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Abstract

Advances in parallel computing hardware have grown much

faster than their software counterparts. with t~jof
parallel computing solutions dropping, there exists a need for

parallel software development tools and automatic parallel-

izers for converting the large installed base of sequential

programs currently in use. A large portion of the parallel-

ization problem resides in the efficient allocation of program

tasks to the available hardware resources, minimizing the

communication costs. This thesis will review the basic steps

necessary for extracting parallelism from sequential programs

and will detail other information sources that may be useful

in making paralellization decisions. After presenting an

overview of some interprocess communication cost (IPC)

functions as shown in the literature, a general IPC cost

function, that accurately models the communication costs, will

be derived. This cost function will then be analyzed for

several popular interconnection models including Ethernet,

bus, packet and circuit switched networks.
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"When we mean to build,
We first survey the plot, then draw the model;
And when we see the figure of the house,
Then ~e must rate the cost of the erection;
Which if we find outweighs ability,
What do we then but draw anew the model"

-Shakespeare

Chapter 1. Introduction

As parallel computers and parallel processing develop

over the next few years, a large emphasis will be placed on

understanding the characteristics of parallel systems and

algorithms in an effort to speed up computations. Several

research groups and commercial vendors currently produce

hardware and software systems for special purpose parallel

computing, yet the need exists to expand to more general

capabilities.

1.1. organization

A substantial area of research focuses on the problems

associated with the relationships between sequential programs

and their parallel counterparts. One goal of this research is

to understand how to partition an existing general purpose

sequential program into pieces that can subsequently be run in

parallel on one or more computers[l,2,3,4,5,6,7,8].

This thesis will focus on the issues of extracting parallel
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information from existing sequential code written in ANSI C,

partitioning of the code into parallel tasks, and analysis of

the communication costs associated with distribution of the

tasks to the remote machines. It will not directly address

the problems of program task allocation to system resources or

load balancing.

1.2. Parallelization

As hardware becomes more versatile and standardized,

software development for parallel systems will become a very

vital segment of the software industry. Development of large

software systems is difficult on sequential computers and

becomes exponentially complex in parallel environments.

Language and debugging tools need to be developed to support

new parallel features of advancing hardware technology and to

efficiently parallelize existing applications software to run

on the new platforms. While some programs and algorithms,

such as image processing and VLSI chip routing, are natural

candidates for parallelization due to computation or data

organization [9,10,11,12,13,14,15] , most programs

outwardly do not exhibit such desirable characteristics. It

is therefore necessary to develop automated software tools

that can analyze existing source code and extract meaningful

parallelism.

One popular method used in parallelizing or distributing

applications is the remote procedure call (RPC) [4,5,6,27]. To
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the programmer, an RPC looks like a standard subroutine call;
,

while the actual code for the procedure is executed on a

remote machine. RPC's may either block until the results are

received from the remote processor, or continue processing

until the results of the procedure call are required. A

program that is capable of extracting parallelism from ANSI C

source code and automatically distributing various procedures

of the program via non-blocking RPC will be referred to in

this thesis.

Since C is not inherently a parallel language, there is

a significant amount of work involved in searching for

parallelism in a user's program. Chapters 2 and 3 of this

thesis will give an overview of a software tool currently

being implemented to perform the task of automatically

partitioning sequential user programs into parallel segments,

devising a distribution strategy based on the computing

environment and user restrictions, and generating the neces-

sary source code level output files for compilation and

execution of the original program in parallel. The tool is

being designed to work with many types of parallel multi-

computer and distributed system platforms.

1.3. Interprocess Communication Costs

When looking at the possibilities of segmenting a program

or group of processes among a fixed number of host processors

or nodes, the issue of communication time is usually the most
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important factor, assuming that all of the processors are

likely candidates able to process any of the jobs. To

minimize the communication overhead and maximize the system

throughput, processes that communicate frequently should be

grouped together at the same processor, or as close as

possible to one another. There are two approaches to allocat­

ing tasks in an evenly distributed fashion, static and

dyna~~c. In the static allocation algorithms, once a task has

been placed on a specific processor, it remains there until

the process completes. On the other hand, the dynamic

algorithms allow processes to migrate from one processor to

another as necessary to try to keep the work load evenly

balanced.

Several papers have been written on various approaches to

the problem of static task allocation, with the predominant

study focusing on how to most efficiently map a program graph

to the graph of a distributed system[16,17,18,19,20,

21,22,23J. Similarly, research has been performed in

the area of dynamic load balancing of processes once static

allocation has been performed and run time information about

the processes becomes available, but this will not be present­

ed herein.

The central theme to both the task allocation and load

balancing issues is to establish an algorithm that provides a

good solution to a problem that has been proven NP complete

[20,21,22,23J. This means that approximate or heuristic algo-
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rithms must be used in finding a near optimal solution to the

/""' .problem. At the heart of the algor1.thm, there must-be a cost

function for estimating communication between processes and

processors, such that the distribution achieved is optimized

---'a"'nd-s-yEftem throughput maximized. While a few papers provide

some insight into the cost function used for a specific

algorithm [16,17,18], others use an approximation model which

leaves out many parameters that could add significantly to the

overall communication time. Most of the literature also makes

the assumption that the distributed system is composed of a

network of homogeneous processors in one standard configura-

tion. However, in order to keep costs under control, inter­

connection of various non-homogeneous computers with special-

ized resources will increase in the future as workstations,

mUlticomputers, and parallel computers will be networked to

form very powerful computing environments.

Chapter 4 of this paper will present a survey of network

cost functions seen in some of the literature. I will present

each of the cost functions with a discussion of the advantages

and disadvantages of each, as applied to general interprocess

communication costs. Chapter 5 of this paper will derive a

general form of a communication cost function for interprocess

communication, taking into account many of the real world cost

factors. Chapter 6 then uses the derived cost function to

analyze several popular network configurations including

Ethernet, packet and circuit switched networks, multiple bus,
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and packet switched networks, with cut-through capability .
•~

(

~J

1.4. Future Research

As processors become increasingly smaller and faster, the

communication cost will become a greater and greater portion

of the computational overhead of parallel programs. Faster

physical networks may reduce the transit time of a message,

but still not affect significantly the communication overhead

incurred. Accordingly, one must study the communication cost

carefully if a truly near optimal, long term solution to the

allocation and load balancing problems are to be found.

Chapter 6 presents some conclusions of the study and proposes

areas of further research.

7



/

Chapter 2. Extracting Parallelism Information

with the development of parallel computers and distribut-
-..'

ed' systems, new frontiers of parallel programming and parallel'

op'-erating systems have been unveiled. The complexity of these

parallel environments create new problems not seen in sequen-

tial computers and demand innovative solutions to a wide range

of programming and operating system problems. One of the

largest problems of writing software for parallel architec-

tures is the lack of language tools and programming guidelines

~iCh are well established for sequential development environ­

m~ts. Although specific applications have been developed for

certain architectures, general purpose software development

tools need to be implemented.

When a new type of computer enters the market, it

generally takes quite some time for language and software

development tools to be created for the platform. Programmers

need these tools for rewriting and porting their applications

to the new environment. Although most of the computers making

up distributed computing systems are not new, to utilize the

full capabilities of parallel program execution that network-

ing offers, requires these new tools. Since there is a large

installed base of software applications currently available to

run on the individual computers of the distributed system,

software developers could benefit greatly from an automated

tool that converts the source code from a sequential format

8



into a parallel equivalent.

When developing parallel applications or converting

sequential programs into parallel versions, the question of

compatibility arises. A program is usually written for one

specific type of machine with an equally specific operating

system. Dedicated parallel computers with an array of

homogeneous processors represent the parallel extension of the

serial computer. However, this is not necessarily true for

distributed systems which may be made up of different comput­

ers each running their own special operating systems. And so,

one has to first decide if the parallel application will be

run on homogeneous or heterogeneous platforms.

Another problem arises if heterogeneous systems are

chosen for parallel program execution rather than homogeneous

ones. As different computers use different internal represen­

tations for data structures, any program that is to be run in

parallel on heterogeneous systems must be able to handle the

problems of data format translation when communicating between

various modules on different hosts. This means that transla­

tion routines for all data types used in communicating between

program modules must be imbedded into the original source

code. Although this adds some additional processing overhead

and is not necessary when using a homogeneous system, it

allows the user to take full advantage of the computing

resources available.

9



2.1. Approaches to Software Parallelizers

There are a couple of software vendors that currently

have software parallelizers under development with the

philosophy that executable parallel programs should be

generated from sequential source code with no intermediate

programmer intervention. To perform this translation, the

source code, FORTRAN, C, or another language is converted into

a generic representation, which is subsequently used to

parallelize the program into object modules. These modules

are in turn sent to a specialized compiler to create execut­

able code for the designated system. While this approach is

not language specific and requires the least knowledge of

parallel programming, the programmer has no control over the

parallel code generated or optimization provided.

The approach presented in this thesis is that the

programmer should be able to optimize and interact with the

parallel program generation at all levels of the process.

This requires access to the original source code and the

parallel equivalent source code that is generated by the

parallelization process. And while the programmer is not

required to work directly with the parallel code, it allows

him to develop familiarity with extracted parallel structures

from within the sequential program and to optimize the

execution paths. One advantage of this philosophy is the

output of standard source code files for the parallel program.

This allows a generic compiler to generate machine specific

10



implementations of parallel structures independently of the

parallelization software tool. Although this approach is more

versatile and flexible, one drawback is that each language

requires its own converter to maintain consistent source code
---.f

views.

Included with a general discussion of the above approach,

which is applicable to any language, are references to a

software tool, currently under?evelopment at Paralogic, Inc.,

capable of automatic parallelization of ANSI C at the source

code level. Tasks performed by the tool include extracting

parallelization information from the user's application code,

providing a partitioning algorithm that breaks the original

code into tasks and statically assigns them to available

resources in a balanced fashion, and generating output files

containing source code for the parallel version of the

program. This chapter will describe what information must be

gathered, from the raw source code as well as other sources,

to make the best decisions about parallelizing the original

program.

since the output of the parallelization tool is ANSI C

source code, no assumptions about the system on which the

program will be run are made. It is left to the compiler and

the libraries used to finalize the implementation specifics.

The parallelizer attempts to find parallelism in the user's

code at the subroutine level and inserts asynchronous remote

procedure call and semaphore structures to partition the work

11



load among all available processors in the distributed system.

2.2. Parallel Information Sources

To best parallelize a sequential program, the more

information available concerning program behavior and the

environment in which it will be executed, the better it may be

parallelized. Parallelization of the internals of a program

requires collection of information in three major categories,

data types, global variables, and function definitions.

within function definitions, local variables, variable

references, and function references must be collected for data

flow analysis and data dependency analysis. Depending on the

type of parallelism sought, expressions regarding looping and

pointer manipulation may also have to be collected. Most of

this information can be extracted from the code directly by

the use of a parser or front end to a compiler. Some of the

most difficult items about which to collect information are

indirect variable references in the code. To properly account

for these items, run time dynamic variable tracking, in

addition to the compiler support, may be necessary to properly

handle manipulations of indirect variables[1].

To aid in expected execution time and frequency of

function calls, information from code profiling of the user's

application is necessary. A profiler is a program that

monitors a process while it is executing, recording each

function call and execution time in every subroutine. Before
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the parallelization is performed, profilirig occurs on the

original sequential source code while executing on one

machine. Two maj or determining factors that of accurate

profile information are processor speed and input data.

Since the expected execution time recorded by the

profilerAs machine dependent, it is important that the

information is collected on a machine representative of the

type on which the parallel version will be executed. On

programs whose execution time depends on the size of the input

data, the size of the input used when profiling should be

representative of the expected size to be used when the

program is parallelized. More accurate statistics may be

generated by averaging mUltiple profile runs on various input

data sizes and machines. I will refer to these quantities as

the. average expected execution time and average data input

size.

Another piece of information that is useful in making

decisions regarding parallelization i~ a set of statistics on

average network traffic and bandwidth utilization in the

distributed system on which the parallel program will be

executed. This information can be collected by monitoring the

distributed system interconnection network traffic levels and

averaging the data over the period of time when the parallel

application will most likely be running. This information can

be used by the task allocation algorithm when determining the

communication cost of which subroutines are the best to

13



distribute.

2.3. ANSI C Data Collection
'~~

\

For th-e ANSI C parallelizer implementation under develop-

ment, all code processed is assumed to be compilable by an

ANSI C compiler. For simplicity, the parallelizer makes

assumptions about structures in the input source code that a

compiler would not allow, so errors may be masked if the

source code is not compilable. All code presented to the

parallelizer also must be passed through an ANSI C prepro-

cessor so as to include all relevant header files and condi-

tional compilation information. If source code is available

for system libraries or parallelized libraries exist, some

system calls may also be able to be parallelized.

An ANSI C program is made up of data type definitions,

internal and external global variable declarations, function

prototypes, and functions definitions themselves. Functions

may not be nested inside one another, but the scope, or

current level in the program, must be accurately maintained

for proper variable, data type, and function name differentia-

tion. The scope of a program must include module file names,

levels of recursion within data type definitions, and level

within functions to uniquely track names used in the source

code. Unique names in all contexts must be distinguishable

because ANSI C allows the programmer to use the same name for

different uses within the same program.

14



Functions may contain their own data type definitions,

local variables, and a list of arguments passed to the

function when it is called. within a function, references to

arguments, global variables, local variables, enumeration

constants, and other functions may be found. As previously

stated, information regarding data types, global variables,

function definitions, local variables, and variable and

function references must be collected for data flow and data

dependency analysis. All data is stored in tables, created in

sorted order by the name field of the respective structure.

By storing the tables in sorted order, subsequent searches can

utilize binary search techniques for quick access.

Most of the necessary information can be collected

through the use of a parser able to scan ANSI C source code

and extract the relevant items. Because ANSI C is almost

entirely unambiguous, it is well'suited for use with automatic

parser generation tools such as YACC and LEX, two UNIX

utilities. (A complete grammar for ANSI C may be found in the

appendix of Kernighan and Ritchie's book on ANSI C, along with

information regarding the scope of names and their dura-

tion[24]) . In the following sections, each of the various

types of information and its significance is briefly dis-

cussed.

2.3.1. ANSI C Data Types

All variables, arguments, and function return values in

15



a C program must be of some defined data type, each stored so

that format and size information associated with variables and

constants can be determined when distributing specific

procedures. As ANSI C contains only five basic data types,

integer, character, floating point, double length floating

point, and void; complex data types may be created by combin­

ing arbitrary groups of the basic data types into structures

or unions. Enumeration data types allow the definition of a

set of constants to be used within the program for variables

that only take on fixed values. Using the typedef keyword,

ANSI C allows the programmer to create synonym names for data

types, which helps to simplify naming conventions.

Every type definition in the user program will be stored

in a dynamically allocated data types table. The data types

table can have a subtable with data type subfields to repre­

sent structures, unions, and enumerations, or may point to

another type for which the entry is a synonym. The first

entries in the array will be the fundamental types of ANSI C

from which all structures, unions, enumerations and typedefs

will be created. Four other keywords, short, long, signed,

and unsigned can be used in defining types. These may either

be a modifier of a base type, such as character, or if a

variable's type is defined only with a modifier, the base type

is assumed to be integer. Each variable can have up to two

modifiers defined along with the base type, short unsigned

char, for example.

16



Each variable or pointer may have a qualifier of const or

volatile associated with it. Although acceptabl~, but not

meaningful, both const and volatile can be present and will be

recorded. Since one qualifier is associated with the base

type and all others refer to pointers to the base type,

storage must be allotted for const and another for volatile

allowing the user to specify levels of indirection on a per

variable basis. Each variable may also have a storage class

specifier defined in its declaration. Although the compiler

enforces when specifiers may be used, exactly one specifier is

allowed for each variable. The legal storage class specifiers

are auto, extern, register, static, and typedef.

All variables defined in the user program, whether local,

global, or procedure arguments, must reference a defined data

type in the data types table. All synonyms for data types

must reference another data type in the data types table and

the chain must be anchored by a structure, union, enumeration,

or base type. Each entry in the data types table contains a

pointer which can point to either another data type, to a

dynamic array of pointers to field structures, to a dynamic

array of pointers to enumeration structures, or to NULL, which

indicates that this entry is a base type definition.

Data types can be explicitly defined by use of a typedef

statement, or implicitly defined by declaring the data type as

part of a global or local variable declaration, function

return type, or even as the data type for an argument passed

17



to a function. While this is not good programming practice,

it is legal in ANSI C. When collecting the data type defini-

tions from the user's source code, it is important to maintain

consistency, therefore, a type or variable name should only

have one unique corresponding entry in the appropriate table.

While data types may not be redefined within one file unless

the definitions are identical, which is enforced by the

compiler, multiple definitions may be present pre-processed

files.

structures and unions may be processed in the same

fashion because they have the same definition rUles, although

their storage size rules do differ. The declarations of

structures and unions may contain recursive declarations,

where the structure or union contains subfields that are

pointers to structures of the type being defined.

2.3.2. ANSI C Global Variables

Each global variable definition in the user program will

be stored in a dynamically allocated table, which does not

require a subtable. The recording of global variables not

only involves storage of the global variable information, but

may also involve the definition of data types, and the

processing of function prototypes. When a global variable

definition is encountered which also defines a structure,

union, or enumeration data type, the type is processed before

the global variable information is collected.

18
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that do not define new data types, the type given must already

exist and have been processed.

The collection of global variable information is rela­

tively straightforward compared with data types and functions ...

Individual definitions of global variables contain all

information necessary including base type, specifier, and

qualifier, but mUltiple global variables may be included in

one definition. since variables may be defined in lists

referring to the same base type, all members in the list of

globals must be entered into the table with references to the

base type defined. Likewise, base type qualifier and speci­

fier information must also be stored with each variable

defined in the list.

2.3.3. ANSI C Functions

All functions prototyped or defined in the user's code

will be stored in another dynamically allocated table. Each

entry in the subroutine table contains pointers to three other

dynamically allocated subtables per entry, one for the

argument list, one for the local variables, and one for the

variable and function references. The latter's is the most

complicated of all of the tables and will be the largest and

most used table used in the analysis of routines which may be

distributed. As with global variables, data types may be

defined in the function definitions in either the return data

type or parameter list positions.
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The difference between processing a prototype and

processing a function definition is that a function definition

requires changing the current scope. ANSI C allows both the

older standard C function prototypes and function argument

list definitions, as well as the new versions which allow more

rigorous type checking. This means that the parser and

collection routines need to be able to distinguish between and

handle each appropriately. Old style arguments are listed

simply by the n~me of the parameter; the names are assigned

types in a declaration section prior to the start of the

function. New style arguments specify the base type and

qualifiers for each parameter within the definition of the

argument list.

The argument subtable consists of each argument passed to

the subroutine as defined in the procedure declaration. The

local variable subtable contains all variables locally defined

within the procedure, and the variable reference subtable

contains an entry for each variable, local or global, and each

other function that is referenced or altered in some fashion

by the procedure. A reference to a variable or function is

defined as a set of operations including reading, writing,

allocating, deallocating, and calling. These references may

be direct via assignment operators, or indirect through the

use of pointers.

To completely analyze all indirect references, post

parsing analysis is necessary to correctly identify variable

20



function arguments and indirectly altered memory items. since

the parser cannot fill in the value of variables to determine

all memory usage, especially in programs that use dynamically

allocated memory structures, some form of dynamic variable

tracking is necessary while the parallel program is executing.

Dynamic variable tracking entails keeping track of common

memory segments and references to them by any of the proces­

sors, local or remote, that are part of the program. While

this is an important part of maintaining a consistent view of

the memory used by a distributed application, a thorough

discussion of the details is beyond the scope of this thesis.

2.3.4. Uncorrelated Data References Table

Yet another table, to store uncorrelated references, is

needed for the information gathering phase of parallelization.

This table will hold the names of all variable or function

references for which there has been no definition. There are

two cases under which this could occur. A function could be

defined later in a source file and not have a function

prototype, in which case it will end up in the uncorrelated

data reference table temporarily until it is defined. Or, if

a reference exists for which no definition is seen, in which

case the object referenced must be in another compiled object

module and the source code is not available. Consequently,

any routine that has not been defined completely cannot be

distributed because there is no way of knowing what exactly
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the routine does to memory locations.

Once the data described above has been collected, a

complete analysis must be performed to determine distribution

eligibility for portions of the code. By using the collected

information to examining data and control interdependencies,

the program may be successfully divided into tasks which may

be scheduled and executed in parallel which is described in

the following chapter.
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Chapter 3. Control Flow Analysis and Data Dependency

The second step in parallelizing a sequential program,

after extracting relevant parallelization information, is to

analyze the control flow and data dependencies inherent in the

code so as to decide which structures may be parallelized.

There are two levels of parallelism that can be defined, fine

grain and coarse grain. Fine grain parallelism occurs at the

statement level of a program and is suitable for certain types

of parallel computers. Coarse grain parallelism is usually

found at a procedural or functional level in a program. For

the analysis presented in this thesis, it is assumed that the

program will be analyzed to extract large grain parallelism.

There are two basic approaches to identifying parallelism

that are commonly used, data or loop parallelism, and func­

tional or task level parallelism. Depending on the function

of the program to be parallelized and the type of parallel

system available, one approach may be better suited than the

other. The loop or data approach looks for fine grain paral­

lelism, while the functional or task approach searches for

large grain parallelism.

While tightly coupled parallel computers, especially

those with shared memory, can take advantage of coarse and

fine grained parallelism, loosely coupled distributed systems

are better suited for coarse or large grain parallelism.

Generally, in distributed systems, fine grain parallelism is
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not worth the overhead incurred to distribute the code

segment, due to data conversion time, communication time, and

operating system overhead. An ideal code parallelizer would

attempt to combine the approaches in order to maximize the

amount of parallelism obtained and to tailor the code generat­

ed to the available system resources.

To perform the analysis of information collected, the

program control structures and data dependencies are usually

depicted in a graphical arrangement of either directed or

undirected graphs. Using graph theory to analyze these

graphs, interdependence between program sections and cyclical

structures may be found and decisions can be made on parallel­

ization of routines. While information in a directed graph

can be reduced into an undirected graph, information in an

undirected graph cannot be used to construct a directed graph.

Even-though either directed or undirected graphs may be used,

I will only discuss the case of directed graphs in this

thesis, for they will offer the most useful presentation of

the interprocess communication cost function.

Both the loop and functional approaches to the parallel­

ization problem require some sort of analysis of the program

control, which is usually depicted in a control flow graph

(CFG). This graph can be drawn as a directed graph with nodes

representing basic blocks of a program and edges representing

the control paths. A basic block is defined as a piece of

code from which control may enter only at the top and exit
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only at the bottom. Once execution of the block is started,

all instructions contained within the block will be executed.

Data dependency analysis is usually represented by a data

dependency graph (DOG), which may.-be drawn as a directed graph

with nodes representing the program's basic blocks and the

edges symbolizing dependencies between variables used by the

basic blocks. A DOG can be drawn for the internal behavior of

each basic block for fine grain parallelism and a DOG may also

be drawn between basic blocks or modules of a program for

larger grain parallelism.

There are four general types of program dependencies,

flow dependency, anti-dependency, output dependency, and

control dependency, that may be analyzed for each statement in

a program [4] . A statement Sj is flow dependent on Sj if Sj

assigns a value to a variable which is subsequently used in Sj.

Sj is anti-dependent on Sj if the value of the variable used in

Sj is recomputed later by Sj. Sj is output dependent on Sj if

both statements define the same variable but ~ writes to the

location of the variable after Sj. Finally, Sj is control

dependent on Sj if the execution of Sj depends on the path

taken due to the evaluation of Sj.

Figure 1 shows a segment of code written in c which could

be contained within a function. The numbers corresponding to

the lines of code are shown in two graphs to the left, one

showing the basic blocks, and the other depicting the depen­

dencies as described above. Although this example is shown at
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the statement level, it could easily be expanded to the larger

scope of modules. The dependency edges are shown as: flow -

normal edge, anti - edge with a slash through it, output -

edge with a circle on it, and control - edge with the letter

C next to it. This example shows only the types of dependen-
-,

cies; it does not attempt to explain how such a code fragment

could be parallelized.

1 scale = alpha * beta;

2 for (i=start; i<finish; i++)

3 { dimension[i] = scale * items[i];

4 epsilon = items[i] * delta;

5 error += epsilon; }

6 if (done)

7 scale = dimensioneD];

8 return;

Figure 1 - Data Dependencies

3.1. Loop Parallelism

Data parallelism tries to distribute loops and data

structures across several machines, that each perform the same

type of operations. Data parallelism is the most researched

of the two methodologies and examples can be found in lan-

guages, compilers, and architecture designs. The concept of

data parallelism examines loop structures which perform com-

putations on data to determine if any dependency between data
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items exists. If no dependency is present or can be distrib-

uted in such a way as to maintain the data dependencies, the

computations may be done in parallel. A direct application of

data dependency analysis to parallelizing compilers is

presented in a paper by Li, Yew and Zhu[2].

)
3.2. Functional Parallelism

/

Functional or task level parallelism uses interprocedural

analysis to identify tasks or functional modules that may be

distributed in parallel. Girkar and Polychronopoulos[3]

present an intermediate parallel program representation that

attempts to encapsulate data and control dependencies into

modules representing functional tasks. with proper minimiza-

tion of dependencies, these tasks can be distributed in

parallel with minimal synchronization overhead. since the

functional parallelism approach offers potentially large grain

parallelism with minimal module interdependency, it is well

suited for parallelization of programs for use in distributed

systems.

Figure 2A shows an example of a hierarchical program

graph, Figure 2B a CFG, and Figure 2C a DDG that it could map

to in terms of directed graphs. The edge weights in Figure 2B

correspond to the calling frequencies of the subroutines for

a specific input data stream. As will be shown in the

following two chapters, this information is particularly

important in accurately defining the interprocess communica-
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tion costs between program modules. Minimization of a

parallel program's execution time requires that program

modules be placed so as to minimize the IPC costs. Thus, the

static task allocation algorithm needs accurate calling

frequency information for average input data sizes in order to

properly calculate IPC costs and place modules at appropriate

processors in the system.

2
6

CIJ
®0
®®

A)

Figure 2 - Program Dependency Graphs

C)

3.3. ANSI C Parallelizer

For the implementation of the ANSI C parallelizer, the

approach taken is similar to the functional partitioning

described in the previous section. By analyzing the code at

the subroutine level, it can be segmented naturally into

blocks. Similar to basic blocks, though they do not follow

the strict definition, SUbroutines usually only have one entry

point and one exit point. Since most programs can be drawn as
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a hierarchically arranged graph, subroutines generally

represent the functional tasks performed at each stage in the

program's execution.

Using the terminology of Bustard, Elder, and Welsh[5], a

dominant module provides motive force for a program while a

subordinate module provides a service for dominant components.

Subordinate modules may be shared between more than one

dominant module. It is by applying these properties to the

subroutines of a program, groupings of subordinate modules and

the dominant modules they service can be made. Subordinate

routines that are shared may be duplicated in different blocks

to help form larger modules, which I will call tasks. By

analyzing the data and control dependencies between these

module groups, one can determine which of the tasks may be

distributed in parallel.

Constraints on partitioning or placement of tasks may not

only be a function of dependencies of control or data flow but

of resources. If a particular program uses resources that are

not available on all processors in the system, it will have to

be placed on a machine that has the capabilities required. If

a significant number of tasks in a program exhibit this type

of behavior, parallelization of a program may yield little or

no benefit.

No specific algorithms are discussed in this thesis for

the actual partitioning of a program into these task group­

ings. The remainder of the thesis will assume that the
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program has already been segmented into tasks and will explore

the importance of task allocation with static load balancing

among the processors available in the system. The most

important aspect of both problems is the cost of interprocess

communication.
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Chapter 4. Literature Survey Of IPC Cost Functions

An excellent place to begin the evaluation of inter­

processccommuhication cost· functions is in the recent techni­

calliterature. This survey does not investigate papers dated

earlier than 1985, and while not inclusive, covers several

interprocess communication cost functions. Each approach will

be presented separately, detailing all of the terms in the

equations, and the conditions under which it was designed to

be used. Since the equations in all example cases were

designed to be used in solving the problem of initial task

assignment, some terms in the equations account for functions

that are not of interest to this study. Following the

presentation of the various IPC cost formulas, I will point

out the drawbacks of each approach as it applies the general

communication costs in a generic distributed environment. All

of the approaches presented herein assume that the program to

be distributed has been segmented into tasks or modules and

that the communication patterns between the various modules

are known.

4.1. Load Imbalance Plus Communication Time

Hwang and XU[16] derive a cost function based on the sum

of a load imbalance function and a communication cost func­

tion. To solve the partition problem, the authors use an

undirected program graph to represent the tasks to be allocat-
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ed to system processors with edge weights corresponding to

communication patterns between program modules. An example of

an undirected program graph can be seen in Figure 3. The

circles represent program modules, with the numbers in the

circles depicting the amount of code and data memory used

(usually the numbers indicate the expected execution time).

since the graph is undirected, the edge weights coincide with

the total number of messages that are passed between the two

modules, regardless of the point of origination. The authors

assume that the distributed system can be represented by a

connected graph, where one bidirectional link exists between

any pair of processors that are neighbors. They also assume

that there is only one way that a message may be routed

between any two processors.

Figure 3 - An Undirected Program Graph

The imbalance function is calculated by summing the

expected computational load on each of the local processors,
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based on a specific mapping of program tasks to the available

processors. The total expected load is divided by the number

of processors and an imbalance vector is generated by taking

the absolute value of the local load minus the average load.

This vector is then summed to form the imbalance function.

To compute the communication cost, the authors calculate

node to node communication delays and store them in an N by N

matrix, where N is the number of nodes in the system. Each

cost entry, Sk' in the matrix corresponds to the total cost of

sending all messages from node j to node k and from node k to

node j. Each Sk cost entry is calculated by mUltiplying the

distance between nodes j and k by the edge weights between all

program modules residing on node j and all program modules

residing on node k. The final communication cost of a

particular distribution of program tasks is found by summing

all entries in the cost matrix and dividing the sum by two.

The division by two is required because the cost between node

j and node k will be counted twice, once using the entry Sk

and again using the entry c~. As the authors present in their

paper, the following equation represents their allocation cost

function. In the equation, N equals the number of processors,

L denotes the load, either local or average, and C is the

entry in the communication cost matrix.

N 1 N N

Cost=EImb+Ecom=L !LLOC-LAVgl+- L L Cjk (1)
i=l 2 j=l k=l

The complexity of this algorithm may be reduced without

changing the content of the equation or its behavior, by
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noting that cost entriesCjk where j = k, are always zero

because the distance between nodes is zero. This case corre-

. sponds to both program modules under evaluation residing on

the same processor. If the matrix is split along the j = k

diagonal, it can also readily be seen that the lower half of

the matrix is a reflection of the upper half of the matrix

because the node indices are reversed, however, the communi-

cation cost based on undirected graph edge weights is the

same. To make the evaluation of the equation simpler, only

the upper triangular half of the cost function matrix needs to

be computed and any entry in the matrix where index j = index

k does not have to be calculated. Since the entries in the

cost matrix would only be counted once, the equation could be

changed as follows:
N N-1 N

Cost=EImb+Ecom=L ILLOC-LAVgl+L L Cjk
i=l j=l k=j+1

(2)

where j corresponds to the rows and k corresponds to the

columns of the cost matrix.

4.2. Execution Time Plus Communication Cost

Ezzat, Bergeron, and Pokoski[17], take a similar approach

to their cost function, which utilizes the expected execution

time of the process plus a communication cost term. Although

not directly stated in the paper, but implied in very confus-

ing notation, the authors make some assumptions about the

interconnection structure of the distributed system. They

assume that the system consists of a group of processors
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connected by a communication structure, over which a message

has only one way to be routed between any two nodes. It is

assumed that there is a matrix, cij' which contains in each

entry the number of messages passed from process i to process

j. From this, I concluded that the graph representing the

program to be distributed was a directed graph.

The cost function uses the assumption that communication

cost is directly proportional to the distance, D~, that the

message has to travel and that two processes executing on the

same node have a distance of zero. The authors use the

variable QOOn to represent the expected process execution time

of process i on host processor k with resource m. They use Wm

as a scaling factor, to account for the differences in

measurement units, and introduce a function XOOn , which is a 1

if process i is assigned to processor k at resource m, zero

otherwise. The authors also introduce X~c to be the communi-

cation resource of processor k assigned to process i, which I

will rename Yikc •

follows:

The cost formula is then represented as

where i and j represent processes residing on processor nodes

k and 1 respectively. The sum over m represents the cost

associated with the expected execution time of all modules

utilizing resource m on processor k by process i. The

interior double sum term represents the communication cost
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incurred between processor nodes k and I using communication

resources at the respective nodes by processes i and j. The

addition of these two terms summed over all processes on all

nodes yields the total cost.

4.3. Link Delays with Traffic Density

Bollinger and Midkiff[18] take a different approach to

the derivation of a cost function for total communication

cost. Instead of computing a set 'of delays based on the

number of nodes in the system, they base their calculations on

the number of communication links in the system. They also

use a directed graph as their model of the program tasks to be

partitioned, not undirected. In their program graph represen­

tation, each edge weight corresponds to the number of messages

that must be transmitted between a specific source process and

a specific destination process. They assume that the proces­

sors in the system may be represented by a connected graph,

disallowing isolated processors. Further, they assume that

only one bidirectional communication link exists between any

two processors (multiple paths may exist between two proces­

sors) and that messages must always be routed over a specific

path from process j to process k and may not sent over

different network connections. The authors also restrict the

number of processes in the system to be exactly equal to the

number of processors and only allow one process to be placed

on each processor in the system. Thus, they avoid the issue

36



"of load balancing by only examin'ing an evenly distributed

case, assuming all processes have roughly the same execution

time.

The authors calculate the communication cost between any

two processes j and k using a traffic density term, ~k' times

the distance between processes j and k. The distance term

must include the sum of the delays of all links used in

establishing communication between processes j and k and the

Wjk . term is defined as the sum of all messages that must

traverse this path. They then derive the delay, Di , at each

link i in the system in terms of all of the processes in the

system that use the link. US! defines a usage function that is

true if the link is used and false otherwise. The total

communication cost between processes j and k can thus be

written as,
d jk

costjk=E Di
i=l

Where Di=E Wst'Ust(L)
s,t

(4)

which adds the cost of each link used to send a message from

process j to process k.

4.4. Forgotten Communication Costs

Unfortunately, the cost functions presented in all of the

above cases do not yield an accurate analysis of the communi-

cation costs in all cases. The communication cost of two

processes on the same processor node is assumed to be zero

because the distance between the processes is zero, however,
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this is not true in practice. Even though two processes may

reside on the same host processor, there is a communication

cost associated with the transmission of a mess~ge from one to

the other. In terms of the delay time, the internally passed

message will be considerably faster than any external transac­

tion, although there are several cases where the internal

communication time may be significant.

since processes that communicate heavily with one another

should be grouped together, or as close as possible to

minimize the communication cost, a large number of internal

messages may add up to a significant;.delay. If the computa­

tional load on a processor is large or the number of processes

assigned to one processor is high, then the operating system

overhead to concurrently process all of the tasks may slow the

response time of the communication resources. Another factor

inherent to the internal communication time is the number of

communication resources available and the number of processes

on the node that wish to use them. The addition of another

term in the equation to handle this would yield a better

approximation.

4.5. Real Effect of Load Imbalance

Hwang and XU[16] and Ezzat, Bergeron, and Pokoski[17]

both use a term to represent processor load in their alloca­

tion equations. While the processor load is important to the

even allocation of tasks and load balancing, the term usually
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plays a very small role in the communication costs. For this

reason, the above mentioned cost equations separate this term

from the communication cost term in their respective cost

functions, but the inclusion of the term may yield inaccurate

results for the intended cost function because of the differ­

ences between the behavior of the two terms.

A partitioning in which computationally intensive, yet

low communication, segments of a program are placed on the

same node may make the evaluation of the cost function

disproportionately large. The distance between two nodes only

counts the number of links used and does not include the

incurred delays of the message transmission along the path

taken between two nodes or the bandwidth of the communication

links themselves. This may result in a choice to move the

allocation of these processes to more evenly distribute the

load, even though the communication delays may have been mini­

mized. In fact, it would be difficult to minimize the

communication delays and find a mapping that yielded a

balanced processor load using either of the two cost func­

tions.

4.6. Architecture and Configuration Specifics

None of the above cost functions utilize terms to

represent the real cost of message transmission with respect

to architecture or system configuration. The delay and link

terms in the equations of Bollinger and Midkiff [18], Dj and Lj ,
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are generic in terms of system architecture or configuration;

the delay terms only account for total traffic density. While

this yields an overall estimate of the communication time, it

does not include a term which corresponds to the delay encoun­

tered while waiting on links in use. If one assumes that link

busy delays are linearly related to the traffic density, then

this term would not affect the use of this equation. If the

relattonship is_no_t linear, then such a term should be in the

equation because it may change the behavior significantly as

link message densities increase.

The delay terms should also contain architecture and

configuration specific timing as a function of message length

for the cost function to be accurate. Each of the authors

assume that a message is atomic and that message length is

either equal in all cases or that it is inconsequential. In

real systems, messages do not have to be of the same length

and the transmission time is usually partially dependent on

the amount of data sent. While larger messages are often

packetized for maintaining data integrity and the above

formulas could treat each packet as individual messages, this

still does not account for varying packet sizes. In fact,

mUltistage interconnection networks, bus architectures, and

packet switched networks all require different terms, not

shown in these equations, to accurately represent the communi­

cation costs (this includes cut-through routing used in point­

to-point networks) .

40



4.7. Broadcast Communication Costs

None of the articles specifically mention broadcast

messages, only that messages are passed directly from one

process to. another. To account for broadcast type messages

using the above cost formulas, individual messages would have

to be sent from the originating process to all destinations,

but this may not accurately model the cost. Most distributed

systems contain one or more mechanisms for broadcast messages,

which none of these formulas account for. This may be an

important distinction in heterogeneous distr ibuted systems

where the processor nodes and networks can have different

characteristics depending on the point of origination and

routing algorithms used.

A broadcast message initiated by one process must filter

through the system to be received at all processes. The

organization of the system and the mapping of the task units

to the processors in the system may greatly affect the time

required to transmit a broadcast message. In fact, the paths

taken in the broadcast message distribution can change

considerably with different mappings. While this may be

accounted for in the delays based on known communication

patterns and routing algorithms, it becomes difficult to

handle as the system size and complexity increases. Again,

although this is a problem to consider in designing an

appropriate cost function for a specific application, it is

beyond the scope of this paper.
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Chapter 5. General IPC Cost Function

In much of the technical literature pertaining to task

allocation and load balancing, the primary focus is on the

problem of partitioning a program graph onto a distributed

system graph. Most of the presentation is done at a theoreti­

cal level without reference to a specific architecture or

interconnection structure. While analysis of the problem in

this arena is excellent for studying and understanding the

nature of the problem, it does not necessarily lead from

theory into implementation easily. When specific machines are

mentioned, most researchers make the assumption that machine

architecture is uniform across the processors and the inter­

connection network. While this often simplifies the analysis

of the system and algorithms, it may only lead to specific

solutions and implementations which are not be able to be

generalized.

Due to the high cost of parallel processor arrays or

mUlticomputers, the difficulty of parallel programming, and

immense popularity and low cost of high speed interconnection

networks available, many computer users are forming powerful

distributed systems from existing computer resources. Large

networks of heterogeneous computer systems will become more

prevalent, and with them, efficient methods of estimating

communication costs for program partitioning will become

extremely important.
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5.1. Guidelines and Assumptions

An interprocess communication cost formula should

accurately define all parameters that affect the transmission

of a message from one process to another. Likewise, the

formula should be general enough to be able to describe a

message transmission in one mUltiprocess computer or a

complete heterogeneous distributed system. It should also

contain terms specific enough to describe, with a high degree

of accuracy, the real cost of traffic on any given link within

any part of a complex distributed system. While all of the

terms described in the following descriptions may not be

available or practical to use in making allocation or load

balancing decisions, they are essential to an accurate

interprocess communication cost function.

For this derivation I will assume that the program to be

distributed has been segmented into tasks, and that the

communication patterns between the various tasks are known.

I further assume that the distributed system can be represent­

ed by a connected graph, such that there are no isolated

processors. I also assume that the program to be distributed

across the processors is represented by a directed graph and

that only one program is present in the system.

5.2. Terms and Definitions

Let the program graph contain P different program modules

and Pn be the designation for process n in the system. Let

43



the edge weights of the directed graph represent the number of

messages that must be sent between Pj and Pk denoted as Wjk •

Note that W~ _implies a logical connection between processes j

and k and that this may be established by using zero or more

physical links in the system.

I will derive a general cost formula for representation

of communication overhead by defining the communication cost

between pairs of processes, then summing these to obtain the

overall communication cost of a program partitioning. For the

derivation, I will assume only one bidirectional communication

link between neighboring processors and that given two

processes, j and k, there is only one possible path for

routing messages from process j to process k. It is not

assumed that the routing path from process k to process j is

the same as the routing path from process j to process k. I

also assume, for the derivation, that only one program will be

partitioned across the distributed system at one time although

the formula developed will work for multiple sets of process­

es. After the general formula has been derived, I will

discuss the ramifications of relaxing this assumption and

allowing mUltiple links between neighboring processors as well

as parallel communication paths between processes.

The analysis of general communication cost function

should originate from the point of view of two independent

processes, residing on two separate host processors, connected

by some communications network, one of which wants to send a
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message to the other. The case of two communicating processes

on one host processor becomes a simplified case of the

independent processor scenario. In a message sent from

process ~ to process Pk , ~ issues a send command to its host

operating system and expects that the message will be deliv­

ered to Pk on the remote system. The analysis that follows

details the delays in performing this operation with the

assumption that neither the sending nor the receiving process­

es participate in the transmission of the message in any way

other than the send and receive primitive instructions to

their respective local operating systems.

In any communications system, there are several major

factors that incur delays in the transmission of a message.

The delay associated with message transmission is largely a

function of the hardware used as an interconnection mechanism

and its electrical characteristics. The bandwidth of a link

in the network determines the quantity of information that can

be transmitted using that link in a specified period of time.

Assuming that the system is not homogeneous, each link in the

system could potentially have a different bandwidth. I will

use L as the total number of links in the system and ~ to

define link number y in the system network connecting a pair

of processors.

The operating system of the sending processor has some

required overhead in preparation of a message for transmis­

sion. Likewise, the receiving processor's operating system
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must incur some overhead, usually to buffer the message before

presenting it to the receiving process. In between, the

message must traverse a path through the network .of the

distributed system before arriving at the destination. The

sending operating system is usually responsible for establish­

ing the connections requested in addition to transmitting the

message. I will refer to the operating system overhead time

as Sj + Rk , where Sj is the local operating system setup

overhead time prior to sending a message from process j, and

Rk is the local operating system collection overhead time

while receiving a message at process k.

If a message is being broken into packets, this requires

more overhead at both the sending and receiving nodes to

segment the message into packets and reassemble the message at

the receiving end, but does not change the overhead term

def initions; it only increases their magnitude. This overhead

will only be incurred for the preparation and reception of the

message as a whole, not on an individual packet basis. In the

case of a packetized message, the transmission delay will

include the sum of the network delays of all packets sent,

plus the operating system overhead of the sending and recei­

ving systems counted only once. Since it is assumed in this

thesis that the message routing path is the same for all

packets of a message, and that all packets of a message are

sent immediately following the initial packet of a message,

then the cost of sending a message from process j to process
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k is proportional to ~k' and does not require the number of

packets. The case of multiple routing paths is briefly

mentioned in section 6.1 but is not explored in this thesis.

Regardless of whether packets are used, the communication

time over a given communication link is directly proportional

to the number of bytes of information being transmitted. I

will define Cy to be the amount of time required to send one

byte of information over link ~ of the distributed system and

~jk to be the magnitude in bytes of the ith message sent from

process j to process k. I will use ~k to represent the sum,

in bytes, of all data transmitted from process j to process k.

I designate Ty to represent the total traffic density on link

y of the system as the sum of all data, in bytes, transferred

between any process pairs using link y. Note that the

operating system, when sending a message, or packets of a

message, usually includes extra bytes for error detection and

message reassembly. These extra bytes must be included in the

~jk magnitude values.

To properly account for the bandwidth of the individual

links in the system, it is necessary to look at the amount of

data transferred over what period of time. I will use Ey to

denote the total expected execution time between the first and

last message between any processes that use link y in the

distributed system. Theoretically it is possible to figure

out this term, although practically, it generally is not

-----feasible. The ratio of Ty over Ey will then yield an approxi-
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mation to the amount of bandwidth used on link y. The amount

of bandwidth used may be directly related to the performance

of the link under different load conditions.

To the sending and receiving operating system overhead,

another term must be added to include the cost of acquiring a

communication link between the two systems. I separate the

message transmission and reception overhead costs from the

acquisition of a communication channel because the acquisition

time required to obtain a free channel is not generally a

function of either the sending or receiving operating systems.

I will define By{Ty/Ey} as the waiting time required in trying

to obtain the desired connection due to a busy lirik, for each

link, Ly, in the system. The delay time of obtaining a

communication channel is a function of the communication

network used in the system and its bandwidth. The density of

traffic on the links may play a significant role in the time

spent waiting due to bUsy communication resources, especially

as the traffic density increases. I will use Qjlc to denote the

delay incurred waiting for bUsy links in sending all packets

from process j to process k.

If message paths between processes involve intermediate

connections with other processors, the delay time increases by

the incurred delay at each intermediate point in the network.

I will define N to be the number of processor nodes in the

distributed system, and Nx to denote node x of N nodes in the

system. I will use Ax as the delay associated with node Nx in
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the system when used as an intermediate processor in the

transmission of a message. In a store and forward scenario,

this delay includes Sx and Rx of the intermediate node, which

is due to the processor's operating system software. In a cut

through type of routing, the ~ delay term corresponds to the

time required to establish a hardware connection from one link

to another, bypassing the node (not including the time

required to obtain the next link in the routing path) .

In a good mapping of a program graph to the system graph,

communication densities on the various links are minimized as

much as possible also minimizing the overall communication

time. To define the total traffic density associated with a

specific link in the system, I need- to define a link usage

function Ujk , such that Ujk (Ly) = 1 if the connection Ly is used

in the communication between processes j and k, and ~k(Ly) =

o otherwise. This usage function can also be used with

intermediate processor nodes as arguments to determine if the

node is used in communication between processes j and k. I

will define two other intermediate result terms, Gjk and Hjk , to

represent the total delay due to the number of messages sent

and the total delay due to the number of bytes sent respec­

tively, in all messages from process j to process k. I also

need to define ~k to be the total communication delay between

processes j and k.

Before deriving the set of equations to calculate Dj1cf

all defined terminology is summarized in the following table:
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Ly:

~:

Table I - Definition of Terms

Process n ofP processes in the program being
partitioned across the distributed system.

Weight of directed program graph edge between
processes j and k. (Number of messages)

Link y of L links in the distributed system.

Local sending operating system overhead where
process j resides.

Local receiving operating system overhead
where process k resides.

The communication time for one byte of infor­
mation to be transmitted over link y of the
distributed system.

The magnitude, in bytes, of the ith message
sent from process j to process k.

The magnitude, in bytes, of the amount of data
sent from process j to process k.

Traffic density in terms of messages or pack­
ets on link y of the distributed system.

Expected execution time between first and last
message to use link y of the distributed
system.

Delay while waiting for link y of the distrib­
uted system to become free where z is the
bandwidth used on link y.

Total busy waiting time for sending all pack­
ets from process j to process k.

Node x of N nodes in the distributed system.

The delay associated with intermediate node x.

Usage function for item z (link or node) in
communication between processes j and k.

The total delay due to the number of messages
sent from process j to process k.
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The total delay due to the number of bytes
sent from process j to process k.

The total communication delay between process­
es j and k.

5.3. A General IPC Cost Formula

To begin the derivation of the cost formula, the total

traffic sent (in number of bytes) from process j to' process k

is calculated as follows:
Wjk

Xjk=L Mijk
i=l

(5)

To calculate the traffic densities, Ty , one must sum over

all process pairs, the magnitudes of the messages that must be

-transmitted for all messages if lin* L y is used in-the-

(6)

transmission of the messages. The formula for computing the

link traffic densities is as follows:

p P wjk

Ty=L L L Mijk'Ujk(Ly)
j=l k=l i=l

The total time spent waiting on busy links while sending

all packets from process j to process k can be written as:

L T
Qjk=Wjk'L By ( -1) 'Ujk(L) (7)

y=l Ey

The intermediate term, ~k' representing the total cost

due to the number of messages sent from process j to process

k, can be calculated as follows:
N

Gjk=Wjk' (5j+Rk+L Az'Ujk (Nz ) )
z=l

(8)

The intermediate term, ~k' representing the total cost

due to the number of bytes sent from process j to process k,
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(9)

can be calculated as follows:
L

Hjk=Xjk'E Cy'Ujk (Ly )
y=l

The general form of an accurate ~nterprocess communica-

tion cost function, D~, representing the communication delay

between processes ~ and Pk can now be derived. The following

equation combines all appropriate terms to yield the cost of

sending all messages from any process j to any process k.

D jk=Gjk+Qjk+H jk ( 10)

The first term is computed by adding the cost of sending

a message from process j to the cost of receiving a message at

process k and any intermediate node delay based on the number

of messages sent, then multiplying the result by the number of

messages sent between process j and process k. This term

represents the total operating system costs of sending all

messages between process j and process k. The second term of

the equation represents the total time spent waiting for busy

communication resources in sending all packets of information

from process j to process k. The third and final term,

represents the time required to send all bytes of data from

process ~ to process Pt. This value is calculated as the time

it takes to send one byte of data over each link used plus the

time it takes to pass through each intermediate node that is

used along the way.

In evaluating the cost of a particular partitioning of a

program across the distributed system, the total communication

cost of the partitioning is needed. One method of calculating
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( 11)

the total communication cost of a specific segmentation of the

program to be distributed is the following equation. It

simply evaluates the sum of all individual process to process

communication costs.
p p

Total Communication Cost =~ L Djk
j=l k=l

While this can be used as a measure of a particular program

partitioning, it does not reflect the actual delay that would

be observed on a real system, since all of the Djk terms are in

fact independent and occur in some parallel overlapping

fashion. In the next chapter, I will discuss the ramifica-

tions of relaxing the assumption of single routing paths and

analyze the derived cost function in terms of several inter-

connection topologies.
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Chapter 6. Analysis of Topologies

After .discussing the results of relaxing the assumption

that all messages passed from one process to another must be

routed along the same path, I will demonstrate the flexible

nature of the above cost function, by showing how the equa-

tions can be used to analyze several of the popular bus,

static and dynamic network topologies. In all cases, the

networks shown are assumed to be homogeneous, but this

restriction does not apply to the processors. In so much as

it is possible to examine the cost function in cases where

several different networks are combined in one system, in the

interests of simplicity and brevity, I will not examine any

such examples in this text.

Due to the abundance of data formats, communication

protocols, and routing algorithms, I will not relate the

discussion of the following sections to specific hardware or

software products, keeping the discussion at the theoretical

level only. A thorough discussion of all different permuta-

tions of the various network types would fill up too much

space and detract from the main idea of analyzing the communi-

cation costs. Specific networks could easily be analyzed in

the same fashion as the following general theoretical discus­
"'\

sion.
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6.1. Parallel Links and Message Paths

While one of the assumptions of the cost function derived

in section 5.3 is that messages sent from a process ~ to a

process Pk always take the same route, utilizing the same

links and passing through the same intermediate nodes during

communication, I also assumed that there is only one bidirec­

tional connection between neighboring processors. The cost

formula does not have to change if mUltiple communication

links between neighboring processors are present as long as

the messages sent from process j to process k can only be

routed along one path. If parallel message routing paths are

allowed between processes, then the cost function must change

to accommodate the fact that the communication load between

the; processes is now distributed over several possible sets of

links with potentially different traffic densities.

The major effect of allowing parallel routing paths

between processes is that the communication time is spread

over mUltiple paths, and thus is much harder to calculate

accurately. If a packetized message is transferred from

process j executing on processor s to process k residing on a

processor t over several parallel message paths, the communi­

cation cost of sending the message can be analyzed as follows.

The communication time starts when the first packet is sent

from processor s, and ends when the last packet is successful­

ly received at processor t. No assumptions about the ordering

of the packets during transmission or the communication links
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used may be made without knowledge of the routing algorithms

used at each node in the distributed system that played a part

in one or more of the messages transferred.

If the communication paths of all packets, and their

sizes are known, one can attempt a calculation of the communi­

cation cost in the parallel scenario. By analyzing the cost

of sending one message at a time from process j to process k,

then summing the costs of all messages sent from ~ to Pk , a

total cost Djk may be obtained. For each parallel packet

routing path used between process j and k, a cost can be

calculated based on the amount of information sent and the

delays along each path. Since all of the paths are in

parallel, the obvious choice for the message cost would be to

take the maximum delay of all of the paths, however, this is

not accurate. While it is true that the communication time of

some packets on different paths may overlap, thus reducing the

overall delay, it is not easily discernable which packets are

sent in parallel, how many overlap, or when the time of

overlap between packets begins or ends. If we assume that one

or more of the terms in the new equations will have to be some

sort of statistical approximation, we can continue with the

discussion of the new cost equations.

To properly account for the parallel nature of mUltiple

routing paths between two processes, it is necessary to start

with a different foundation for the new cost equations. ~k'

the total amount of data, in bytes, sent from process j to
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process k, was used to calculate the amount of delay for each

byte transferred along the single routing path. As all of the

data will not be sent over one path, each message or packet of

a message must be treated on an individual basis, according to

the route taken, when computing its transfer time.

Likewise, the bUsy time encountered along the message

path, will vary depending on the traffic density of the links

on the route taken by each packet of the message. The traffic

densities of the links must be computed using the magnitude of

the packets sent, rather than the magnitude of the messages

sent. The ~k term, total busy waiting time, must be computed

based on the path taken by each packet transferred from

process j to process k and the traffic densities of the links

used based on the packet sizes.

Using the new Xjk and Qjk terms, each message may be

analyzed among all of its parallel paths. Due to the uncer­

tainty of the parallel overlap of packets, one must statisti­

cally estimate the percentage overlap, based on the number of

parallel paths, the versatility of the routing algorithm, and

the bandwidths of the links used on the various parallel paths

between the two processes. Using a statistical parallel­

ization function, one can derive the total cost of sending all

messages between processes j and k, denoted ~k' by summing the

delays associated with each message sent. The ~k'S may then

be summed for all process pairs in the system, yielding the

overall communication cost for a given program partitioning.
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When this communication cost is used in conjunction with other

parameters, such as expected execution time, an obj ective

function can be formed. By minimizing this objective func-

tion, one can find near optimal solutions to the NP complete

partitioning problem.

Lee and .Aggarwal [19] show and discuss the results of

optimization problems using several different objective

functions based on the communication cost between two process-

es. When assigning an appropriate objective function for use

in determining the performance of a particular mapping of

tasks to processors, the objective function must accurately

represent the quantities being minimized. Additionally, when
,

utilizing a communication cost function to analyze the

problems of task allocation or load balancing, certain modules

of a program may need to reside at specific processors in the

distributed system in order to take advantage of special

resources. This means that finding near optimal solutions in

these cases may not be probable, or even possible. Further

analysis of parallel message routing paths and objective

functions is not discussed in this thesis.

6.2. Bus Topologies

In the case of parallel computers, mUlticomputers, or

distributed systems, the processors must be connected with

some high speed interconnection network. There are three

classifications of interconnection networks used in modern
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multicomputers, bus, static and dynamic. Bus architectures

communicate with resources by sharing one common communica­

tions medium with all resources in the system. The next two

sections will present serial and parallel bus architectures

and the analysis of them with respect to the derived cost

function.

6.2.1. Ethernet Networks

One of the most popular and widely used local area

networks today is Ethernet. The concept of Ethernet was

developed at the Xerox Palo Alto Research Center in the early

1970's, and standardized by Xerox Corporation, Intel Corpora-

tion, and Digital Equipment corporation in 1978[25]. Con-

sisting of simple coaxial cable, twisted pair, or fiber optic

connections between participating machines, Ethernet provides

a low cost way of sharing comput~r resources.

From an architectural point of view, an Ethernet is one

long serial bus over which many devices communicate by sending

messages. The bandwidth of a typical Ethernet is 10 megabits

per second and has a maximum length of 2.5 kilometers. The

network itself is completely passive and, as such, relies on

each resource attached to the Ethernet to be able to communi­

cate without assistance from the network. It was designed to

be easily expandable by simply adding resources to the cable,

readily accomplished by tapping into the main Ethernet cable

as required[26]. Bridges could be used to join individual
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Ethernets to one another, forming larger Ethernets, so long as

only one routing path between any two resources on the network

is maintained.

A message passed over an Ethernet is broken into packets

which include a sending and receiving address, CRC, protocol

information, and the data to be sent. The basic protocol for

transmission of message packets is to "listen" to the Ethernet

for current traffic, and if none, transmit the packet to the

destination. If traffic is present, wait until the end of the

current packet and then transmit. Because more than one

device may be waiting for the current packet to finish, or

more than one processor decides that the network is free,

multiple packets may be sent at the same time causing a

collision. In the case of a collision, all resources involved

wait a random period of time before retrying the entire

process. If the send of a packet is started successfully,

then the entire packet will be placed onto the network without

interruption.

Since the Ethernet is one long bus, and all packets are

seen by all resources on the Ethernet, any device may receive

the packet. Although each message has,a delivery address,

which could be to all resources, there is no extra overhead

for broadcast messages. Unfortunately, packet ordering and

delivery over an Ethernet are not guaranteed by the network,

therefore, whatever protocol is used for transmission of

messages must handle packets received out of order and
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retransmission of lost packets. In most systems, a reliable

and unreliable, but faster, protocol are available for user

applications.

For the case of TCP/ IP, a common reliable delivery

protocol which is machine independent, the theoretical maximum

is almost 12 megabits per second with a maximum packet size of

1530 bytes [27] . This performance level is generally not

reachable because of layered operating system delays and

protocol constraints. When the Ethernet is heavily loaded,

many collisions occur because of mUltiple waiting senders,

causing the overall performance of the network to degrade

making the theoretical maximum impossible to reach. Improve­

ment of the capacity and efficiency of Ethernet has been an

active area of research. One interesting approach presented

by Dobosiewski and Gburzynski[28] is the concept of using

segmented carrier and dual cables for directional message

passing.

Using the cost function derived in section 5.3, an

Ethernet network with no bridges can be analyzed as follows.

The term in the equations that deals with delays incurred at

intermediate nodes can be ignored because there are no

intermediate nodes on an Ethernet. Since there is only one

link, and it must be used for any communication between

processes, the delay per byte on the link is simply Cy ' and

~k(Li) always equals 1, yielding the following equations:
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(12)

(13)

(14)

Hjk=Xjk·Cy (15)

If the network has bridges, the situation changes as

follows: the intermediate delay term in the equations, Az ,

must account for the delay due to the bridge(s) traversed.

This leaves a~l of the original equations in tact, where the

Ujk function is used to select only those Ethernets and bridges

used in the system.

6.2.2. single and Multiple Parallel Bus

The single parallel bus has been the heart of uni-

processor computer systems for decades, so in the development

of parallel computer systems, a natural extension of this well

understood concept was to place several processors on one

single bus. The Ethernet, as described in the previous

section, is essentially a single bus architecture, with the

main difference being the serial nature of the communication

protocol. A bus architecture, has a fixed bandwidth which can

easily become saturated as the number of devices using the bus

increases. This is especially true if the arbitration scheme

controlling the bus is asynchronous, allowing any device to

attempt to obtain the bus at any time and the data flow is

"
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continuously heavy. By synchronizing the bus and the devices

that communicate over it, use of the available bus bandwidth

may be maximized, however, maintaining clocks without skew

mandates short length busses. This makes single parallel

busses practical only in mUlticomputers and dedicated parallel

machines with few numbers of processors where the length of

busses may be controlled. Synchronizing the bus also intro­

duces a performance penalty if data patterns of the program

are bursty or not evenly distributed across program modules.

The next logical step to improve system performance is to

provide mUltiple busses between system resources to improve

the communication bandwidth. While this tends to increase

resource availability, it also drives the cost up geometrical­

ly with the gain in bandwidth. Direct interconnection of all

resources to one another becomes impossible for larger

systems, and the problems associated with a single bus are

still present. The busses must be kept relatively short, and

to maximize the available bandwidth, the processors and busses

must be synchronized and programs partitioned in such a manner

to maintain data flow as evenly as possible.

To alleviate some of the cost burden of highly intercon­

nected resources, several researchers have adopted partial

mUltiple bus models. Sheu and Chen[29] propose a method

which prioritizes the connections to available busses in order

of access probabilities and fault tolerance. This method, a

slight derivation of the fully connected scheme, attaches

63



important resources to more busses and less critical ones to

fewer busses in the system. Nanda, DeGroot, and stenger[30]

discuss the task allocation problem using Texas Instruments'

Tapestry architecture, which uses bus couplers to interconnect

resource pools in the system. The resource pools are proces­

sors and peripherals that are connected to a single bus. The

single busses are then cross coupled in a chordal fashion so

as to provide mUltiple routing paths from one resource pool to

another. This type of architecture is well suited to problems

that can be broken into sets of tasks, allocated to the

resource pools, which communicate among themselves more

frequently than across groups. Although the number of proces­

sors in the mUltiple bus model can be increased over the

single parallel bus model, multiple parallel busses are not

well suited to large distributed systems either.

In evaluating the mUltiple parallel bus configuration,

one must be careful to observe the fact that all messages sent

from ohe process to another are routed along the same path.

The use of mUltiple busses is designed to allow multiple

routing paths between resources in the hope that traffic may

be split among them to gain bandwidth. In these situations,

the resources connected to more than one bus usually take the

first available bus that can reach the destination, not a

specific bus all the time. If one send-receive path cannot be

guaranteed between process pairs, the formula will not yield

accurate delay information and the parallel paths discussion
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above would apply.

From the communication cost function point of view, the

single parallel bus performs similarly to the single Ethernet

example. The term in the equations that deals with delays

incurred at intermediate nodes can be ignored because there

are no intermediate nodes on a single bus. The number of

links sum becomes simply one term, Cy ' because there is only

one bus and it must be used for all communication between

processes. Thus, the equations for the single parallel bus

are identical to the ones for the single Ethernet example

shown in the previbus section. Although the equations are the

same, the magnitude of Cy for the parallel bus is considerably

smaller than the Cy value in the single Ethernet case. This

occurs because the parallel bus, which transfers bytes or

words in parallel, has a much higher bandwidth than its serial

Ethernet counterpart.

For the multiple bus case, with the busses in parallel

with one another, the system can be analyzed using the

original ~k and ~k equations, but with ~k as follows:

Gjk=Wjk'(Sj+Rk) (16)

If there are bus couplers in the system, these act as interme-

diate nodes and Az must correspond to the delay associated

with a bus coupler. One can then use the original equations

as was the case for mUltiple Ethernet with bridge nodes.

Again, the value of Cy is much smaller for the mUltiple

parallel bus example than for the Ethernet case due to the
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larger bandwidth of the bus topology.

6.3. static Network Topologies

static network topologies, or point-to-point networks,

allow processors to share information with one another over

dedicated network links that allow communication between only

specific processor pairs. In contrast to the Ethernet and bus

architectures, where messages on the bus are seen by all

resources, messages in a point-to-point network are seen by

only the intermediate nodes along the routing path between the

source and destination. The communication links are usually

arranged in structures that attempt to minimize the latency of

the network and maximize the fault tolerance capabilities of

the system. The next two sections analyze standard packet

switched networks and those with virtual cut through capabili­

ty using the derived IPC equations.

6.3.1. store and Forward Networks

store and forward, or packet switched networks, route

packets of a message from the source to the destination by

hopping from one processor to another along the selected

routing path. Each intermediate node along the routing path

stores all incoming packets as they arrive and then forwards

them to the next node. While different packets of the same

message may generally be routed along different paths in the

network to increase bandwidth and fault tolerance, I will only
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be examining the case where all packets are routed along the

same path.

Packet switched networks come in many varieties, and

account for many of the popular mUltiprocessor configurations

in research today. These include mesh, ring, tree, star,

chordal, hypercube, and cube connected cycle arrangements. In

all of these configurations, messages sent from one processor

to another may have to pass through intermediate nodes, where

the message must be stored and then forwarded using some

routing algorithm.

The advantages of a packet switched network are that

communication resources needed by another process are only

tied up for the length of one packet, rather than for the

whole message. This means that, while the overhead is higher

at each node because packets are stored and forwarded at each

intermediate node, the time spent waiting for busy links is

smaller. As a result, packet switched networks may be

advantageous in a system where some messages sent between

processors are large so that smaller messages are not kept

waiting for long periods of time. One drawback of packet

switched networks is that storing and forwarding of message

packets places increased load on the processors used as

intermediate nodes.

As long as the routing algorithm always chooses the same

path for all messages, the derived cost formula can be applied

directly to the network with no modifications to the equa-
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tions. As stated in the derivation, the intermediate delay

term, ~, represents the operating system delay at intermedi­

ate node Nz associated with temporarily storing the message

and then forwarding it to the next node.

6.3.2. Cut Through

Cut through, or wormhole routing, is not a new type of

network, but rather a way of looking at the packet switched

network as a circuit switched variation. Although dedicated

circuit switched networks and their properties are discussed

in the section on dynamic network topologies, the concepts are

used to form a circuit switched type routing within the packet

switched topology in an attempt to improve the data transfer

rate.

The overhead of packet switching is substantial when

using the store and forward method, and while packet switched

networks have some advantages, the circuit switched method

sUbstantially reduces the transfer time of large messages

between processors. The concept of cut through or wormhole

routing, is that a connection through the network, including

intermediate nodes, is established allowing all data to be

transferred without involving the intermediate nodes. To

establish the connections, there must be additional hardware

added to each node in the distributed system to handle the

bypass routing. This type of network can be analyzed as shown

in the next section under Circuit switched Networks.

68



virtuat cut through is an adaptation of the pure cut

through routing where both packet switched and circuit

switched types of routing can be supported in the same system

for maximum communication resource utilization. This hybrid

algorithm is designed to maximize the throughput of a packet

switched network by adding some hardware to the intermediate

nodes that has the capability of establishing circuit switched

type of message paths. The combination of the two approaches,

especially in a general purpose machine, may sUbstantially

reduce the communication time between parallel programs

eXhibiting different communication patterns.

Kandlur and Shin[31] discuss the routing path selectio~~

problem in networks with cut through routing capabilities.

They assume that a system can use either packet switching, cut

through, or a combination of the two in routing messages.

Using probabilities of establishing cut through routes in the

network, the authors attempt to maximize the use of cut

through in order to limit the number of nodes at which

messages are buffered. In this hybrid of packet switching and

circuit switching, messages are routed using cut through until

a link needed is unavailable, then buffered at that node until

the link is not busy. The authors evaluate their routing

methodology for the hypercube and C-wrapped hexagonal mesh

topologies.

The virtual cut through routing scheme may be evaluated

using the derived cost function by looking at the analysis of
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the packet switched and circuit switched cases. If a circuit

switched path can be established from source to destination,

the communication cost may be evaluated as in the above

circuit switched case. Likewise, if only packet switching is

used, the packet switching analysis applies. If a combination

of the two is used, the portion of the path that uses each

type of routing can be analyzed separately using the proper

equations.

6.4. Dynamic Network Topologies

Dynamic network topologies allow the communication paths

to change dynamically via switches and provide connections

between mUltiple processor pairs at different times. The last

point to point network type is circuit switched or the

mUltiple stage interconnection network, in which a routing

path is established from the source, through all intermediate

nodes to the destination before any data is transmitted. The

data is then sent along the established path in much the same

way a telephone call is dialed, a connection is established

and a then a conversation takes place. Circuit switched

networks can further be divided into two types, one where the

intermediate nodes in the connection are actually switches in

the routing path, and the other in which the intermediate

nodes are processors capable of establishing bypass paths

through the node without storing the messages, called cut

through.
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6.4.1. Crossbar Networks

Crossbar networks are usually presented in the context of

N processors communicating with M memory modules, but could

equally apply to interprocessor communication. In a crossbar

network, each processor has one I/O port through which it may

communicate with any of the other processors in the system via

complex network switches. The dual of this configuration is

a static topology where each processor has N I/O ports to

communicate with each other processor, where N is the number

of processors in the system. Since the complexity of the

switches used in the network, or the number of I/O ports on

the processors, are directly proportional to the number of

processors in the system, this type of network is only used

for a small, localized group of processors and usually is

prohibitively expensive.

By using the derived cost function the crossbar intercon­

nection structure can be analyzed using the original equations

as written. The value of Az represents the delay due to the

switch network and is usually small enough that it can be

ignored entirely. since this thesis does not concern itself

with the analysis of degraded system performance, and since a

fully connected system with a fault looks like a packet or

circuit switched network, I will not discuss it further. The

fUlly connected network can be grouped under the category of

point-to-point networks and analyzed as such.
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6.4.2. Circuit switched Networks

Circuit switched networks, like packet switched networks,

come in many flavors depending on the arrangement of switches

and level of connectivity provided. Some examples of dynamic

switching networks are omega, shuffle-exchange, delta, benes,

banyan, gamma, augmented data manipulator, and inverse

augmented data manipulator configurations. While each of

these networks possess certain inherent communication band­

width, fault tolerance, cost, and complexity characteristics,

all conform to the idea of establishing a consistent connec­

tion between source and destination for the duration of the

data transmission. As previously stated, the case under

consideration in this thesis is that where only one routing

path may be chosen for sending all messages from one process

to another.

One advantage of a circuit switched network is that the

delay penalty for setting up the message path is only paid

once for each message sent, as opposed to one at each interme­

diate node in the routing path. No additional load is placed

on the processors used as intermediate nodes because the

intermediate nodes do not look at the message as it passes.

While the waiting time for free links may be higher, all data

of a message is sent without the delay of store and forward,

minimizing the communication time between processors. Circuit

switched networks may be advantageous in a system where most

messages sent between processors are about the same length so
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that the waiting time is evenly distributed, and data through-

put is maximized while the links are in use.

An analysis using the derived cost function must account

for the initial penalty of establishing the communication

path, as it is one of the largest delays ~n the_formula. In

fact, the data of the message, following the first byte, is

delivered in a pipeline fashion, so the delay paid per byte is

only the maximum delay on any of the links used between the
~

source and destination. The ~k equation, which accounts for

link delays, can be rewritten to account for this as follows:

L L

Hjk=L Cy'Ujk(Ly ) + (Xjk-1)MAX(Cy'Ujk(Ly)) (17)
y=l y=l

The rest of the terms in the original equations are correct

noting that Az represents the hardware delay at an intermedi-

ate node or switch, a much smaller delay, than its packet

switched counterpart.
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Chapter 7. Conclusions and Future Work

Although very few products have been developed yet, using

the software tools and parallelization techniques available

today, fairly efficient parallelization of sequential programs

is theoretically possible. By extracting as much information

as possible from the source code, intended applications of the

program, and the user environment, good estimates of perfor­

mance improvements can be estimated and user programs may be

segmented into parallel tasks. After accurately analyzing the

interprocess communication costs for a program's parallel

tasks, a good solution to the static allocation of program

modules can be achieved, minimizing the system throughput time

for each program. Integrating all of these elements into a

new generation of software development tools will allow the

programmers of today to develop the applications of tomorrow.

The parallel and distributed software industry is still

in its infancy, and considerable research is needed before

parallel computing environments can be utilized to their full

potential. Further research is needed in determining paral­

lelism in programs and how to optimally partition programs

into tasks, while taking advantage of as much parallelism as

possible. Although the static task allocation problem has

been studied in depth by many researchers, no optimal solution

to the problem has been found. Additional research into

models that accurately represent parallel message paths in
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communication cost functions is also necessary for distribut­

ing program modules on machines with these capabilities. As

new parallel languages, parallelization tools and distributed

operating systems mature, the problems that can only be solved

with today's most sophisticated computers will become tomor­

row's building blocks.
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