToManyMulticast(d5, seçs). When these terms are combined, the data 
size associated with each primitive is modified to take into account the number of elements along each array 
dimension held by a processor participating in communication. The order in which calls to these primitives 
are placed is significant [11] in that it affects the data sizes involved in communications. The first routine 
invoked is Reduction, because that leads to a reduction in the size of data for the remaining communication 
routines. Following that we have calls to all the Transfer routines. The ManyToManyMulticast operation gets 

performed after that; it leads to an increase in the amount of data held by each processor due to replication. 
Finally, the data is multicast using the OneToManyMulticast routine. Hence, the sequence of calls to various
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T e r m l T e r m 2 R e s u l t a n t  T e r m

SizeChange1 (d \ ) SizeChange1 (¿ 2 ) SizeChange1 ( d i  * d2)
( N i  — 1)* T ra n sfer^  ) (iV2 — 1)* Transfer(d2) ( N i  *  N 2 —  1)* Transfer(di * ¿ 2 )
SizeChange* (d i),
( N i  >  1) Transfer(ci)

SizeChange* (<¿2 ),
( N 2 >  1) Transfer(c2)

SizeCh*(di * ¿ 2 ), (A i >  1 &  N 2 >  1) Transfer(ci * c2), 
(jVj. >  1) Transfer(ci * ¿ 2), (A 2 >  1) T ran sfer^  * di)

( N i  — 1)* T r a n s fe r ^ ) SizeChange* (d2 ),
( N 2 >  1) T ra n sfer^ )

( N i  — 1) * Transférai *  ¿ 2 ) ,  SizeChange* (d2) 
{ N 2 >  l)Transfer(c2 *  d \ )

Reduction(di, s e q i ) Reduction (d2 , s e q 2 ) Reduction(di * ¿ 2 , s e q \  0 seg2)
M anyToManyM ulticast(di, s e q i ) ManyToManyMulticast(d2 , s e q ? ) ManyToManyMulticast(di * s e q i  0 seg2)
OneToManyMulticast(di, s e q i ) OneToManyMulticast(d2 , seg2) OneToManyMulticast(di * ¿ 2 , s e q i  0 seg2)

Table 5: Combining of Terms with Identical Communication Primitives

communication routines assumed to be inserted for the purpose of estimating costs is: Reduction^ * d2 * d3 * 
d4*d5, seq3), Transfer^ *ci*d4*d5), . . . ,  Transfer^ *ct-*¿4*^5), ManyToManyMulticast(di*d2*d4*d5, seq5), 
OneToManyMulticast(di * d2 * ¿4 * <f5 * num(seç5), seç4). While we have shown how to handle a completely 
general case when terms corresponding to all the primitives may be present, actual reference patterns in 

loops are expected to involve composition of much fewer primitives at a time.

Repeated Communication As shown in Table 3, the terms contributed by the loops at levels 1 to / 
consist of multiple Transfers of one of the following two kinds -  regular Transfers involving data elements 
lying on the “boundaries” of regions allocated to processors, or probabilistic Transfers, namely those with a 
certain probability associated with them. The overall contribution to communication costs made by all the 

loops is determined as follows:

1. The costs due to all the aggregate communication routines determined in the previous step are mul
tiplied by the product of the outer loop ranges, i.e., by the quantity ni * n2 * . . .  * nj. This is done 
because the calls to all those routines are placed inside the loop at level /, and the outer l loops are 
executed sequentially.

2. All the probabilistic Transfer terms contributed by the loops at levels 1 to l are combined into a single 
such term multiplied by the product ni * n2 * . . .  * nj. The probability associated with the overall 
term is computed as the union of probabilities attached to the individual terms. Let there be k such 
terms originally (k < l) with probabilities 1 — l / A ^ , . . . ,  1 — 1 / JV,fc. The probability associated with 
the overall Transfer term is set to 1 — N ^1 mN. . The data size for the Transfer routine is set to the 
data size for the last aggregate communication primitive called (if any) just before entering the loop 
at level / +  1. If there is no call to any aggregate communication primitive, the data size is set to 
the value given by the SizeChange1 term (if any), otherwise it is set to the default value of 1. Each 

regular Transfer term contributed by a loop remains separate from the probabilistic Transfer term. 
The product of such a term is multiplied by the range of all the other / — 1 loops, and its data size is
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also set according to the rule described above.

Loop-Independent Communication As shown in Table 4, each term contributed by a pair of different 
constants appearing in matching subscripts consists of a probabilistic Transfer. These terms are combined 
among themselves and with the probabilistic Transfer terms (if any) contributed by loops at levels 1 to /, in 
the same manner as described above, to yield finally a single Transfer term.

Example We now present an example to show how we obtain an estimate of the overall communication 
costs by combining individual communication terms. Consider the program segment shown below:

do j  =  1, n
do i =  1 ,n

A (i,j, 4) =  F (B (i, l ,4 ) ,C ( i ,j ) ,D (i ,j ,4 ) )  

enddo 
enddo

Let Ni, N j and Nk  denote the number of processors on which the three dimensions of the array A are dis
tributed. The terms contributed by the reference to B are SizeChange1 (n/iVj) and OneToManyMulticast(l, (N j)), 
which get combined to give the communication cost as OneToManyMulticast(n/iV/, (N j )). The reference to 
the array C  leads to the terms SizeChange1 (n/iVj), SizeChange1(n/iVi7), and (1 — l/iVtf)*Transfer(l). These 
terms combine to give the cost as (1 — I/Nk ) * Transfer(n2/(Ni * N j)). The reference to the array D leads 
to the terms SizeChange1(n/iV/) and SizeChange1 (n/Nj), which give no contribution to the communication 
cost. Hence, the overall expression for the communication costs for this program segment is

Communication cost =  OneToManyMulticast(n/A'/, (N j )) +  (1 — 1 / N k ) * Transfer(n2/(Ni * N j ))

It is worth noting that the expressions for communication costs are determined assuming that proper align
ment of array dimensions has been done. To determine the quality measures for the constraints on align
ment, we simply determine the communication costs when alignment is not done that way, and subtract 

the original communication costs from these costs. For instance, if the first and second dimensions of D 
are aligned respectively with the second and the first dimension of A, the communication terms contributed 
are ManyToManyMulticast(n/A/, (N/ )), and ManyToManyMulticast(n/Arj ,  (N j )). These terms when com
bined indicate a cost of ManyToManyMulticast(n2/ (A /  * N j), (Ni ,N j )), which is also the quality measure 
for the constraint on the proper alignment of those dimensions, since the communication cost for the case 
when those dimensions are properly aligned is zero.

As mentioned earlier, the results obtained in this section are based on the assumption that each loop index 
used as a subscript in an array reference varies so as to sweep over all the elements along that dimension. Our

14



approach does not break down when this assumption does not hold, only the expressions involved become 
more complex. The parameters for data size and the number of processors get modified, the values of these 
parameters now become functions of the method of partitioning, whether it is contiguous or cyclic. We have 

omitted these details for simplicity.

5 Multiple References to an Array

So far, we have seen how to estimate the communication costs corresponding to a single reference to an 
array in the rhs expression of the assignment statement. We now describe how multiple references to the 
same array in the rhs expression are handled. All such references are partitioned into equivalence classes 
of isomorphic references. Two array references are said to be isomorphic if the subscripts corresponding to 
each array dimension in those references are of the same type, and have the same value of dependence-level 
associated with them. For instance, B(i, 1) and B(i, 2) are isomorphic references, while B(i, j ) ,  B (j,i)  and 
B (l ,j )  are all mutually non-isomorphic. The communication costs pertaining to all isomorphic references in 
a given class are obtained by looking at the costs corresponding to one reference and determining how they 
get modified by the adjustment terms from the remaining references. The steps described in the previous 
section are applied for only one reference in each class after determining the adjustment terms given by the 
remaining references.

Table 6 shows how the terms contributed by matching subscript pairs from a given rhs array reference 
(and the Ihs array reference) get modified in the presence of another isomorphic reference on the rhs. Terms 
corresponding to the subscripts that are exactly identical in the isomorphic references do not undergo any 
change. We distinguish between the cases when communication corresponding to the references can, and 
cannot be taken out of the loop by referring to the terms as corresponding to aggregate or to repeated 
communication. An entry “X” in the table denotes an arbitrary entry, implying that it does not matter 
what that entry is. While describing the modified communication term, we refer to the original term 
corresponding to the first rhs reference as Term\. The modified terms are combined using the same procedure 
as that described in the previous section, thus we obtain estimates of communication costs involving all the 
isomorphic references. The procedure is repeated for each class of isomorphic references.

As an example, consider the loop shown in Figure 5. We have two pairs of isomorphic references on the 
rhs, B(i — 1, j )  and B(i +  1, j ) ,  and B (i,j  — 1) and B (i,j  +  1). The first pair yields the communication 
terms SizeChange2(n i/N j), 2 * (Nj > 1) Transfer(l), and SizeChange1 (n2/Nj), which get combined to 
give the communication cost as 2 * (Ni >  1) Transfer(n2/Arj ) .  From the second pair, we get the terms 
SizeChange1 (n i /A / ) ,  2*(iVj > 1) Transfer(l), and SizeChange2(712/./V/), combining which we get 2*(Nj > 1) 
Transfer(ni/A’/)  as the communication cost. Thus the overall expression for communication costs involving
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LHS RHSi r h s 2 Original Termi Modified Term(s)

i i +  Cl i — C2 Agg: (TV/ > 1) Transfer(ci) 
Rep: ci * (TV/ — 1)* Transfer(l)

Agg: Term i, (Ni >  1) Transfer(c2) 
Rep: (ci -1- c2) * (¿V/ — 1)* Transfer(l)

i i +  Cl 
( ¿ - C l )

i +  c2
( ¿ -  c2)

Agg: (Ni >  1) Transfer(ci) 
Rep: ci * (Ni — 1)* Transfer(l)

Agg: (Ni >  1) Transfer(max(ci, c2)) 
Rep: m ax(ci,c2) * (Ni — 1)* Transfer(l)

X varli var2i Agg: X 
Rep: X

Agg: Termi 
Rep: 2 * Termi

X Cl C 2 X Term i, (1 — 1/iV/)* Transfer(l)

Table 6: Modification of terms for multiple references

do j  =  2, n2 -  1
do i =  2, ni — 1

A(i, j )  =  T (B (i -  1 , j ) ,  B (i ,j  -  1), B(i +  1 , j ) ,  B (i ,j  +  1)) 
enddo 

enddo

Figure 5: Multiple references to an array

the given program segment is:

Communication cost =  2 * (TV/ > l)Transfer(ri2/TV/) +  2 * (Nj >  l)Transfer(ni/A /)

It is interesting to see that the above expression captures the relative advantages of distribution of the array 
B (and also A) by rows, columns, or by blocks for different cases corresponding to the different values of ni 

and n2.

6 Detection of Pipelining

The procedure described in the preceding sections generates reasonably good estimates of'communication 
costs for loops from which communication can be taken outside. However, when communication takes place 
inside loops due to dependences, the estimates are often overly conservative. The primary reason for that 
is the assumption that all iterations of a loop with cross-iteration dependences must be completed before 
any further computation can be done. In practice, it may well happen that a processor executing the earlier 

iterations of the loop is able to proceed with other computation while the remaining iterations of that loop 
are being executed on other processors. An important such case is the pipelining of an outer loop when 
successive iterations of the outer loop can be started without waiting for all the iterations of the inner loop 
to finish. We detect such opportunities (for pipelining) at compile-time in order to generate more accurate 
cost estimates.
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do j  =  2, ni
do i =  2, ri2

O(i) =  JF(£>(> -  1)) (SI)
A ( ¡ , j )  =  r(B(i,j),D(i))(S2)

enddo
enddo

Figure 6: Example to illustrate pipelining

We restrict our attention to the simple but frequently occurring case of loops having constant dependences 
between statements. A constant dependence is one for which the associated dependence distance vector is 
a constant. Consider the program segment shown in Figure 6. There are dependence edges from statement 
SI to itself with distance vectors (0,1) (flow dependence), ( 1 , - 1 )  (anti dependence), and (1,0) (output 
dependence). There is an edge from SI to S2 with distance vector (0,0) due to flow dependence involving 
array D , and another edge with vector (1, 0) due to anti-dependence from S2 to SI. Due to the dependence 
from SI to itself, communication cannot be taken out of either of the loops. However, the given code segment 
lends itself easily to pipelining; we need not wait for all the iterations of the inner loop to finish before the 
next iteration of the outer loop is started. Hence, it would not be accurate to multiply the communication 
costs involved in executing the inner loop by the range of the outer loop. We first describe our simple 
approach for detecting the possibilities of pipelining and modifying the communication cost estimates, and 

then illustrate it for this example.

The algorithm to decide whether successive instances of an inner loop (Lk) at level k corresponding to 
different iterations of an outer loop (L k -i)  at level k — 1 can be pipelined, consists of the following steps:

1. Examine the graph G k-i constructed earlier as described in Section 3. Identify the set of nodes that 

belong to the same strongly connected component as the one containing nodes corresponding to all the 
statements inside loop Lk.

2. Examine all edges between the nodes identified in step 1. Let (d\, ¿2, • • •, dn), (k < n) denote the 
direction vector associated with an edge. If for every edge, either dk — “= ” , or all dependences 
corresponding to that edge have a constant distance vector, conclude that pipelining can be done. 
Further, if pipelining can be done, for all backward dependences (dependences in the “> ” direction) 
at level k, determine the maximum dependence distance at that level, and call it c*,. If there is no 
backward dependence at level k, set the value of Ck to 0.

Step 1 narrows down the set of statements examined in the outer loop body to those over which loop 
distribution cannot be carried out any further. Step 2 checks for the regularity of communications due to
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dependences inside loop Lk to determine whether computations can be pipelined. In the event of pipelining, 

if there is a dependence from a later iteration (say, ¿2) of the inner loop to an earlier iteration (say, ¿1) of 
the same loop corresponding to a later iteration of the outer loop, the difference between ¿2 and ¿1 must be 
bounded by a constant. That constant is determined in Step 2 as c*; it signifies that successive iterations 
of the outer loop can be started after waiting for only c* +  1 iterations of the inner loop to finish, thus 

permitting an overlapping of computation.

Once the possibility of pipelining the execution of instances of loop Lk inside loop Lk- 1 has been rec
ognized, the steps determining how the overall costs for loop Lk- 1 are computed from the communication 

terms are modified as follows:

1. The costs due to the aggregate communication routines are multiplied by n* +  (c* -(- 1) * (rik- 1 — 1) 
rather than rik * rik-1. Let the time for aggregate communications taking place during one iteration 
of the loop Lk denote one unit of time. The communications associated with the first instance of the 
inner loop Lk see a full latency of n* time units, whereas those associated with the remaining rik- 1 — 1 

instances of that loop see a latency of c* +  1 time units each.

2. The product of the Transfer term contributed by loop Lk is not multiplied by rik -i, rather we add

( L block¿ \ —1—I) to it to get the product for the final Transfer term. Each Transfer corresponding
to the dependence carried by loop Lk takes place across the “boundary” of block of elements assigned 
to a processor, and hence takes place after every blockk iterations of Lk, where blockk is the block size 
of distribution of the array dimension being indexed in that loop. Before starting a new iteration of 
the loop L k-i, since each processor has to wait for Ck +1  iterations of the loop Lk to get over, it is able 

to initiate a new Transfer only after waiting for ( L bTockl J +  1) Transfers corresponding to the previous 
iteration of Lk-\ to be over.

It may be noted that when the dependence distance Ck is large, the communication costs are higher 
because we need to wait for a larger number of iterations of the inner loop to finish before starting the 
next iteration of the outer loop. In the limiting case when Ck takes the value rik — 1, we need to wait 
for all iterations of the inner loop to finish, and our expression reduces to the original expression (without 
pipelining) for communication costs.

Let us now return to the example shown in Figure 6. The ¿-loop gets distributed over SI and S2, but the 
j-loop cannot be distributed. Let Ni and JV2 denote respectively the number of processors over which the first 
and the second dimension of the array A are distributed. The communication term associated with statement 
SI contributed by the ¿-loop is (Ni — 1) * Transfer(l). Without taking pipelining into account, the overall 
communication cost estimate for executing Si would be ni*(-/Vi — l)*Transfer(l). For statement S2, the ¿-loop 
contributes the term SizeChange1(n2/Ari), while the j-loop contributes the term ni *(1 — l/iV2)*Transfer(l).
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These terms when combined according to our rules yield an estimate o f n i * ( l  — l/N?) * Transfer (n2/iVi). 
Now we explain how the detection of pipelining changes these estimates. First consider the ¿-loop over SI 
which appears inside the j-loop. The only node we see in Step 1 of our algorithm is the node corresponding 
to SI. The dependences associated with the edge from SI to itself do satisfy all the conditions of Step 2, 
and we conclude that pipelining can be done. The only backward dependence is the anti-dependence with 
the distance vector (1 , -1 ) ,  hence we set c-i to the value 1. Our modified procedure now estimates the 
communication costs associated with SI to be (ni — 1 +  N\ — 1) * Transfer(l), rather than a conservative 
ni * (Ni — 1) * Transfer(l). The ¿-loop over S2 does not involve any communication, so there is no need to 

check for pipelining.

7 Conclusions and Future Work

We have presented a methodology for estimating the communication costs at compile-time as functions of 
the numbers of processors over which various arrays are distributed. We have also developed a strategy 
for making program transformations to create more opportunities for taking communication out of loops, 
which can lead to considerable savings in communication costs. Finally, we have described a procedure for 
detecting when a loop with regular dependences may be pipelined, and how the estimates of communication 
costs are modified to take into account the speedup due to pipelining.

This work has been done as part of the development of a system to perform automatic data partitioning on 
multicomputers [7]. Our system shall generate annotations specifying how arrays being used in a program 
should be distributed on the processors of a specific machine. There are a number of compilers being 
developed [9, 16] that accept a sequential program augmented with such annotations, and generate the 
target parallel program for the distributed memory machine. Clearly, our estimates of communication costs 
guiding the automatic data partitioning system would be useful only if the actual compiler goes through 
a similar analysis for generating communication as the analysis we go through for estimating it. On the 
other hand, our results have interesting implications for how the generation of communication should be 
done by such compilers to reduce the communication overheads. We are currently exploring how synthesis of 
communication can be guided by the techniques we have developed for identifying the primitives that best 
realize the communications involved in carrying out a given computation.

We have used a number of simplifying assumptions in our work that need to be relaxed in order to 
build a truly automated system for handling this task. So far, we have assumed that the loop bounds 
and the probabilities for executing various branches of a conditional statement become “known” eventually 
(the values of loop bounds may be determined by making the user specify the values of certain critical 
parameters interactively or through assertions, and the compiler may simply guess the probabilities associated 
with various conditional statements). In the future, we plan to use profiling to supply the compiler with
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information regarding how frequently various basic blocks of the code are executed. Our system also needs 

to recognize opportunities for further optimizations regarding generation of communication [9], such as 
eliminating redundant messages via liveness analysis of array variables, and combining messages consisting 

of elements of different arrays into a single message whenever possible.

These issues do not undermine the applicability of our approach. They simply indicate the need for 
further research in this area so that the ideas we have presented can be augmented with other techniques to 
finally obtain a system performing automatic parallelization of programs on multicomputers.
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