
Final Research Report for Grant NAG-I-995

A Design Methodology for Portable Software on Parallel Computers/?wA &

NASA-CR-194181 Q'icol and Keith W. Miller and Dan A. Chrisman * //1%/-C____.J

Department of Computer Science, College of William and Mary

1 Introduction /8 3

This final report for research that was supported by grant number NAG-I-995 documents our

progress in addressing two difficulties in parallel programming. The first difficulty is developing
software that will execute quickly on a parallel computer. The second difficulty is transporting

software between dissimilar parallel computers. In general, we expect that more hardware-specific

information will be included in software designs for parallel computers than in designs for sequential

computers. This inclusion is an instance of portability being sacrificed for high performance. New

parallel computers are being introduced frequently. Trying to keep one's software on the current

high performance hardware, a software developer almost continually faces yet another expensive
software transportation. The problem of the proposed research is to create a design methodology

that helps designers to more precisely control both portability and hardware-specific programming

details. The proposed research emphasizes programming for scientific applications.

We completed our study of the parallelizability of a subsystem of the NASA Earth Radiation

Budget Experiment (ERBE) data processing system. This work is summarized in section two. A
more detailed description is provided in Appendix A ('Programming Practices to Support Eventual

Parallelism').
Mr. Chrisman, a graduate student, wrote and successfully defended a Ph.D. dissertation pro-

posal which describes our research associated with the issues of software portability and high

performance. The list of research tasks are specified in the proposal. The proposal 'A Design

Methodology for Portable Software on Parallel Computers' is summarized in section three and is

provided in its entirety in Appendix B.
We are currently studying a proposed subsystem of the NASA Clouds and the Earth's Radiant

Energy System (CERES) data processing system. This software is the proof-of-concept for the
Ph.D. dissertation. We have implemented and measured the performance of a portion of this

subsystem on the Intel iPSC/2 parallel computer. These results are provided in section four.
Our future work is summarized in section five, our acknowledgements are stated in section six,

and references for pnblished papers associated with NAG-I-995 are provided in section seven.

(NASA-CR-194181) A DESIGN
METHODOLOGY FOR PORTABLE SOFTWARE

ON PARALLEL COMPUTERS Final

Research Report (College of

william and Mary) 59 p

G3161

N94-14139

Unclas

0183088

https://ntrs.nasa.gov/search.jsp?R=19940009666 2020-06-16T21:37:39+00:00Z

2 The Parallelism of the ERBE data processing system

In the first two years of our support from NASA grant NAG-I-995, we examined issues that will

arise in the application of parallel processing to atmospheric research projects such as ERBE and

CERES. Our work to date has had a dual focus: the importance of parallel architectures and

algorithms for processing the atmospheric science data; and quality assurance for an atmospheric

science data processing system. We have acted as an information resource concerning software

engineering techniques and tools for the CERES project.

The nature of the ERBE and CERES projects has led us to important unsolved research ques-

tions concerning the use of software engineering principles in a parallel processing environment.

This research area includes formal models for developing large software projects implemented on

parallel architectures and the design of automated tools to aid in that development.

We extensively analyzed and rewrote sections of the ERBE data processing system as we trans-

ported it from the Control Data Corporation Cyber Series computers that used a Fortran V compiler

to an Intel iPSC/2 hypercube computer and its Fortran 77 compiler. This programming effort eluci-

dated several code characteristics that are vital in planning the CERES software development: data

dependencies and extensive, well maintained documentation at all levels of the data processing sys-

tem. The size of the CERES project and the amount of design, implementation, and maintenance

documentation required, suggests that Computer Assisted Software Engineering (CASE) tools will

be useful for CERES. Our presentation to NASA personnel involved in the CERES project gave us

an opportunity to discuss our findings about the ERBE data processing system with the developers.

A detailed description of the parallelization study is provided in Appendix A.

3 Design methodology proposal

Upon completion of our parallelizability analysis of the EI_BE data processing, we began a detailed

literature survey concerning current methodologies for designing parallel software. This survey

formed the basis for Mr. Chrisman's Ph.D. dissertation proposal. He proposed a design method-

ology for portable software on parallel computers. This dissertation proposal was successfully

defended. A brief discussion of the proposal in provided below and the dissertation proposal is

provided in Appendix B.

Developing software for a parallel computer and transporting the software to a dissimilar par-

allel computer are two difficulties which a scientific parallel software developer faces. These two

difficulties can be illustrated as developing software under two scenarios:

1. a problem's initial implementation on a parallel computer and

2. a problem's subsequent implementations on dissimilar parallel computers.

There are likely several motivations for transporting the software from a parallel computer to

a dissimilar parallel computer. These motivations are based on the performance capabilities of

the parallel computers. Published performance results for benchmarks executed on the dissimilar

parallel computer is a likely enticement for transporting the software. The programmer considers

these results when deciding to gain access to a parallel computer which will execute the software

faster or execute the software for larger problems. The underlying parallel architecture and the

software environment(i.e, operating system, compilers, CASE tools) are two dissimilarities between

parallel computers that will both lead to the enhanced performance and for which the programmer

will have to consider in detail when transporting the software.

The proposed methodology directs the programmer to construct a software design which is

specific to a parallel computer. If the programmer is unsatisfied with the initial design, then

the methodology prescribes actions which can improve the design. When the programmer must

transport the software to a new dissimilar parallel computer, then the methodology directs the

programmer to modify the software design, creating an equivalent design which is specific to the

dissimilar parallel computer.

The components and attributes of the proposed parallel software design, the definition of the

proposed equivalence-preserving design transformer, and the proposed method of constructing a

design are described in section four of the dissertation proposal.

4

4 First Implementation on a Parallel Computer

We have met the first milestone concerning our parallel software research associated with the NASA

CERES project (an integral part of the NASA Earth Observing System). We studied the available

scientific documentation and preliminary software specifications for the compute-intensive CERES

cloud retrieval algorithm, which defines one subsystem of the CERES data processing system.

Then, during September 1992, the cloud retrieval algorithm group (Dr. Bryan Baum and Dr.

Bruce Wielicki (project leader) at NASA Langley Research Center) provided their newest version

of the still-developing research software that implements some of the cloud retrieval algorithm.

We modified this software to process satellite data similar to the ERBE data processing system.

Then we modified this software to execute efficiently on a parallel computer. The performance

measurements of these executions are provided.

4.1 NASA Application

The proposed CERES data processing system will process the level 0 data of the CERES scan-

ner and a satellite-specific imaging radiometer (e.g. MODerate-resolution Imaging Spectrometer

(MODIS)) to produce the levels 1A, 1B, 2, and 3 data products. The long life of the CERES

project (i.e. fifteen to twenty year science mission and twenty five year computational mission)

nearly guarantees that the CERES software will make at least one and probably several migrations

to new hardware platforms; thus, portability becomes important. A time constraint placed upon

the data processing system is that twenty four hours of CERES sensor measurements must be

processed within seventy two hours of the receipt of the data; thus high performance must be con-

sidered in tandem with portability. The estimated size of the CERES software is one million lines

of FORTRAN, Ada, C, and UNIX. The scalability of the costs to transport the CERES software

becomes crucial for a software system of this size and lingual complexity.

We are focusing upon the NASA CERES cloud retrieval algorithm [1] which computes cloud

properties (e.g. short wave optical depth, window emissivity, mean droplet radius, liquid water

path, cloud-top pressure, and fractional cloud cover) within a CERES scanner pixel. This algorithm

comprises the cloud retrieval subsystem of the CERES data processing system. The algorithm is

composed of seven methods for computing one or more cloud properties; however, the appropriate

application of a method is constrained by the properties of the CERES scanner pixel being processed

(e.g. geographic type, solar contribution to view, weather type).

Due to the spatial and temporal variability of clouds in the atmosphere, high resolution data
that is sampled frequently leads to massive input data sets. The data will be processed in one-

hour chunks and utilize the following primary data sets. The cloud-imaging MODIS instrument,

which is planned on the Earth Observing System platforms, produces fifteen gigabytes of about

one kilometer ground resolution measurements during twenty four hours. Several earth-gridded

input data sets will be required. A earth geography map with a ten kilometer spatial resolution

will provide surface-type characteristics (e.g. vegetation classification, surface elevation, and snow

cover). This map will be refreshed once a day. A meteorology map with a resolution of fifty

kilometers will provide macroscopic cloud information (e.g. storm systems). This map is refreshed

every three hours. An atmospheric temperature and humidity three-dimensional map with one

degree latitude and longitude resolution and about forty levels is desired. This description excludes

many secondary data sources (e.g. the algorithmic-specific coefficient tables).

5

The estimated size of the cloud retrieval software that has been proposed by the CERES data

management team and the cloud retrieval working group is forty thousand lines of Fortran 77, C,

Ada, and UNIX.

The research code which is a precursor to the CERES cloud retrieval subsystem performs the

carbon dioxide (C02) slicing technique. C02 slicing computes the ratio between the High Reso-

lution Infrared Radiation Sounder (HIRS/2) satellite measurements of radiation and theoretically-

computed radiation values. This ratio is used to compute the height or partial pressure of the clouds

that fall within a pixel or a sounder footprint. The version of the software that we received is 1,483

lines of Fortran 77 (688 lines of code and 795 comments) and less than 20 lines of UNIX. Several

input files were also provided. The radiosonde input data file was 2.5 kilobytes and the HIRS/2

measurements input data file was 130 kilobytes (31 scans). These measurements were taken on

April 12, 1991 and coincident with the over-flight of the NOAA-11 satellite. The HIRS raw data

conversion coefficients input file was 121 kilobytes. The program executes on a Sun Microsystems,

Inc. Sun4c (SPARCstation 1) computer with SunOS version 4.1.1 1 and Sun Fortran compiler

(V1.4, Patch Release 5, 10 Feb 1992).

4.2 Modification to the sequential research code

We made several modifications to the research code. The original version was restricted to analyzing

only specific regions of the Earth, relying on data files containing time-specific and geographic-

specific radiosonde and HIRS]2 sensor measurements. We have enhanced their software to analyze

satellite measurements viewing any region on the Earth by replacing the radiosonde files with the

European Center for Medium Range Weather Forecasting global three-dimensional atmospheric

maps. The map access required incorporating 1155 lines of Fortran 77 (366 lines of code and

789 comments) and 118 lines of C (99 lines of code and 19 comments) provided by NASA. We

also enhanced the software concerning the ttIRS/2 sensor data. The original version was limited to

analyzing fifty scan lines (approximately 5.3 minutes) of HIRS/2 data stored in ASCII format. With

the enhanced version, the only constraint upon the number of scan lines that can be analyzed is the

maximum file size for the computer's file system for files in binary format. Current tIIRS/2 input

files provided by NASA are approximately 4.5 megabytes (112.6 minutes of satellite measurements

which require about an orbit and a half to measure). Enhancing the sensor data format and length

of analysis required incorporating 384 lines of Fortran 77 (161 lines of code and 223 comments) and

156 lines of C (93 lines of code and 63 comments) provided by NASA.

4.3 Performance of the sequential research code

The resulting version of the software is the sequential version and, with all enhancements, is com-

posed of 4645 lines of Fortran 77 (1368 lines of code and 3277 comments) and 274 lines of C (192

lines of code and 82 comments). For the performance data in this report, the standard test case

is based on processing 128 scans of HIRS/2 data (approximately 13.6 minutes of sensor measure-
ments). Similar to the strategy of the ERBE data processing system, the output of our software is

the time-stamped latitude-longitude-located cloud height computed for each pixel of each scan in

a binary file.

We copied the sequential version of the software and input data files to the Intel iPSC]2 parallel

computer hard disks. The byte ordering scheme is different between the Intel 80386 processor and

the Sun Microsystems Sparc processor. Swapping the bytes for each word of the binary input data

requiredincorporating130linesof C (72linesofcodeand58comments)providedby TomCrockett
of ICASEat NASA-Langley.

Wemeasuredthe performanceof the softwareon theIntel 80386-basedSystemResourceMan-
ager(SRM)whichis the front-endprocessorof theIntel iPSC/2parallelcomputer.For the Intel
Corporationi386SRMcomputerwith AT&T UNIX System5 (release3.2,version2.1)andGreen-
hills Fortran-386and C-386compilers(driver 8.5), the executiontime is 127.9minutes.We also
measuredthe executiontimesof the individual subroutineswhichcomprisethe software.

4.4 Parallelizing the Software

We determined that there are multiple levels of parallelism in the C02 slicing cloud retrieval

algorithm. We completed a data dependency analysis of our version of the sequential software,

a necessary step toward distributing the HIRS satellite measurements and global maps among

the processors of a parallel computer. Since the software could run on a sequential computer,
we measured its execution time when executed on one processor node of the sixteen-node parallel

computer. For one Intel Corporation iPSC/2 80386-based CX computing node with NX/2 operating

system and the node-switch compiler option for the same compilers as the SRM, the execution time
is 96.7 minutes. We also measured the execution times of the individual subroutines for the one

processor case. With the execution time measurements and data dependency analysis, we designed

a parallel version of the software to efficiently utilize the sixteen processors of the iPSC/2 in parallel.

This design was implemented and execution times for the parallel version using multiple processors

of the iPSC/2 were measured. These results are provided in the next section.

4.5 Performance on the Intel iPSC/2

In the table, the number of processors is the quantity of Intel iPSC/2 processing nodes participating

in the processing of the atmospheric data. The execution time is the CPU time required to process

the data. The speedup is the ratio of the fastest time to process the data on one processing node

divided by the the fastest time to process the data on "number of processors" processing nodes. The

efficiency is the ratio of the speedup for "number of processors" divided by "number of processors".
Number of processors Execution Time(seconds) Speedup Efficiency

1 5803.4 -- --

2 2951.7 1.97 0.98

4 1507.6 3.85 0.96

8 781.5 7.43 0.93

16 419.0 13.85 0.87

These results are encouraging. Because the parallelism of the problem is more than two orders

of magnitude greater than the maximum number of processors used in our parallel performance

studies, then a reasonably efficient execution using more parallel processors(i.e. 100 or 1000) is

feasible. Our software does not execute with a speedup of 16 and an efficiency of one for sixteen

processors because of the data file input and output system on the parallel computer and work

imbalance between processors. Reading and writing data files is performed sequentially on the

iPSC/2 and this cost is difficult to overlap with the computations of the software. Also, the

execution time to process a scan is scan-specific and the resulting work imbalance requires the

group of processors to wait for the processor with the most work to complete. Work imbalance

7

techniquesthat areexecutionallyinexpensiveand algorithmicsimpleareemployedto moreevenly
balancethe workbetweentheprocessors.

5 Current Work

We met the first milestone which is to design and implement a parallel version of the software.

Toward the second milestone (i.e. redesigning and re-implementing versions of the software for

other parallel computers), we are currently redesigning and implementing the COs slicing algorithm

on the MasPar MP-2 parallel computer. The programming model for this computer is called Single-

Instruction-Multiple-Data. This programming model is significantly different from the Multiple-

Instruction-Multiple-Data programming model for the Intel iPSC/2. To efficiently utilize the SIMD

programming model, we are currently converting our COs slicing program from Fortran 77 to
Fortran 90.

6 Acknowledgements

We acknowledge the contributions provided by the following people:

• Ed Howerton and Chris Harris for their ERBE Telemetry subsystem expertise during our

ERBE parallelizability study,

• Carol Tolson for access to the most up-to-date CERES data processing system documentation,

• Fran McLemore for her CDC computer execution expertise during our ERBE subsystem

portability study,

• Eric Schmidt and Dave Doelling for their cloud retrieval algorithm expertise during our design

feasibility assessment for parallelizing the cloud retrieval subsystem,

• Bryan Baum and Jay Titlow for their algorithm expertise and software contributions during
the implementation and testing of our enhanced version of the cloud retrieval software,

• Scott Nolf for the software which accesses the European Center for Medium Range Weather

Forecasting global three-dimensional atmospheric maps, and

• Tom Crockett for the byte swapping software.

10

7 Publications

The type of research conducting under NAG-I-995 is large in scope and not of a type that publica-

tions on intermediate results are widely accepted by the computer science community. Consequently

we cannot report on the acceptance of any publications that directly address the issues currently

being investigated. Nevertheless, NAG-I-995 provided support for the Intel iPSC/2, a machine

upon which we were able to solve and write about a number of smaller scale problems. The follow-

ing list reports the papers we have published based on use of the iPSC/2, and which cite support of

NAG-I-995. All papers are authored by David Nicol, other co-authors are noted (with lead authors

highlighted in boldface).

1. "Rectilinear Partitioning of Irregular Data Parallel Computations", Journal of Parallel and

Distributed Computing, to appear.

2. "Noncommital Barrier Synchronization", Parallel Computing, to appear.

3. "A Sweep Algorithm for Massively Parallel Simulation of Circuit-Switched Networks", with

Bruno Gaujal and Albert Greenberg, Journal of Parallel and Distributed Computing, to

appear.

4. "Optimistic Parallel Simulation of Markov Chains Using Uniformization", with Phil HeideI-

berger, Journal of Parallel and Distributed Computing, to appear.

5. "Parallel Simulation Today", with Richard Fujimoto, Annals of Operations Research, to ap-

pear.

6. "Conservative Parallel Simulation of Markov Chains Using Uniformization', with Phll Hei-

delberger, IEEE Trans. on Parallel and Distributed Systems, to appear.

7. "Inflated Speedups in Parallel Simulations via malloc ()", Int'l Journal on Simulation, vol 2,

Dec. 1992, 413-426.

8. "Parallel Simulation of Markovian Queueing Networks Using Adaptive Uniformization', with

Phil IIeidelberger, 1993 SIGMETRICS Conference, Santa Clara, CA., pp. 135-145.

9. "Parallel Algorithms for Simulating Continuous Time Markov Chains", with Phil Heidel-

berger, 1993 Workshop on Parallel and Distributed Simulation, San Diego, CA., pp. 11-18.

10. "Optimistic Global Synchronization for Parallel Discrete-Event Simulations", 1993 Workshop

on Parallel and Distributed Simulation, San Diego, CA., pp. 27-34.

11. "REST: A Parallelized Reliability Estimation System", with Adam Rifkin and Dan Palumbo,
1993 Reliability and Maintainability Symposium, Atlanta, GAs pp. 436-442.

12. "MIMD Parallel Simulation of Circuit Switched Communication Networks", with Albert

Greenberg, Boris Lubachevsky, Proceedings o/the 1992 Winter Simulation Conference, 629-
636.

13. "State of the Art in Parallel Simulation", with Richard Fujimoto, Proceedings of the 1992

Winter Simulation Conference, pp. 246-254.

11

A Report from ERBE Parallelizability Study

Based on our study of the parallelizability of a subsystem of the NASA ERBE data processing

system, this paper provides some approaches to facilitate the transportation of sequential code to a

parallel computer, particularly for a large software project like the CERES data processing system.

12

PROGRAMMING PRACTICES TO

SUPPORT EVENTUAL PARALLELISM

Keith Miller, David Nicol, and Dan Chrisman*

Dept. of Computer Science, The College of William and Mary

Williamsburg, Virginia

January 10, 1990

1 Introduction

Most existing programs were written for sequential machines. As parallel

architectures become commonplace, programmers will face the task of port-

ing applications from sequential machines to parallel machines. For some

programming languages and for some specific machine environments, sophis-

ticated compilers will simplify this porting considerably [Padua and Wolfe].

However, even with a parallellzing compiler, the porting will probably rcquire

some handcrafting of the code. The importance of customizing is emphasized

when the code to be ported is lengthy and when the resulting parallelized

code must bc machine efficient. Since machine efficiency is often the moti-

vation for moving to a parallel architecture, we expect that time and space

considerations will typically be important.

"v\reare porting about 100,000 lines of source code for satellite data pro-

cessing from a CDC Cyber 860 to an Intel iPSC/2 hyperCube. The complex-

ities of this porting have led us to consider the characteristics of sequential

code that aid and characteristics that complicate the task of porting sequen-

tial code to a parallel machine. In this paper we share some of the problems

*Supported by grant #NAG-I-995 from NASA Langley Research Center.

weencounteredand the approachesweusedto solvethoseproblems. Then
we generalizewhat we havelearned into suggestionsfor writing sequential
code to facilitate eventual conversionto parallel code. Although we state
thesesuggestionsin terms of new code,the samesuggestionscan beadapted
to maintaining sequentialcode.

Our current project is converting FORTRAN programs, but the sug-
gestions below should apply equally well to any imperative programming
language. Different languageswill provide more or lessautomated support
to implement the suggestions;however,programmers in all languagescan
facilitate future parallelization. We try to avoid suggestionsthat require
inordinate runtime penalties of time and of memory. We also do not advo-
catepracticesthat will dramatically increasedevelopmenttlme (for example,
rewriting a program in a new language). We hopeto offer practical sugges-
tions for modest changesin programmingpractice which havea good chance
of easingthe transition from sequentialto parallel programs.

2 Our Conversion Project

NASA's Earth Radiation Budget Experiment (ERBE) analyzes environmen-

tal data measured from three space platforms. Researchers at NASA Langley

Research Center process the ERBE data from each platform by performing

conversions and analyses, validating the data and results, and producing var-

ious reports and archival data analysis products for the scientific community.

The programs to accomplish these services execute on a CDC Cyber 860

running under CDC NOS 2.6. The Cyber has a sequential architecture with

60 bit words.

To study potential improvements in the turnaround time on current sci-

ence report products and to prepare for a 10 fold expansion of data input

and output within the next two decades, the ERBE data management team

want the programs to execute _n a parallel architecture. We are now porting

about 100,000 lines of FORTRAN-77 code from the Cyber to an Intel iPSC/2

hyperCube executing Fortran-386 from Green Itills Software.

3 Conversion Problems We Encountered

Tile challenges of this project have been mainly of three types:

. Dependency considerations: Tile processing required in our application

is record oriented. We chose to distribute the records one record to

a processor. Given a given record R, we needed to identify all the

information from other records needed to process R. These data de-

pendencies determine the timing of messages between processors and

ultimately determine the number of processors that can be used effec-

tively in this application.

.

.

Changes in word size: Because the Cyber supports 60 bit words and

the iPSC/2 supports 32 bit words, significant changes were necessary

in arithmetic declarations and calculations. Similarly, bit string ma-

nipulations were problematic.

Differences between the Source and Destination Systems: Porting be-

tween two different operating systems and programming environments

usually requires conversions between different system calls, machine

constants, I/O conventions, and the like. These problems are not

unique to porting from a seqnential to a parallel processing environ-

ment, but they complicate other problems that are unique.

In the next section we discuss these problems in more detail. We also

suggest programming practices that will make the problems easier to solve.

4 Programming Practices to Ease Conver-

sions

Many of the suggestions in this section are variations on themes common in

software engineering regarding design principles and coding conventions for

producing easily ported code. For examples, Sommerville describes several

specific problems due to word size and operating system differences [Som-

merville] and Lamb advocates information hiding techniques to minimize

problems when porting [Lamb].

However,the conversionfrom a sequentialarchitecture and a sequential
algorithm to a parallel architecture and a parallel algorithm raisesnew con-
cernsand puts familiar concernsinto a new light. This section as a whole
presentsthe concernsthat becamemost obvious to us during our conversion
efforts. The first subsectionon data dependencieshas the least connection
with traditional portability concerns.

4.1 Dependency considerations

Computations must be performed in a specified order. Sometimes the nature

of an application uniquely determines the ordering of different operations in

a computation; other thnes, different parts of a computation can be executed

in any one of several orders. When a single processor is programmed to solve

a problem, the ordering of different operations is more arbitrary than when

multiple processor must cooperate to solve a problem. That is, some of the

orderings that are equally convenient for a single processor will be either

inconvenient or impossible for cooperating processes.

Data dependencies establish a partial ordering among the operations

needed to complete a computation. Before a programmer can convert a

sequential program to a parallel program, all these dependencies must be

identified. When the dependencies are obvious to a programmer, the pro-

grammer must then dctermine an appropriate ordering of the operations

that will facilitate independent computation by individual processors. Much

of the work done by parallelizing compilers performs this task of identifying

data dependencies. Unlike most parallelizing compilers, however, a human

programmer may invent algorithms that violate some dependencies and still

guarantee a correct conversion.

Often, an efficient parallel solution can be created which finesses certain

dependencies in order to achieve a higher degree of parallelism. The pro-

grammer can use techniques such as copying data to several processors and

making intelligent guesses about the outcome of a required result in order

to circumvent the dependencies, ttowever, the subtle reasoning required to

devise these intricate strategies is only possible when the dependencies can

be determined in great detail.

In our application, we determined two sources of dependencies: record

validation and statistics gathering. Strictly speaking, a record should not

Processor

1

Processor

2

Processor

3

Processor

4

Time

Validation

Record
Processing

Statistics

I

Figure 1: Parallel Record Processing

be i)roccssed until the following record had been wdldated. If we insist(;d

oll et_forcing this dependencies, only the validation phase could 1Lave I)(:en

l)arallelized, and much of the potent'ial gain from multil)le processors would

Ilave been lost. lIowever, invalid records are relatively rare, and we decided to

Ilave each processor proceed under the assumption that the next record would
1,e valid. Corrections are taken whenever an invalid record is discovered.

The statistics gathering did require sequential record to record tinting, so

our implementation on the iPSC/2 serializes the statistics gathering across

;dl the records, but allows parallellzatlon of tim individual record process-

i_g. With this strategy, parallellzation of the record processing proceeded

_ccording to the schematic shown in Figure 1. A message co,ltai,fing tile

accumulated statistics is passed from one processor to the next as soon as
t]te statistics are awdlable.

In order to implement this cooperation, we had to determine which code

5

did tile validation task and wehad to determinewhich data communicated
that validation. The codewasorganizedwell to isolatethe validation process-
ing: there weretwo top levelproceduresthat handled those tasks. However,
the data dependencieswerenot nearly so obvious.

TIP #1: Itigh level proceduresshouldbe organizedaccordingto purposes
clearly delineatedin the problemspecification. This simplifies the task
of isolating and, if necessary,changingthe ordering of tile operations
involved in meeting that part of the specification.

TIP :_2: Data structures shouldbeorganizedaccordingto purposesclearly
delineated in the problem specification. This simplifies the task of
isolating the information which must be passedamong cooperating
processors.

Top down designof proceduresand functions has becomeincreasingly
common,and this practice encouragesthe type of organization suggestedin
TIP #1. Data structures lesscommonlyaregiventhis kind of attention. Of-
ten datastructures aredesignedto minimize tile length of parameter lists and
data are grouped into larger and larger structures. These larger groupings
can hide the true data dependenciesbetweenmodules. Myers differentiates
between"stamp coupling" and "data coupling": moduleswith stamp cou-
pling sharecompositedata structures;moduleswith data couplingshareonly
variablesthat hold a singlevalue. [Myers]For the purposesof program con-
version, we do not require strict data coupling. Instead, we refine the idea
slightly:

TIP _:3: A routine should receivea compositedata structure only if it can
potentially requireall the piecesin that structure. If not, a newsmaller
structure should beconstructed,or tile relevantatomic piecessent.

The conversioneffort proceedsonly as quickly as the critical data de-
pendenciescan be identified. Simpledeclaration conventionscan speedthis
identification.

TIP #4: Group declarationsand the associateddocumentation according
to data dependencies.Have a separatedata dictionary organized al-
phabetically for eachroutine, cross-referencedinto the groupeddecla-
rations.

6

4.2 Changes in Word Size

The Cyber's 60 bit integers could not be automatically converted to 64 bit

integers because our compiler on the iPSC/2 does not include integers of

this size. It became necessary to ascertain from documentation and from the

ERBE data management team which of the integer variables would poten-

tially use integer values that would overflow a 32 bit integer. Integer overflow

is not detected by the runtime system on the iPSC/2, so no straightforward

method exists for checking for this condition during execution.

TIP _:5: Do not use implicit declarations. Do not use system-dependent

defaults in declarations. Declare all variables explicitly, and (within

the llmit_s of the programming language) declare each variable with

the tightest limits possible. When the programming language does

not support sufficient declaration power to express the desired restric-

tions, describe the restrictions in a contiguous comment. Give these

restrictive comments a distinctive syntax to simplify their automatic

detection.

TIP #6: When such support is available, enable range checking. When

such support is unavailable or its runtime costs are considered pro-

hibitive, add code with explicit range checking at critical points in the

computation. Mark this range checking statements with a distinctive

syntax.

The Cyber word size also caused problems with bit strings. Again, it

was not always clear from the documentation which bit strings had an ef-

fective length of 32 bits or fewer. Tracking down such use through levels

of subroutines and function calls was tedious. This detective work was fur-

ther complicated by code that used multiplication to accomplish bit shifts

and code that use addition to accomplish bit sets. The detective work was

simplified by named constants used in bit operations.

TIP #7: Make all operations as explicit and specific as possible. Named

functions clarify the purpose of variables and the intent of operations. If

explicit function and subroutine invocations are deemed too expensive,

explain the specialized use of low level operations using an explicit

comment with a distinctive syntax.

7

TIP #8: Declare each constant used in the program. Comment on the

constant's purpose and derivation. For example, if a constant is a large

integer, it may represent the largest integer available on the original

machine, it may embody a particular value specific to ttle application,

or it may be a value selected as a marker by the programmer. Each

of these purposes may require a different action of the programmer

parallelizing the code. If the same value is used for more than 1 different

purpose, declare a distinct constant for each purpose.

4.3 System Differences

Some changes are expected when changing from one machine to another.

Unless the machines share a standardized operating system, the conventions

for job control, file management, and the like will be distinct. Syntax con-

ventions for coding values or operations may differ. The order of parameters

may differ on routines common to both systems. Careful documentation of

these matters in the original code will ease the transition.

Isolation into purposeful modules has already been mentioned with re-

spect to data dependencies. This same principle applies to the problems

with system dependent features.

TIP #9: Isolate input and output operations into distinct routines. With

multiple processors, communication is almost certain to change during

conversion.

TIP

TIP

#10: When system-dependent routines are used, attempt to group

their invocation into application-speclfic modules. In these modules,

describe the precise limitations and intended effect of each system-

dependent routine. Invoke system routines with a consistent syntax

throughout the program.

#11: Use standard constructs and syntax whenever possible. Avoid

specialized language extensions. When extensions are mandated by

circumstance or decree, identify the extension in documentation and

identify each use of that extension in tile code. The prohibition against
extensions includes "tricks," which are essentially undocumented ex-

tensions. Do not use practices that a particular compiler or operating

system allows,but are not generallyavailableor expectedin other en-

vironments.

TIP _12: Include in your documentation a bibliography of references with

detailed information on the machine, operating system, programming

language, and application associated with your program. Include ver-

sion numbers and publication dates.

5 Conclusions

Prudence demands that we develop sequential programs in a way that will

ease parallelization in the future. Current programming practice often does

not lend itself to this enterprise, ttowever, currently advocated practices,

which can easily be adopted, can significantly ease the burden of such con-

versions. Many software engineering principles apply, but with added force.

Other principles, concerning data dependencies, grow out of concerns that

have not been traditionally of great concern in software engineering.

Some aspects of FORTRAN (particularly its declaration Semantics) in-

creased the difficulties of this conversion, tIowever, no programming language

forces a programmer to declare variables with tight bounds, and no compiler

enforces the documentation of data dependencies. We contend that the issues

raised above pertain to programming in any language. Furthermore, since

parallel architectures are still in an early stage of development, the choice of

languages may be limited to languages with less than ideal characteristics.

In all cases, the principles should be applied, using distinctive comments

when the source code does not lend itself to more explicit expression of tile

programmers intent.

A good parallelizing compiler may have helped us in this project. Itow-

ever, such compilers are not universally available, and converting to a new

machine involves most if not all the problems described above. Furthermore,

no compiler can be guaranteed to discern an optimal parallelizing strategy

from sequential source code.

All the suggestions above can help a programmer make assumptions and

intentions explicit in the source code. This added clarity facilitates a deeper

understanding of the specified computation. Such understanding is valuable

not only in parallelization, but also during development and maintenance of

the sequential code.

6 References

[Lamb] David Lamb. Software Engineering: Planning for Change. Prentice-

Hall, Englewood Cliffs, New Jersey (1988), pp. 52-53.

[Myers] Glenford J. Meyers. Reliable Software through Composite Design.

Petrocelli/Charter (1975).

[Padua and Wolfe] David A. Padua and Michael J. Wolfe. Advanced

compiler optimization for supercomputers. Comm. of the ACM. Vol.

29, No. 12 (December 1986), pp. 1184-1201.

[Sommerville] Ian Sormnerville. Software Engineering, 2nd Ed.. Addison-

Wesley, Wokingham, England (1985), pp. 132-141.

10

B A Dissertation Proposal

This Ph.D. dissertation proposal describes our research associated with the issues of software porta-
bility and high performance.

13

/// / 3..---

PR,E_ PAG_ BLANK NOT F_MEi3

References

[1] CERES Data Management Team. Clouds and the Earth's Radiant Energy System (CERES)
Requirements and Functional Specifications for Process 3 -Identify Clouds: Version O. NASA

Langley Research Center, Hampton, VA 23665-5225, September 1992.

14

Doctoral Dissertation Proposal

A Design Methodology for Portable Software on Parallel Computers

Dan A. Chrisman, Jr. *

Department of Computer Science, College of William and Mary

14 May 1992

Abstract

This paper proposes research which addresses two difficulties in parallel pro-
gramming. The first difficulty is developing software which will execute quickly
on a parallel computer. The second diffÉculty is transporting software between
dissimilar parallel computers. In general, we expect that more hardware-specific
information will be included in software designs for parallel computers than in

designs for sequential computers. This inclusion, for performance reasons, com-
plicates a software developer's attempt to keep important software on the newest
high performance hardware. Tile problem of the proposed research is to create a
design methodology that helps de.signers to more precisely control both portability
and hardware-specific programming details.

"Supported by NASA/Langley grant and Virginia Space Grant Consortium

1 Introduction

The proposed research addresses two difficulties in parallel programming. The first difficulty is

developing software which will execute quickly on a parallel computer. The second difficulty is

transporting software between dissimilar parallel computers. In general, we expect that more

hardware-specific information will be included in software designs for parallel computers than in

designs for sequential computers. This inclusion is an instance of portability being sacrificed for high

performance. New parallel computers are being introduced frequently. Trying to keep one's software

on the current high performance hardware, a software developer almost continually faces yet another

expensive software transportation. The problem of the proposed research is to create a design

methodology that helps designers to more precisely control both portability and hardware-specific

programming details. The proposed research emphasizes programming for scientific applications.
This proposal consists of five sections. Following this introductory section, the problem is

discussed in section two and previously proposed solutions to the problem are discussed in section

three. The proposed solution to the problem is discussed in section four. The proposed tasks are

stated in section five.

2 Problem

Developing software for a parallel computer and transporting the software to a dissimilar paral-

lel computer are two difficulties which a scientific parallel software developer faces. These two

difficulties can be illustrated as developing software under two scenarios:

1. a problem's initial implementation on a parallel computer and

2. a problem's subsequent implementations on dissimilar parallel computers.

This proposal addresses the difficulties from the viewpoint of these scenarios.
Software development for a problem's initial implementation on any sequential computer is

intellectually challenging and time consuming. A problem's initial implementation on a parallel

computer typically requires additional development costs.

Parallel processing is inherently more complex than sequential processing and will stay

so for the simple reason that when we go to parallelism we have a domain which has many

more dimensions. Sequential machines are unidimensional. When a machine becomes

faster, everything becomes faster by roughly the same amount. Parallel machines are
multidimensional: we have to worry about the number of processors, processor speed,

communication speeds, latency, bandwidth, and so on. We have many more dimensions

that affect performance of algorithms than we were accustomed to in the sequential

world. (Marc Snir [471)

This additional complexity requires more sophisticated parallel programming models. Chandy

contends that the models which exist for designing and programming parallel computers have

heretofore been inadequate for much of the development in parallel applications:

...the basic sequential architecture--the von Neumann machine-- has remained un-

changed for decades. Programmers are typically isolated from variations in sequential

computers by high-level compilers and industry-standard operating systems such as
Posix. Such uniformity does not yet exist for parallel computers, which makes them

less attractive platforms for software development [17].

The particular needs of scientific applications make these inadequacies quite glaring [48].

To generate an effective implementation on a parallel computer, parallel software development is

generally based upon a hardware-specific parallel programming model. To transport the software to

a dissimilar parallel computer, the software development must utilize another parallel programming
model. Our use of the phrase to transport parallel software denotes the inclusion of any software

development activity required to achieve an effective implementation on a dissimilar parallel com-

puter. The cost to transport the software may range from a minimum of zero (i.e. no change) to

some maximum (i.e. complete redevelopment). For Karp, the cost to transport software, even for

small programs, remains ridiculously high:

To read the trade literature, you would think that programming parallel processors

is easy. In fact, the task of getting a program to run properly is often complicated--
sometimes needlessly complicated. Complications arise from many sources. Many prob-

lems are due simply to running in unfamiliar programming environments. Others are

due to the preliminarynature of manyof the parallelprocessingsystems.Unfortu-
nately,all too manyareduein someway to poorplanningby the designersof parallel
systems.... Wetakeasimpleprogramwhichapproximates7rby numericalquadrature
andrewrite it to run on ninecommerciallyavailableprocessors.It is surprisinghow
complicatedsomeof theseprogramsbecome[41].

3 Previously Proposed Solutions

Many proposals to solve both aspects of the proposed problem have been and are currently being

explored. The previously proposed solutions can be described as programming models, standard-

ization efforts, design models, CASE tools and parallelizing compilers. For each category of the

previously proposed solutions, a category description and category examples are provided.

3.1 Programming Models

Most of the previously proposed solutions relevant to the proposed problem can be described

as programming models. These programming models are described in terms of Browne's parallel

computation model properties (described in the next paragraph). Each property can be categorized

as either the programmer's responsibility or as a programming abstraction. The portability of each

programming model's implementation is considered. Finally, the formality associated with the

programming model(if present) is described. The programming models to be described are:

1. MIMD-SM and MIMD-DM programming models

2. SIMD programming models

3. Gelernter's Linda,

4. Chandy's and Misra's UNITY.

Browne [12] provides a specification of the necessary but not sufficient properties of a parallel

computational model. The properties include the primitive computation units, the rules for creating

a computation structure which is constructed from primitive computation units, the type of address

space which a computation structure can access, the way in which executing computation structures

are synchronized, and the way in which information is shared between the computation structures's

address spaces. Some examples of the model components are:

1. primitive units of computation: the operators and data structures used by the programmer,

2. computation structures: usually organized as streams of instructions executing in parallel,

for example:

(a) the parallel programming language construct based on the DO loop (e.g. DOALL which
usually assumes iteration instance independence and DOACI_OSS which usually assumes

dependencies between iteration instances),

(b) the subroutine which contains work which can be partitioned and executed in parallel

by many processes (e.g. PARSUB sub-name(arguments)) or which contains work which

can be executed by a process and performed concurrently with other subroutines,

(c) a physical process or a virtual process,

(d) a micro-task or macro-task,

3. the computation structure's address space can be composed solely of shared memory(i.e.

can access the address space of all instruction streams), can be composed solely of private

memory(i.e, can access only its own address space), or some hierarchical combination of

shared and private memories,

4. instructionstreamsynchronizationwhichisexplicitly-specified(e.g,semaphores)or implicitly-
specified(e.g,blockingSENDwhichisa communicationinstruction),

5. informationis sharedbetweeninstructionstreamsexplicitly(e.g,sharedmemory)or implic-
itly(e.g, messagepassingusingSENDandRECEIVEinstructions).

3.1.1 Multiple Instruction Multiple Data: An Introduction

One parallel computation model is the Multiple Instruction Multiple Data (MIMD) model [3].
This model assumes a parMlel computer with two or more processors and a mechanism for the

processors to exchange information. Each processor executes a processor-specific instruction stream

and operates on a processor-specific data stream. With the required storage of an instruction
stream and a data stream, the MIMD parallel computation model requires an associated memory

model. Two memory models are the shared memory (SM) model and the distributed memory (DM)
model. The next section describes the MIMD-SM programming model and provides several MIMD-

SM implementations. Subsequent sections provide the analogous information for the MIMD-DM

programming model.

3.1.2 MIMD-SM Programming Models: An Introduction

The MIMD-SM programming model provides a shared memory abstraction for the MIMD paral-

lel computation model. Information stored in memory by any processor can be accessed by all

processors.

3.1.3 MIMD-SM: The Force

Jordan's Force parallel programming language [39] provides a very broad programming model to

develop portable parallel programs for MIMD shared memory multiprocessors. The Force pro-

gramming language, which supports the MIMD-SM programming model, is composed of Fortran

77 with parallel language extensions. The primitive units of computation are the data types of
Fortran and the associated operators. These primitive units are organized as the following compu-

tation structures: prescheduled and self-scheduled DOALL loops, prescheduled and self-scheduled

parallel CASE statements, the subroutine, and the FORCESUB subroutine. The work which these

constructs express is performed by Force processes. This process abstraction is managed by Force.
To differentiate a subroutine from a FORCESUB subroutine, a subroutine call may be executed by

an independent process. A FORCESUB subroutine is performed by many processes concurrently.

The address space of a process is composed of memory which is either private to a process or shared

with other processes. The programmer must categorize the data of a program as private or shared.

The modes of synchronization of processes are either data or control synchronization and are ex-

plicitly controlled by the programmer. Data synchronization is specified by the Async, Consume,
and Produce instructions. Control synchronization is specified by critical sections and the BAR-

RIER instruction. The mode of communication for processes sharing information between their

address spaces is via shared variables. The abstractions which Force provides are: independence

of the number of processors executing a parallel program, suppression of process management, and

non-process-specific synchronization. The Force has been implemented on the ItEP, Flex/32, En-

core Multimax, Sequent Balance, Alliant FX/8, and Cray-2 multiprocessors using computer-speclfic

compilers.

6

3.1.4 MIMD-SM: ARguably Fortran

Saltz's programming model provides a global name space for solving sparse and unstructured sci-

entific problems and is implemented as the programming language ARF (ARguably Fortran) [60]

for MIMD distributed memory computers. Rosing's, Schnabel's, and Weaver's DINO environment

[53] (described in a subsequent section) is designed to solve regular problems by distributing the
work and data based on the data reference patterns which can be predicted at compile time. The

irregular nature of Saltz's chosen problems makes data reference patterns unpredictable at compile

time. Runtime analysis of data reference patterns are required to achieve reasonable processor load

balancing. The primitive computation units are the data types and operators of Fortran 77. One

computation structure is the DISTRIBUTE DO parallel construct. The iterations within the loop
are to be distributed to the processors of the parallel computer. Another computation structure is

the process, whose management is abstracted from the programmer except for the inclusion of the

processor work-assignment instruction ON CLAUSE of Kali Fortran 1 [44]. The address space is
abstracted as virtual shared memory although the target hardware for ARF is distributed memory

parallel computers. The programmer must organize the address space by providing data distri-

bution information to the compiler (e.g. $1 DISTRIBUTED REGULAR USING BLOCK REAL

K(SIZE)). The synchronization required for correct execution of the work within a DISTRIBUTE
DO is managed by the compiler and runtime support. No explicit synchronization statements

are provided in ARF. Information is shared between processes via a virtual shared memory. The
virtual shared memory on a distributed memory parallel computer is provided by the compiler

and runtime support using a message-passing mechanism. This support manages the dynamic

demands for interprocess communication. The programmer is alleviated from the responsibility

for any message-passing specification by using a communication library Parallel Automated Run-

time Toolkit at ICASE (PARTI) . The programmer provides a Fortran 77 program and adds data

distribution information. The compiler adds the data communication code necessary to execute

the program on a MIMD-DM computer. The runtime analysis of the code (performed during the

inspector loop), inspects the potential work and schedules the necessary efficient communication

to satisfy any off-processor data dependencies, either as input or output data. The runtime system

then executes (during the executor loop) the input communication phase, the computation phase,

and the output communication phase. The data arrays are distributed among the processors. The
data does not necessarily reside on the processor on which it is updated. Each processor has a

hash-table data cache which holds temporary data. The hashing is used to remove duplicate data

items. Due to the sparse nature of the computation, the data, although distributed, may be stored

in an irregular pattern on the processors. The location for each datum is stored in a distributed

translation table.

3.1.5 MIMD-SM: CEDAR Fortran

CEDAR Fortran [34] provides a programming model for expressing parallelism on the CEDAR

shared memory multiprocessor. The programming model provided by CEDAR Fortran is tightly

coupled to the CEDAR hierarchical shared memory multiprocessor. Although providing a general

parallel programming model is not a goal of the CEDAR Fortran development, the language's
semantics are an interesting attempt to exploit different grains of parallelism on a hierarchical shared

memory multiprocessor. The processors of the CEDAR multiprocessor are configured as four eight-

processor clusters. For the Cedar-1 multiprocessor, a cluster is an Alliant FX/8 multiprocessor.

7

The sharedmemoryof theCEDARmultiprocessorishierarchical.Theprocessorsof a clustershare
clustermemory.In addition,all processorsmayaccessglobalmemorywhich is distinct from the
clustermemories.CEDARFortran is composedof Fortran77with parallel languageextensions.
Theprimitive unitsof computationarethe datatypesof Fortran77and associatedoperatorsand
the arraydata type and arrayoperators.Somecomputationstructuresare the arrayandvector
extensionsto Fortran77 (i.e. triplet notation, FORALLvectorloop statementand the WttERE
vectorconditionalstatement). Another computationstructure is the microtaskingprovidedby
the concurrentloopstatementsDOALL andDOACROSS.Both of thesestatementshavevariants
whicharespecificto a levelof the hierarchicalmemoryhierarchy.The processorswhichperform
theiterationsof a CDOALL or CDOACROSS statement must reside within a common cluster. The

iterations of a SDOALL or SDOACROSS statement may be executed by processors across cluster

boundaries. The XDOALL and XDOACROSS statements utilize all of the processors of the CEDAR

multiprocessor. Another set of computation structures utilize the macrotasking library which allows

the programmer to manage a larger grain of parallelism than the microtasking concurrent loops.

A program's macrotask performs the work described in a subroutine using the processors allocated

to it during the macrotask's invocation. The address space of a process may access either cluster

shared memory or global memory. Each datum of a program may be declared as CLUSTER or

GLOBAL, defining a datum's initial location. For macrotask execution, the Fortran 77 COMMON

block is attributed as either a plain COMMON(a unique common is created for each macrotask

in the program) or a PR,OCESS(only one COMMON block is created for a program). The modes

of synchronization for parallel execution include synchronization at several levels of parallelism.
These modes are determined by the use of either micro- or macrotasking. Synchronization for

DOACROSS loops is specified by the ADVANCE and AWAIT statements. The medium grain

lock and event synchronization primitives are used by processes owned by separate macrotasks.

For processes within a macrotask, the WITH statement provides a critical section synchronization
mechanism. The modes of communication which allow information to be shared between processes'

address spaces are based on direct access to the cluster shared memory and global shared memory.

3.1.6 MIMD-DM Programming Models: An Introduction

The MIMD-DM programming model provides a distributed memory abstraction for the MIMD

parallel computation model. Information stored in memory by a processor is private and cannot

be accessed by another processor. Unlike the MIMD-SM programming model, explicit communi-
cation instructions are required to move data from the private memory of one processor to the

memory of another processor in the MIMD-DM programming model. One instantiation of the

MIMD-DM parallel programming model is Itoare's Communicating Sequential Processes (CSP)

[36]. Hoare's CSP model incorporates Dijkstra's nondeterministic guarded command, Dijkstra's
PAR.BEGIN command for concurrent execution of sequential commands, and process-blocking in-

terprocess communication commands. One instantiation of Hoare's CSP on a parallel computer is

the Occam 2 language which executes on a mesh of INMOS Transputers. The European computer

science community is currently discussing the adoption of CSP as a general purpose parallel pro-

gramming model for all parallel computers. Zenith contends that this adoption is inappropriate for

elliciency reasons, particularly for MIMD-SM parallel computers [61].

3.1.7 MIMD-D1V[: Intel Hypercube Message-Passing Fortran

For the Intel iPSC/2 hypercube parallel computer, the MIMD-DM programming model is supported

by an extended procedural language [24]. For the extended Fortran 77 language [23], the primitive

computation units are the data types and operations of Fortran 77. The computation units are the

processes which are instances of program executions. These instances may be organized in a Single

Program Multiple Data (SPMD) configuration or as concurrent executions. The address space of

a program is its private memory. There is no shared memory. The modes for synchronization may

explicitly synchronize processes using the BARRIER-like WAITALL0 and WAITONE 0 system

calls. Implicit synchronization is incorporated into the one of the communication modes. Message

passing between processes provides the only way to share data between processes. The synchronous
communication instructions CSEND() and CRECV() cause the process to block until the message

has been sent or received respectively. The asynchronous communication instructions ISEND 0

and IRECV 0 do not block and contain no implicit synchronization. A third communication mode

allows message passing calls IISEND() and IIRECV() to be used as interrupt handlers, defining
a function to be executed when the message has been successfully sent or received respectively.

Each send instruction instance is parameterized by a programmer-defined message type, a pointer

to the location of the message to be sent, the message size (in bytes), the destination processor id,

and destination process id. Each receive instruction instance is parameterized by a programmer-

defined message type, a pointer to a location for the incoming message, and the message size (in

bytes). The programmer is responsible for insuring that deadlock will not occur. The support
for these communication modes is provided by the Intel NX operating system which manages the

message buffers. The monitoring and flushing of these buffers is under the programmer's control.

At a higher level of abstraction, global operation instructions are provided which utilize distributed

data and provide each participating process with the result. This programming model is supported

by Fortran and C extensions which are specific to the iPSC/2 hypercube computer.

3.1.8 Single Instruction Multiple Data: An Introduction

The Single Instruction Multiple Data (SIMD) parallel computation model [3] is almost identical to

the MIMD parallel computation model. Unlike the MIMD parallel computation model, each SIMD

processor executes an instruction stream which is identical to the other SIMD processors. Like the

MIMD computation, each SIMD processor operates on a processor-specific data stream. The next

sections provide several SIMD programming model implementations.

3.1.9 SIMD: DAP Fortran

The vendor-specific SIMD programming model used to program the Active Memory Technology

(AMT) DAP parallel computer [1, 37] is incorporated in DAP Fortran-Plus [15]. This extended
version of Fortran 77 provides a programming model which allows the programmer to manipulate

vectors and matrices on the DAP. The DAP is a 32 x 32 array of single bit processors. The data

object manipulations are specified using vector and matrix notations. Intrinsic manipulation func-

tions (e.g. vector maximum) also operate on these data objects. The primitive units of computation

are vectors, matrices, and their associated operators. The rules for turning the primitive units of

computation into computation structures is based on the SIMD execution method(i.e, lock step).

The anodes of synchronization for parallel execution are implicit in the SIMD lockstep execution

scheme.Themodesof communicationbetweencomputationstructuresandtheir addressspaceare
limited to accessingaprocessor'sfour nearestprocessorswith wraparoundat the edges of the DAP.

3.1.10 SIMD: Paragon

Reeves's Paragon programming environment addresses the problem of developing efficient and

portable scientific software for a variety of multicomputers [52]. Reeve's previous research con-

cerned a parallel version of Pascal [51] which was developed for the NASA MPP (a SIMD computer

which predates the Connection Machine) [3]. The Paragon environment includes a compiler and

a runtime system. The language semantics are designed to support scientific processing on a wide

range of multicomputers. The targeted range of computers is shared and distributed memory mul-
ticomputers and algorithmically appropriate vector and SIMD array computers. Reeves's approach

is to focus on task management. The programmer must provide some hardware-independent task
information and the run-time system will manage the tasks. The Paragon language is based on

the SIMD programming model. The first data structure which the author considers is the array.

The Paragon language syntax is C with extensions. Intrinsic functions for array manipulation

are provided. These functions are similar to those in Parallel Pascal [51]. Reeves separates the

declaration of the type of the data structure with the declaration of the shape of the structure.
This information is used to distribute the data on the parallel computer and is used by the task

manager. Reeves also introduces communication structures. These are data structures which serve

as pointers used to specify how elements of a data structure are mapped to another data structure.

Data locking is an alternative to communication structures when only several elements of a data

structure are required for a computation. The Paragon language has been implemented for any

uniprocessor which has a C-t-+ compiler and implemented on two homogeneous multicomputers: an

Intel iPSC/2 hypercube with a Unix operating system and a network of transputers with Trollius

operating system [20]. The automatic task allocation required by the distributed memory comput-
ers uniformly distributes the array data structure as contiguous blocks. The runtime system will

dynamically redistribute the data array based on load balancing concerns.

3.1.11 Linda and Tuple Space

Gelernter developed a parallel programming model composed of a sequential base programming

model (e.g. C or Fortran) and the Linda memory model [14]. The Linda memory is called tuple

space. One extended sequential language which supports the Linda parallel programming model
is Linda-Fortran . The base language is Fortran 77 and the extensions are tuple space operations.

The primitive units of computation are data types and operators of the base language and the tuple

types and tuple operators. There are two types of tuples: data tuples and process tuples. A data

tuple is a passive object and a process tuple is under active evaluation. Tuples are manipulated with

four fundamental tuple operations: OUT(t1), IN(t2), RD(t2), and EVAL(tl) where tl is a tuple

and t2 is a tuple template. OUT(t) evaluates a tuple and places the resulting tuple in tuple space.

IN(t) finds a tuple in tuple space which matches the tuple template t, assigns formal arguments to
actuals, and withdraws the matching tuple from tuple space. RD(t) finds a tuple in tuple space

which matches the tuple template t, assigns formal arguments to actuals, and leaves the matching

tuple in tuple space. EVAL(t) is the reverse of OUT(t) in that the tuple is placed in tuple space

where the tuple becomes a process tuple and is evaluated. The result of the evaluation causes the

process tuple to become a data tuple which contains the result. With the process tuple, the Linda

10

modelprovidesfor processcreationand coordination. INP(t) and RDP(t) are predicate versions of

IN(t) and RD(t) respectively. If a tuple match is not immediately found for the INP(t) or RDP(t)

tuple operator, then a tuple-match failure indicator is returned. The computation units are the
control structures of the base language which utilize the tuple operators. The address space in

which the complex computation structures executes is tuple space. The modes of synchronization

for parallel execution are based on the execution blocking semantics of the IN(t) and RD(t) tuple

operators. Execution of either operator requires that a tuple be found in tuple space which matches

the tuple template t. Both operators will block until a tuple in tuple space is found. The modes
of communication between computation structures and their address space are via the RD(), IN(),

and OUT() tuple operators.
There are concerns about the effectiveness of Linda programs [54] and concerns about the

insidious demands placed upon the programmer by the Linda compiler optimization techniques

[61].

3.1.12 UNITY

Misra's and Chandy's UNITY programming model is expressed in four parts. The two formal parts

are the abstract program and a program proof. The two informal parts are the mapping and the

architecture descriptions [18].

A UNITY program is a computer-independent specification which is expressed with a notation

composed of four constructs: a DECLARE section, an ALWAYS section, an INITIALLY section,

and an ASSIGN section [16]. A DECLARE section contains a variable's name and type declaration.
The ALWAYS section contains the functional relationship between variables. The INITIALLY

section allows the assignment of an initial value to a variable. The ASSIGN section contains a set

of assignment statements.
The program proof system is based on Hoare axiomatic system[35]. Two UNITY extensions

are guarantee and goal which are conditional terms which facilitate the program proof by compart-

mentalizing the information [16].
Due to the computer-independence of the UNITY program, a mapping of the program to a

parallel computer is required. Thus the simplicity of specifying a UNITY program due to its

computer-independence is balanced by the cost of specifying a mapping. Unlike the formal spec-

ification of a UNITY program, the description of a mapping of a UNITY program to a parallel

computer and the description of the parallel computer remain informal. The programmer describes

the mapping as a distribution of program statements, variables, and control flow for each processor.

Chandy indicates that compilers are being written for SIMD and MIMD computers.

3.2 Standardization Efforts

The focus of several language standardization efforts has been to provide programmers of Fortran

77 [10] with access to the high performance of parallel computers. Karp proposed the need for par-
allel language standardization as a response to the questionable health of the software engineering

aspects of parallel programming:

The state of the art of parallel programming and what a sorry state it is in [40].

Karp discussed the different types of parallel computers and the hardware-specific tools for ex-

pressing parallelism. IIe focused upon scientific programming on MIMD processors using Fortran

11

dialects.Heconcludedthat the parallelprogrammingcommunityneededa setof appropriate ex-

tensions to Fortran. These extensions would allow programmers to express the parallelism of their

problems at a medium parallelism grain. These programs would attain the speed desired by the

programmers. Several efforts to standardize these extensions for Fortran have begun. Fortran 90

[38] incorporates a concise array syntax and semantics which aids vectorization for supercomputers

[45]. A DO loop parallel programming feature was removed from the Fortran 90 standard just

prior to the standard's release [33]. Two different standardizations of parallel Fortran dialects were

begun by the Parallel Computing Forum [55] and by the tIigh Performance Fortran Forum.

3.2.1 X3H5

The effort to standardize a parallel Fortran dialect, which was begun by the Parallel Computing

Forum, became an effort of the American National Standards Institute (ANSI)-accredited tech-
nical committee X3H5 committee. The ANSI X3II5 model document [13] describes a language-

independent programming model with the following purpose:

our intent is to standardize current practice through the definition of parallel constructs

which are portable and language independent. They are intended to be implemented

for procedural, imperative languages such as Fortran 77, Fortran 90, Pascal and C.

The primitive units of computation are the data types and operators of a procedural, imperative

language like Fortran 77 or C. The computation structures are the parallel constructs. The process
is a computation structure, but is managed implicitly during the execution of a parallel construct.

A program begins with one process and proceeds serially until a parallel construct is executed.
Within a parallel construct, all processes of the team execute the same instructions until a work

sharing construct is encountered, then each process of the team is assigned the work specified in

the work sharing construct. A barrier is formed at the end of work sharing construct and at the

end of the parallel construct. A process's data may be explicitly categorized as private to a process
or shared among more than one process. Synchronization is provided to communicate values of

shared objects, control the access to shared objects, and provide control synchronization. All shared

variables modified during a construct must be updated before the constructs barrier is crossed(i.e.

implicit synchronization). Explicit synchronization is available in the form of locks, events, and

sequences. The information which is to be shared between processes relies upon accessing shared

memory. No message passing between processes is allowed for this model. The process management
is abstracted. The model is based on a shared memory computer but may be bound to languages

which target distributed memory computers. This standardization effort is incomplete and this

programming model has not been implemented on any parallel computer. One restriction is that

all programs for this model must be executable on a single processor.
The X3H5 Fortran 77 language binding document [22] defines a binding to the aforementioned

model document [13]. This binding is an extended version of Fortran 77 whose design was originated

by the Parallel Computing Forum [55]. The parallelism which this language exploits is thread-based
unlike the array-based extended Fortran 77 dialects (e.g. DAP Fortran-Plus [15], High Performance

Fortran (IIPF), the Connection Machine's CM Fortran [58]). The language is being designed to

provide simple, intuitive constructs which allowed users to introduce parallelism into an

existing application with minimal changes and also to code new parallel programs.

12

As thedesignof theprogrammingmodelandthebindingof theextendedFortran77languagehave
evolved,the committeeopinedthat this languagemayalsobea target languagefor a compilerin
additionto ahighlevelprogramminglanguagefor a humanprogrammer.

The primitive units of computationare the data types and operatorsof Fortran 77. The
computationstructuresarethe PARALLELDO andPARALLEL SECTIONconstructs.

The PARALLEL DO constructis usedto specifyparallelismamongthe iterationsof
a blockof code.The PARALLEL SECTIONSconstructis usedto specifyparallelism
amongsectionsof code.

The addressspacefor thecomputationstructuresis a virtual sharedmemory,thusthis language's
implementationtargetsaresharedmemoryanddistributedmemoryparallelcomputers.Themodel
providesimplicit andexplicit modesof synchronization.The implicit synchronizationis provided
in the PARALLEL DO and PARALLEL SECTIONSconstructs.Specifically,synchronizationof
the processesis implicitly establishedat theendof the parallelconstructsandthe endof the work
sharingconstructs.Theexplicit synchronizationis built uponthe synchronizertype declarations:
GATE,EVENT, andSEQUENCE.Variablesof the GATEtype areusedin the unstructuredsyn-
chronizationstatementsLOCK andUNLOCK.Variablesof this typearealsousedin thestructured
synchronizationstatementCRITICAL SECTION.Variablesof theEVENT typeareusedwith the
event synchronizationstatements:CLEAR, POST,POSTED,and WAIT. Variablesof the SE-
QUENCEtype areusedwith the sequencesynchronizationstatements:SET, POST, POSTED,
andWAIT. Themodesof communicationbetweencomputationstructuresandtheir addressspace
arevia direct assignmentof shared variables. Message passing is not a feature of this language.

This extended Fortran 77 language binding has not been implemented on any parallel computer.

3.2.2 High Performance Fortran Forum

The first meeting of the High Performance Fortran Forum (ItPFF) was January 27-28, 1992. The
formation of HPFF is in negative response to the emerging PCF standard. The High Performance

Fortran Forum is a working group convened by Ken Kennedy and Geoffrey Fox to create an in-

formal standard for Fortran extensions aimed at data parallel computation. HPF will be strongly

influenced by Fortran D [31], Vienna Fortran [19], Kali Fortran 1 [44], DEC's tIFF proposal [42],

and the Cray Research MPP Fortran programming model [49]. Agreement has been reached that

an array-based programming model will be more effective in a timely manner than the thread-based

PCF programming model. Fortran D is the basis for the standard being discussed and is described

below.
The Fortran D language [31] provides a programming model for writing data parallel programs

which are portable across parallel computers. Fortran D is a data-parallel version of Fortran 77.

The programmer specifies a problem mapping using the DECOMPOSE and ALIGN statements

and a computer mapping using the DISTRIBUTE statement. Irregular distributions are specified
with a ALIGN MAP WITIt statement for an array of pointers. A FORALL statement is used for

specifying a parallel DO loop where loop instances are independent. Some reduction operations on
arrays are included. For the assignment of specific work to a processor, the ON clause of Kali is

included. This language is aimed toward the scientific data parallel problems. These commands

require the expression of the problem in terms of a one or more arrays. The target computers
for Fortran D are shared and distributed memory parallel computers. The primitive units of

13

computationare the data typesand operatorsof Fortran77. Therulesfor turning the primitive
units of computationinto computationstructuresarespecifiedby the definitionsof the Fortran
77extensions(i.e. FOR.ALLstatement)andmanagedby thecompiler.The rulesfor constructing
addressspacesin whichthe complexcomputationstructuresexecuteareimplicit in the definition
of the DECOMPOSE,ALLIGN and DISTRIBUTE statements.The modesof synchronization
for parallelexecutionareimplicit as specified by the definitions of the FORALL instruction. The
modes of communication between computation structures and their address space are via the shared

memory abstraction.

3.3 Domain-Specific Libraries

Dongarra et al. [4] have provided a domain-specific programming model via a portable library
Linear Algebra Package (LAPACK). This package is an extension to the EISPACK and LINPACK

libraries. All of these computer-optimized libraries are based on the Basic Linear Algebra Subrou-

tines (BLAS). The purpose of LAPACK is to

provide routines for solving systems of simultaneous linear equations, finding least-

squares solutions of overdetermined systems of equations, and solving eigenvalue prob-

lems.

LAPACK utilizes the BLAS which are categorized as Levels 1, 2, and 3 BLAS. Currently, computer-

specific optimizations are limited to the BLAS. Level 1 BLAS are vector-vector operations. Don-

garra contends that

the Level 1 BLAS permit efficient implementation on scalar machines, but the granu-

larity is too low for effective use on most vector or parallel machines.

Level 2 BLAS are matrix-vector operations and Level 3 BLAS are matrix-matrix operations. These

upper levels offer larger granularity than Level i BLAS and allow the programmer to design algo-
rithms which reduce memory traffic on the memory hierarchies of the newer sequential and parallel

computers. In particular, a programmer exploits the Level 3 BLAS by expressing algorithms in
terms of submatrices operations (versus vector or scalar operations), tIowever, research is con-

tinuing to define the optimal or near optimal submatrix sizes for differing computers. The target

computers for LAPACK are fast scalar, vector, and large-scale, general purpose MIMD-SM com-

puters. Current portability is provided for CRAY-2, Cray X-MP, Cray Y-MP, Fujitsu VP, IBM

3090/VF, NEC SX, Hitachi S-820, Alliant FX/80, Convex C-I, Convex C-2, Stardent, Sequent

Symmetry, Encore Multimax, and BBN Butterfly. One of the proposed extensions to LAPACK

[5] is a distributed-memory version. Current research for the MIMD-DM implementations sug-

gests that introducing parallelism at the top-level algorithmic level will be more beneficial than at
the BLAS level. Current implementations of LAPACK are expressed in Fortran 77 with limited

computer-specific extensions. A list of bugs in a preliminary version of LAPACK and some timing
data for LAPACK after the BLAS routines were partially performance-tuned are also provided [6].

3.4 Design Models

Design models have been previously proposed as solutions to developing and transporting software

for parallel computers. These design models are hampered by the lack of parallel programming

14

modelswhichcoverdissimilarparallelcomputersandwhich leadto efficientlyexecutingparallel
software.The currentdesignmodelsmust dealwith computer-specificdetailswhicharenot ab-
stractedbythe parallelprogrammingmodel.If thesedetailsarenot considered,thenperformance
is likely sacrificed.

For the designmodelsdiscussedbelow,the transformationaldesignmethodologyof Gelern-
ter's designmodel,Darlington'sparallel-execution-efficiency-enhancingtransformationmethodol-
ogy,andthe proof systemassociatedwith Chandy'sdesignmethodologyhaveheavilyinfluenced
the proposedsolution, ttuang'sresearchis anexampleof a paralleldetaileddesignmethodology
whichis closelylinkeda parallelprogrammingmodelto achievethe desiredperformance.

3.4.1 Gelernter's Design Methodology

Gelernter's design methodology [14] focuses upon frameworks of parallelism and techniques used
to translate a solution from one framework to another framework. Such a translation is usually

motivated by a desire for increased efficiency. Gelernter categorizes parallelism using three frame-

works and associates a programming method with each framework. For each pair of frameworks,

techniques are presented which allow conversion between frameworks.

The parallelism which is inherent in a problem can be viewed from three perspectives, or within

three frameworks: result, agenda, and specialist parallelism. The three frameworks are described

in terms of a problem which exhibits parallelism and many workers to perform the necessary work.

For result parallelism, the result is partitioned into quanta of work. This partitioning is not based

on functional lines, instead it is a brute force partitioning. Each worker produces a piece of the

result and the workers are working in parallel. For agenda parallelism, the result is described as a

sequential agenda of activities which must be completed. All of the workers, viewed as generalists,

cooperatively tackle and complete a given agenda item before beginning the next agenda item. For

specialist parallelism, the result is defined along functional lines. All of the workers are specialists

and each worker applies his specialty as needed.

Result parallelism focuses on the shape of the finished product; specialist parallelism

focuses on the makeup of the work crew; and agenda parallelism focuses on the list of

tasks to be performed.

The three programming methods for translating these concepts into working programs are live

data structures, distributed data structures, and message passing.
The live data structures are associated with result parallelism. The designer views the result

as a data structure. The designer, exploiting result parallelism, partitions the result into pieces

(i.e. the data structure, which represents the result, is partitioned into data elements). A process
is implicitly associated with each data element, thus each element is considered live. When a live

data element computes its value, it communicates its value to other live data elements by becoming

that data object. Processes implicitly communicate by referring to other data structure elements.

The message-passing approach is associated with the specialist parallelism. A process is explic-

itly created by the programmer and explicitly associated with a specialist. A specialist explicitly

communicates its value as often as necessary to other specialists.

While the message-passing and live data structures have data structures distributed among

processes, the distributed-data-structure approach is composed of a group of processes and a group

of data structures. The distributed data structures approach is associated with agenda parallelism.
Process coordination and communication is via shared data structures.

15

The techniquesof abstraction/specialization,explicit/impllcit and clumping/declumpingare
usedto translatea solutionfrom oneframeworkto another.

Abstractionis usedto translatefroma resultor specialistparallelismframeworkto anagenda
parallelismframework. Abstractionis appliedto a live datastructure (result parallelism)or a
groupof speciMists(specialistparallelism).Their processesarecleavedfrom their data, and the
data is centralizedinto a shareddistributed-data-structure(agendaparallelism).The oppositeof
abstractionis specialization,wherethedistributeddatastructureis partitionedanddistributedto
the processesof a llve datastructureor the specialists.

Explicit communication, and optionally clumping, are used to translate from a result parallelism

framework to a specialist parallelism framework. The designer can translate from a live data

structure (result parallelism) to the message passing of the specialist (specialist parallelism) by

making process communication explicit. Optionally, the processes of the llve data structure may
also be clumped (i.e. composing the processes) for a coarser parallelism grain. Alternatively,

implicit communication and optionally, declumping are used to translate from a specialist parallelism
framework to a result parallelism framework. The designer can translate from the message passing

of the specialist (specialist parallelism) to a live data structure (result parallelism) by making

process communication implicit. Optionally, the processes of the message passing specialists may

be declumped (i.e. decomposing to many processes) for a finer parallelism grain.

3.4.2 UNITY Design Methodology

The four components of Chandy's and Misra's UNITY program development methodology are: a

specification notation, a programming notation, a proof system, and design heuristics. The design

specification notation, which is a computer-independent programming notation, is discussed in sec-
tion Previously Proposed Solutions, subsection UNITY. UNITY encourages the design strategy of

rapid prototyping followed by stepwise refinement to provide adequate performance efficiency. A

majority of the computer-specific details are considered during the later stepwise refinement steps

where the mapping is developed. Program efficiency is considered mostly during the mapping

development. The programmer is encouraged to develop small programs, combine the small pro-

grams for increased functionality, and apply heuristics to refine the program to meet performance

requirements. The respecification is proved correct for each refinement.

3.4.3 Darllngton's Design Methodology

The tIope+ declarative language is part of a transformation system used to develop computer-

specific programs [27]. Darlington et al. present a development philosophy for parallel architectures
and declarative languages. The sound mathematical basis and amenability to formal manipulation

of declarative languages makes them attractive for being transformed from a higher-level specifi-

cation using meaning-preserving rewrites to an efficient program. Program fragments, written in

higher-level specification language, are replaced with fragments having the same denotational se-
mantics but more efficient operational semantics. The major operational inefficiency is attributed

to the load-sharing imbalance among processors. The responsibility for load sharing is taken away

fl'om the programmer and hardware and given to the program transformation techniques. Sim-

ple performance prediction is considered during the application of transformations to the original

program. Execution statistics are used to validate the performance prediction equations.

16

3.4.4 Huang's Design Methodology

Ituang and Fencl provide a methodology for designing parallel versions of sequential algorithms [29].

These designs are sensitive to the processor interconnection network. Huang and Fend focus upon

loop sequential programs. A sequential algorithm is characterized by a set of operations and their

sequential execution order. Based on the data dependence of the operations, a relaxed operation

execution order is expressed with semantic relations. A parallel algorithm is completely specified

as an operation set (set of work quanta), a parallel scheduling function (when a quanta of work

is performed), an operation distribution function (where a quanta of work is performed), a data

distribution function (where data resides as a source), and a data movement function (how data is

communicated between processors). The designer of the parallel scheduling function must maintain

consistency with the operation's semantic relations. Huang and Fencl focus upon the parallelization

of a doubly nested-loop computation as it would be expressed in a sequential, imperative language

(i.e specifically an iterative sequential algorithm). IIuang and Fend acknowledge the need to pro-
vide a method of deriving the specification of the operation set and accompanying four functions.
This is indeed a weakness of their approach, tIuang and Fend provide a methodology which synthe-

sizes an executable parallel program from their parallel algorithm design [30]. An extended Pascal

program is synthesized from the design. The main extension is FORALL p WHERE c DO s where

p is the set of processors, c is a condition evaluated for each work quanta and s is the set of work

quanta. This command activates a set of processors p that satisfy condition c. These processors

simultaneously begin performing their respective quanta of s. The other extensions are a nonblock-

ing destination-specific SEND command and blocking source-specific RECV command. Huang and

Fencl explore the synthesis of computer-specific programs from processor-interconnection-network-

specific designs. A methodology for the synthesis of programs for synchronous execution model

architectures with static or dynamic data distribution is provided. A similar methodology is pro-

vided for the synthesis of programs for asynchronous execution model architectures which require

synchronization via a variable switch for shared memory (a variable lock) and message passing for

distributed memory.

3.5 CASE Tools

The maturity of the CASE tools are limited by the maturity of the underlying software develop-

ment models which they support. Due to the immaturity of the parallel software development

models, CASE tools tend to be specific to one parallel computer, or to one parallel language on a

parallel computer. Chang and Smith [21] classify programming tools which develop software for

parallel computers. The variables for classifying the tools are: tool type, language type, computa-
tional model, language features, environmental features, hardware platform, operating system(s),

language support, graphics interface, design philosophy, application, developing status, and author.

A paragraph evaluating each of the 19 tools is provided, along with a 47-entry bibliography. Their

report is a stepping stone to many tools.
One trio of software development tools(BUILD, SCHEDULE, and HENCE) was sponsored by

the Department of Energy's Argonne National Laboratory. BUILD [11] is a graphical tool to con-

struct execution dependency graphs where each node is a problem expressed as Fortran subroutine.

The library SCHEDULE [28] contains Fortran subroutines used to 1) specify the parallelism of

the problem and 2) incorporate a queued task execution model. The SCHEDULE programs are
executed on a variety of sequential computers and shared memory parallel computers (e.g. VAX

17

11/780,Alliant FX/8, SequentBalance21000,EncoreMulti-Max,Cray-2,Cray-XMP,Cray-YMP,
IBM 3090,and Flex 32). HENCE[9] extendsthe SCHEDULE/BUILD capabilitiesto dynamic
schedulingof the tasksin a network-basedheterogeneouscomputingenvironment.

Severalof the report's parallelizingcompilersare discussedin the next section(i.e. PED,
PTOOL, PFC,PTItAN, andParafrase).

3.6 Parallelizing Compilers

Thegoalof aparallelizingcompileris to automaticallyrestructuresequentialprogramsto execute
efficientlyona parallelcomputer.Manycompilersrelyuponprogramexecutionprofileinformation
in order to choosethe appropriaterestructuringtechnique.The complexityof somesequential
softwarerequireshumaninteraction. The researchin this arearemainscomputer-specificdueto
the immaturityof parallelprogrammingmodels.

3.6.1 PED, PTOOL_ and PFC

Kennedyet al. developedthe ParascopeEDitor (PED) [7] to interactivelyparallelizesequential
software.PED is the combinationof severalautomaticparallelizingtools. The ParallelFortran
Converter(PFC) beganas an automaticFortran77 vectorizerwhichperformsdatadependence
analysis,interproceduralsideeffectanalysis,andinterproceduralconstantpropagation.Thedepen-
denceanalysiscategorizesthe relationshipsbetweenstatementexecutioninstancesastrue, anti-, or

output dependence and loop-independent or loop-carried dependencies. Loop-carried dependencies
constrain the order of execution of the iterations of a DO loop. PFC was subsequently reconfigured

as a conservative parallelization tool. The output of PFC is

a statement dependence graph that specifies a partial ordering on the statements which
must be maintained to ensure the sequential semantics of the program do not change

due to parailelization.

PFC's main weakness was indicating spurious race conditions in large, complex loops, thus thwart-

ing parallelization. An interactive browser PTOOL was developed to debug programs which had

been parailelized by PFC. PTOOL used PFC's statement dependence graph, but applied a de-

pendence filtering mechanism to evaluate and automatically remove many of the spurious race
conditions. PTOOL incorporated improved data dependence analysis. To further facilitate paral-

letization,PTOOL applied another technique to determine whether a variable is private to a loop

iteration (i.e. a private variable cannot inhibit parallelization) or shared between the loop body and

either the pre-loop code or post-loop code. PED extended the capabilities of PTOOL by allowing

the programmer to interact during the program's parallelization. Operationally, PED performs

data dependency analysis at the statement level and then queries the user interactively concerning
the desired code transformation. The code transformations which the user can interactively ap-

ply are similar to those described by Padua and Wolfe [46]. PED provides a programmer with a

low level profitability estimate for a potential transformation. PED generates parallelized code for

shared memory parallel computers. Currently, PED generates IBM parallel Fortran and parallel

Fortran for the Sequent Symmetry.

18

3.6.2 PTt_AN

ParallelTRANslator (PTRAN) [2] is a research compiler which searches for parallelism in a se-

quential Fortran program. This tool relies upon studying the control dependence of a sequential

program to determine its parallelism [25]. The control dependence information is stored in a control

flow graph, where a node can be a Fortran statement or a Fortran condition (i.e. IF condition).
PTRAN inserts additional nodes into the control flow graph to identify the loop structures within

the sequential code. The new nodes of the resulting augmented control flow graph contain informa-

tion from data dependence analysis, constant propagation analysis, and alias analysis. To simplify

the partitioning analysis of the augmented control flow graph, the forward control flow graph, a

subgraph of the augmented control flow graph, is formed by making the augmented control flow

graph acyclic. To generate IBM parallel Fortran constructs (e.g. PARALLEL LOOP and PARAL-

LEL CASE), the forward control flow graph is traversed in depth-first order. Profiling information
is associated with each augmented node of the augmented control flow graph and is considered

during parallel task partitioning decisions.

3.6.3 Parafrase

Polychronopoulos et al. [50] contend that functions traditionally performed by the operating system

may be more effectively performed by the compiler for a parallel computer. Polychronopoulos et

al. are developing Parafrase-2, a source-to-source restructuring compiler. A preprocessor converts

a C or Fortran program to P-2 intermediate code and this code is manipulated to execute on a

parallel computer. The data dependence analysis is based on determining the IN and OUT sets

(i.e data used and data modified, respectively). Scalar and indexed statements are considered
and the order of execution between two statements is determined. The statement dependencies

are categorized as flow, anti-, and output dependence. The data dependence graph is constructed

from the evaluation of the data dependence distance (i.e. nesting levels) and the true distance

(i.e. the number of iterations between a variable instance's access). Graph transformations are

performed to extract the parallelism of the problem (e.g. loop-parallelization, loop-vectorization,

loop-distrlbution, loop-interchanging). When the classical dependence tests (e.g. gcd, Bannerjee's
bounds test and exact tests) fail to decipher the dependencies, then the relatively expensive symbolic

tests are performed. Another facet of the Parafrase-2 compiler is the Static Performance Analyzer

(SPA) which estimates a program's execution time using 3 performance models. These estimates are
used by the compiler to choose the appropriate performance-enhancing program transformations

(e.g. vectorization or parallelization). Interprocedural analysis is performed to gather general

information concerning data object reference, aiiasing, and execution contexts (i.e when data values

can define data dependence relationships). While insufficient data dependence information may

lead a lesser compiler to abandon an optimization approach or apply a conservative optimization,

Parafrase-2 will generate multiple versions of the code where a runtime decision will guide the choice
of versions. The final feature of the compiler is auto-scheduling which partitions and dynamically

schedules tasks, normally an operating system responsibility.

3.6.4 Browne's ESP

Browne et al. [56] developed an interactive programmer-assisted sequential Fortran program paral-

lelizer. It is based on the research of Kennedy (PTOOL), Allen (PTRAN), and Polychronopoulos

19

et al. (Parafrase).It is alsobasedon vendor-suppliedparallelizingcompilerswhich,for limited
cases,find DOloopparallelismin Sequentialcodeandinsertvendor-specificparallelDOloopsinto
the software.Browne'sdistinctivethesisis that

successfulattainmentoflargescaleparallelismwill requireboth macro-levelparallelism
createdby humananalystsandmicro-levelparallelismrecognizedandimplementedby
automatedanalysis.

The parallelstructureof the codeis representedin a hierarchicaldependencegraph. The levelof
graphresolutionbecomesasfineasthe statementlevel.Complete dependence information, deter-

mined from data dependence and intraprocedural analysis, at all levels of the hierarchy, is stored in

a database. Profiling data from the execution of the sequential code is also stored in the data base.

This data base is a resource for the parallel computer simulator which can guide the programmer's

parallelization choice of several parallel constructs for a block of sequential code. Developed by

Scientific and Engineering Software, Inc. under a contract from Concurrent Computer Corporation,
the tool was eventually named ESP. Although the original intent of the tool was to simulate several

parallel computers, only the simulation of the Concurrent Computer Corporation 3200 MPS shared

memory multiprocessor was completed [59]. The environment allows the programmer to specify

the execution measurements to gather performance data for the parallel code.

20

4 Our Proposed Solution

The proposed solution provides a design methodology which addresses two difficulties in parallel

programming. The first difficulty is designing software which will execute quickly on a parallel

computer. The second difficulty is transporting software between dissimilar parallel computers. The

proposed methodology directs the programmer to construct a software design which is specific to a

parallel computer. If the programmer is unsatisfied with the initial design, then the methodology

prescribes actions which can improve the design. When the programmer must transport the software
to a new dissimilar parallel computer, then the methodology directs the programmer to modify the

software design, creating an equivalent design which is specific to the dissimilar parallel computer.

The components and attributes of the proposed parallel software design, the definition of the

proposed equivalence-preserving design transformer, and the proposed method of constructing a

design are described below.

4.1 Introduction

The software development process begins with a programmer's need to solve a problem on a parallel

computer. For many scientific programming problems, a programmer turns to parallel programming

to solve a problem faster or to solve a larger problem than achievable on a sequential computer.

Nobody wants parallelism. What we want is performance. It is the fact that going to

parallelism is the only way to continue to enhance performance that makes parallelism

a necessity (Boeing Computer Services [47]).

In the proposed methodology, the programmer uses the design construction method to guide the

specification of a software design for a problem's initial implementation on a parallel computer.

Since the design is specific to a parallel computer, the software based on the design should execute

quickly relative to its potential performance on the parallel computer. When the performance of a

new, but dissimilar, parallel computer tantalizes the programmer, then a description of this parallel

computer is substituted into the old design. Since most of the design is specific to the old parallel

computer, the programmer uses the design construction method to modify the design so that the

potential performance on the new parallel computer will be achieved. The methodology depends

on specifying three fundamental components, which are described in the next section.

4.2 Design Components

The software design's primary components are the algorithmic specification, the mapping of the

algorithm to a parallel computer, and the hardware characteristics of the parallel computer. Each

primary component is composed of one or more secondary components which are unique to the

primary component. A description of the design's primary and secondary components follows.

4.2.1 Algorithmic Specification

The algorithmic specification is a hardware-independent description of the problem. This descrip-

tion is composed of the data of the problem, the data dependencies, and the functions to be applied

to the data. The algorithmic specification component must be able to express a broad range of

algorithms. The language used to express the algorithmic specification must allow the description
of the data at different levels of abstraction.

21

4.2.2 Hardware Characteristics

The hardware characteristics component is composed of several secondary design components:

number of processors, the profile of processor speed to communication cost, ...etc. The number of

processors is a hardware-dependent component and is quantified at least as good as or better than an

order of magnitude estimate. A processor may be simple (e.g. the bit processors of the Connection

Machine or the MasPar MP-1) or may be relatively complex (e.g. an Intel 80486, Intel iWarp chip,

Motorola 68040). However, a processor is not envisioned to be a stand-alone computer networked

with heterogeneous computers (e.g. Mentat system [32]). The processor speed/communicatlon

cost profile is also a hardware-dependent component. This profile describes a processor's cost to

access data in memory relative to the its cost to perform computations using the data. ttierarchical

memory and nonuniform memory access may require hierarchy-specific costs, thus the use of a

profile instead of a ratio.

4.2.3 Mapping to a Parallel Computer

The specification of the mapping can be expressed at many levels of abstraction. At the highest

level of abstraction, the mapping can be described by the type of parallelism to be exploited

(e.g. Gelernter's result, agenda, or specialist parallelism). At the lower levels of abstraction, the

programmer may describe tile type of parallelism by specifying the data distribution and the work
distribution in varying detail. The data distribution is a relation which maps a datum to a processor.
The work distribution is a relation which maps a function instance to a processor. The data and

the work can be described at several abstraction levels. The mapping must be expressed in terms

of the algorithmic specification as its domain and the hardware characteristics as its range.

4.2.4 Originality of the Design Components

The definitions of the proposed components are similar to those in the DINO programming lan-

guage. The Distributed Numerically Oriented (DINO) parallel programming language generates
software for distributed-memory multiprocessors [53]. DINO's parallel programming model sup-

ports specifying a program based on three components:

1. one or more virtual computers where the virtual computer is parameterized by the number of

processors and either a vector or matrix communication topology (via the ENVIRONMENT

statement),

2. a mapping specification of a globally-referenced distributed data structure for the virtual

computer, and

3. work distribution specification based on the Single Programming Multiple Data (SPMD)

programming model (via the COMPOSITE procedure).

This programming model abstracts the details of message passing, process management, and syn-

chronization, all of which are handled by the DINO compiler.
DINO's virtual computer is more abstract than the proposed hardware component; however,

the DINO programming model is specific to MIMD-DM parallel computers. DINO's mapping

specification of the globally-referenced distributed data structure is similar to the data distribution

component of the proposed mapping. DINO's work distribution specification is more restrictive (i.e.

22

SPMD)than theworkdistributioncomponentof theproposedmapping.DINO's workdistribution
specificationis composedof a descriptionof thework to beperformedanda descriptionof howthe
workis mappedto thevirtual computer.Theproposeddesignhasseparatedthesetwo descriptions
into thealgorithmicspecificationandthe mappingcomponentrespectively.

Other influential researchincludedDahlstrand'scharacterizationof the informationwithin a
softwareapplicationbasedon its portability [26]. Dahlstrand'scharacterizationis an informal
portability descriptionandnot a formalnotation. An applicationis composedof morethan just
the sourcecode. An applicationalsoincludesthe commandcontrol code(e.g. JCL), codeof
program-accessiblelibraries,anddatafiles.Therearethreetypesof informationin an application:

algorithmic, optimizing, and environmental information. Algorithmic information can be made
to be 100 percent portable. Optimizing information is provided by the programmer to help the

compiler optimize the application's execution. This information is inherently less portable due to

its computer dependence. Environmental information is inherently nonportable (e.g. user id and

password).
Based on the three types of information, the proposed algorithmic specification is 100 percent

portable, the proposed mapping component, categorized as optimizing information, is inherently

less portable, and the proposed hardware components, categorized as environmental information,

is inherently nonportable.

4.3 Design Attributes

A design attribute is a property or characteristic of one or more designs. There are two types

of design attributes: intra-design and inter-design attributes. An attribute which characterizes
only one design is called an intra-design attribute (e.g. portability of the design between parallel

computers or the potential performance of a design's implementation on a parallel computer). An
attribute which characterizes a relationship between more than one design is called an inter-design

attribute (e.g. the equivalence of two designs).

4.3.1 Design Utility

Design utility is that which makes the design useful to the programmer. Design utility is an intra-

design attribute based on one or more intra-design attributes. A programmer must choose one or

more design attributes to be emphasized in the design. A design is most useful to a programmer

when the design components have been specified to maximize or minimize these chosen design

attributes. For example, the programmer might choose the design's portability among many parallel

computers as a design attribute. One method to achieve this design utility is to design for an

abstract computer which can be mapped to most parallel computers. For the proposed research,

the design utility is based primarily on the performance of the implemented software. The design

utility is achieved by specifying a mapping between the algorithmic specification and the hardware

characteristics which leads to an implementation which executes quickly on a parallel computer.

4.3.2 Design Equivalence

Design equivalence is an inter-design attribute based on one or more intra-design attributes. Two or

more designs are equivalent for an attribute when their intra-design attribute's values are equivalent.

For example, if two designs are shown to be correct with respect to a requirement specification,

23

then their designsareequivalentfor the designattribute correctness.The designequivalence
for the correctnessof two or moredesignsmight beshownby comparingtheir implementation's
input/output behavior.Anothermethodwouldbeto showtheir design equivalence for correctness

axiomatically. Two or more designs might be equivalent with respect to their implementation's

performance on a parallel computer.

4.4 Design Transformer

A design transformer modifies a design to produce a new design. A design transformer can be

represented as a function. The design components serve as the function's domain and range. The

transformer maps one or more components of an old design to one or more components of a new

design.
The key property of a design transformer is that it creates a new design which is equivalent to

the 01d design for one or more design attributes. The design attribute for the proposed work will

likely be the input/output behavior of the design. If a design transformer for this design attribute

creates a new design, then the old and new designs would be equivalent for their input/output

behavior. Note that each design transformer will not necessarily enhance the design utility of the

old design. Applying an inappropriate design transformer may decrease the utility of the design,

or may have no effect on the design utility. The determination of the appropriate transformer is

addressed in a subsequent section.

4.5 Design Construction Method

The purpose of the design construction method is to create a design with a high design utility for

a specific parallel computer. The design construction method is composed of three steps: design

assembly, design evaluation, and design prescription. A brief description of the design construction

method for creating an application's initial implementation on a parallel computer is provided.

A similar description for creating a design for an application's subsequent implementations on

dissimilar parallel computers is also provided. Then a detailed description of the design construction

method follows.

4.5.1 A Quick Tour

For an application's initial implementation on a parallel computer, the programmer begins by

assembling a design. Typically, the programmer provides design information and then the design

utility is evaluated. If the design utility meets the programmer's expectations, then the design
construction method is terminated. If the design utility fails to meet the programmer's expectations,

then a design prescription is created. This prescription will guide the programmer's attempt to

enhance the design utility as the design is reassembled during the subsequent design assembly steps.

This prescription may suggest that the programmer apply a design transformer to create a new,

but equivalent, design or may suggest that the programmer respecify the design components using

a respecification strategy. The programmer continues to use the design construction method until
either the desired design utility is achieved, or the programmer's expectations are decreased.

For an application's subsequent implementations on dissimilar parallel computers, the pro-

grammer begins with the design assembly step as before. However, the design from the previous

24

implementationsuppliesthe defaultvaluesfor the algorithmicspecificationand mappingcompo-
nentof the newdesign.Theprogrammerreplacesthe hardwarecharacteristicscomponentof the
old designwith a description of the new parallel computer. Then the design utility is evaluated

and the design construction method continues as in the initial implementation.
The design assembly step will be discussed as two cases (i.e. initial design assembly and subse-

quent design assembly) as illustrated in the following pseudocode: InitiaIDesignAssembly()

WtIILE (DeslgnEvaluation0==UnsatisfactoryDesignUtility)

DO

DesignPrescription()

SubsequentDesignAssembly()

ENDWHILEDO

In the temporary place of a data flow diagram as a ISTEXfigure, the above psuedocode is expanded

as:

The programmer specifies the intra-design attributes which define the design utility,

specifies the inter-design attributes which define the design equivalence, and specifies

the problem in the programmer's native tongue. These definitions and specification

remain unchanged for the duration of the design construction. When these constants
are established, then the programmer proceeds with the design construction method as

illustrated below:

design=InitialDesignAssembly 0

designutility=DesignEvaluation(design)

WHILE (designutility==Unsatisfact0ryDesignUtility)

DO

prescription=DesignPrescription(design, designutility)

newdesign=SubsequentDesignAssembly(design, prescription)

design=newdesign

designutility=DesignEvaluation(design)
ENDWHILEDO

4.5.2 Initial Design Assembly

The only time during the design construction method when the design can be altered is during

a design assembly step. In general, the programmer may assemble a design using two methods:

specifying a design component or applying a design transformer to an old design. The programmer

is encouraged but not restricted to employ only one instance of either component specification or

transformer application between design evaluations.
The construction of a design begins with the Initial Design Assembly. Specifying the design

components must initiate this step. At this early point in the design construction method, the

selection of a design transformer must be based on the programmer's intuition since a design

prescription is unavailable.

4.5.3 Design Component Specification during Initial Design Assembly

The design component specification step occurs in two parts. First, the programmer has the oppor-

tunity to modify the descriptions of the problem and the parallel computer. Since the programmer

25

is executingthis stepfor this application'sfirst time, thentheprogrammerwill beprovidingmuch
designinformation. The algorithmicspecification'ssecondarydesigncomponents(i.e. data,data
dependencies,andthefunctionsappliedto thesedata)arespecified.Thehardwarecharacteristics
arealsospecified.

The programmerhasthe opportunity to modify the mappingof the problemto the parallel
computer.Mappingdecisionsfor theproposeddesignmethodologyarebasedon the primarycom-
ponentsalgorithmic specification and hardware characteristics. In terms of the proposed method-

ology, many strategies found in the literature for mapping a problem to a parallel computer focus

upon one aspect of the algorithmic specification, either data or work. A mapping may also be char-
acterized as static or dynamic. Since the domain for the proposed mapping component is defined

in terms of the algorithmic specification, then the abstraction level of the data, data dependencies

graph, and functions partially defines a context for the description of the mapping. The range of

the mapping component is defined in terms of the hardware characteristic.

4.5.4 Design Evaluation Method

The purpose of the design evaluation method is to determine the design utility. Based on the

programmer's choice of intra-design attributes to define the design utility, the components of the
design are evaluated and the result is a quantifiable value for the design utility. This value is not

necessarily one number, but might be represented as a vector of data. Possible techniques for

assessing the utility of the design include simulation, closed-form solutions, expert systems and
neural nets.

The factors which are considered during the evaluation of the design may be specific to the design

attributes which define the design utility. For our envisioned proof-of-concept, performance is the

intra-design attribute which will define the design utility. Performance of a parallel application is

influenced by the degree of load balance between the processors and by a processor's idle time as it

waits for a data dependency to be satisfied. Incorporating a reasonable mapping component(which

maps the algorithmic specification to the hardware characteristics), the implementation of the

design should lead to a parallel application with good performance. This reasonable mapping

component should be quantifiable as a mapping utility. Thus, when the design utility is defined for

performance, then the evaluation of the mapping utility is one way to evaluate the design utility.

The evaluation of the mapping utility is discussed below.

4.5.5 Mapping Utility Evaluation during Design Evaluation

The mapping utility is one way to measure design utility for the performance design attribute. A

design with a high value for mapping utility should lead to software for a parallel computer which

executes quickly relative to the potential performance of the computer. Mapping utility evaluation

is currently composed of searching for violations of some rule-of-thumb generalizations. These rules

focus upon maximizing the number of busy processors and minimizing the time required to satisfy

their data dependencies in the algorithmic specification. Gelernter also focuses upon the amount of

work and the number of processors during the evaluation of the programmer's choice of parallelism

grain [14]. Some indications of an unsatisfactory mapping utility can be:

• when the number of processors grossly mismatches the parallelism of the data (a data-parallel

perspective).

26

• whenthe numberof processorsgrosslymismatchesthe parallelismof the work (a specialist
parallelismperspective)

• whenthe potential datalocality is ignoredandthe hardwarecharacteristiccommunication-
cost-to-computation-costis large

• whenthe mappingintroducesunnecessarycontrolsynchronization

4.5.6 Design Prescription Method

Usingthe design and the value of its utility, the design prescription step creates a design prescrip-

tion. The prescription suggests the design assembly actions to enhance the design utility. To create

this prescription, the set of design respecification strategies and the set of design transformers are

considered with respect to their potential enhancement of the design utility. Then the prescription

is composed of the design assembly actions with the greatest potential to enhance the design utility.

A prescription may suggest that the design be respecified and provide a respecification strategy.

A prescription may suggest that the design be transformed and suggest a transformer to apply to

the design. The suggestion is to be based on a measurement of the potential enhancement of the

design; however, this potential enhancement measurement process is not as thorough as the design

utility measurement process performed during the design evaluation step.
There are several possible ways for the potential design utility enhancement to be measured. One

way is to simulate or model an attempt to enhance the design using each respecification strategy or

design transformer. The design utility of the resulting simulated design may be measured several

ways. A gross measurement of the simulated design's utility might be made. Another way to

measure the design utility of the resulting simulated design may be to only measure the altered

components of the simulated design. The value of the potential is the difference in design utility
measurements between the original and simulated designs. Kennedy and Fox are using neural

networks to evaluate a Fortran D program's data distribution specifications upon its potentlal

performance.
Another way for the potential design utility enhancement to be measured would be by diagnosing

the reason for the unsatisfactory design utility and, knowing the strengths and weaknesses of the

respecification strategies and design transformers, prescribe the best design assembly action to cure

the ailing design.
The following text describes several respecification strategies and several design transformers.

4.5.7 Respecification Strategies

Respecification of the design components may lead to enhanced design utility. One respecification

strategy focuses upon the abstraction level of the algorithmic specification. A second respecification

strategy addresses the mapping component where the respecificatlon can not be expressed as a

design transformer. Note that a respecification strategy is suggested as a specific action, but,

unlike the design transformer application, it is the programmer's responsibility to maintain design

equivalence between the original design and the respecified design.
One of the strategies for respecification during the design assembly step is to alter the abstraction

level of the algorithmic specification. The algorithmic specification can be described in more detail

(less abstractly) by decomposing the data, the data dependencies graph, or the functions applied

27

to thedata. Or this specificationcanbedescribedin lessdetailby abstractingtheaforementioned
components.The new abstractionlevel of the problemprovidesthe programmerwith a new
vocabularyto expressa newmappingof the problemto a parallelcomputer.The purposeof the
newdescriptionof the problemis to exploit a grain of parallelismwhich is moresimilar to the
parallelismofferedby the parallelcomputer.The respecificationof the algorithmicspecification
will likely requirere-expressingthemappingin termsof its newdomain.

A lessdramaticrespecificationstrategyis to respecifythemappingof thedesignwithoutaltering
the abstractionlevelof the algorithmicspecification.Whiletheremayexistdesigntransformersto
createmanynewmappingcomponents(similar to the graphdecompositionresearchof McCreary
and Gill [43]),it is likely that the programmerwill haveto generatesomenew mappings.This
mappingopportunitymayhavealwaysexisted(i.e. themultiplegrainsof parallelismwerealways
availableto the programmer),but the abstractionlevelwhichleadsto the highestdesign utility

was not chosen during a previous design assembly step. If the mapping is viewed as a partitioning

of the data dependencies graph, then the mapping can be respecified by increasing or decreasing

the number of partitions, or by changing the shape of the partitions.

4.5.8 Prescribed Design Transformers

Applying a design transformer to a design may enhance the design utility. The current set of design

transformers focus upon partitioning data or work of the algorithmic specification component among

the processors of the hardware characteristics component. Two hypothetical examples of applying

design transformers follow.
ttypothetically, the programmer has specified the design components, in particular, the algo-

rithmic specification at an abstraction level, the number of processors for the hardware component

and a mapping of the problem to the processors. Subsequently, the design evaluation step indicates

an unsatisfactory design utility. If there exists a gross mismatch between the number of partitions

in the mapping and the number of processors, then the design prescription step might choose a de-

sign transformer which alters the number of partitions. A subsequent design evaluation step might
indicate that the unsatisfactory design utility remains. The resulting design prescription might sug-

gest that the programmer needs to respecify the abstraction level of the algorithmic specification.

However, as fate would have it, the desired level of abstraction had been previously defined. Then
the transformer would revisit the abstraction level with the most potential to enhance the design

utility.
Hypothetically, the programmer has specified the design components, in particular, the work

distribution and the data distribution and communication cost/computation cost profile for the

Intel iPSC/2 parallel computer (a hypercube communication topology where each node is an Intel

80386 processor). We assume that a satisfactory design utility is achieved and software development
proceeds using the design. But that is not the end of the story. Two years later, the programmer

gains access to an Intel iPSC/860 parallel computer (the same hypercube communication topology
where each node is a much faster Intel 80860 processor). The programmer substitutes the commu-

nication cost/computation cost profile for the new parallel computer into the design. The design

evaluation step indicates an unsatisfactory design utility and the communication cost/computation

cost profile is the only difference between the designs. The design prescription might suggest a

design transformer which respecifies the work distribution or data distribution, emphasizing data

locality for the computations.

28

4.5.9 Subsequent Design Assembly

During the initial designassembly step, the programmer is encouraged to assemble the design

by component specification but discouraged from assembling the design by design transformation.

Itowever, during the subsequent design assembly steps, the programmer is provided with a design

prescription which suggests the design assembly actions to perform. This prescription may suggest
that the programmer respecify the design components based on a respecification strategy or apply

a design transformer to the design. These design assembly actions are discussed below.

4.5.10 Component Respecification during the Subsequent Design Assembly

During the initial component specification step, the programmer is encouraged to specify as much

design component information as possible. During the subsequent component specification step, the

programmer is guided to respecify the components prescribed by the design prescription. The design

prescription provides this guidance by suggesting a respecification strategy . If the algorithmic

specification or the hardware characteristics components have been changed during the current

component specification step, then the mapping component must be examined (and altered if

necessary) to insure that the mapping is expressed in terms of the current algorithmic specification
and the hardware characteristics components.

4.5.11 Design Transformation during the Subsequent Design Assembly

Since a design prescription does not exist during the initial design assembly step, the programmer

must rely on intuition to select a transformer, tIowever, during the subsequent design assembly

steps, the design prescription guides the programmer by suggesting a design transformer to apply

to the design.

29

5 Proposed Tasks

Two tasks are proposed.

1. Provide a methodology for designing software for parallel computers. This task is composed

of the following six subtasks.

(a) State the design's representations for the problem, the parallel computer, and the map-

ping of the problem to the parallel computer.

(b) Describe the steps which the programmer performs to compose a software design for a

parallel computer.

(c) Define the term design equivalence and find a technique to measure the design equivalence

between two designs.

(d) Define the term design utility and find a technique to measure the utility of a design.

(e) Find a set of design transformers where each design transformer creates a new design

from an old design, and maintains the design equivalence between the two designs.

(f) Find respecification strategies where each respecification strategy creates a new design

from an old design.

2. Apply the design methodology to a realistic problem as a proof-of-concept.

composed of three subtasks.

(a) Choose a realistic problem.

This task is

(b) Create computer-specific designs for several parallel computers using the design method-

ology.

(c) Evaluate the designs and the methodology.

5.1 Design Methodology Task

The first task is to provide a methodology for designing software for parallel computers. This task

is composed of six subtasks.
The first subtask is to state the design's representations for the problem, the parallel computer,

and the mapping of the problem to the parallel computer. For each representation, the syntax and

semantics of the representation's language must be formally described.
The second subtask is to describe the steps which the programmer performs to compose a

software design for a parallel computer. A significant portion of this subtask has been provided in

a previous section of this proposal.
The third subtask is to define the term design equivalence and find a technique to measure the

design equivalence between two designs. The design equivalence for the proposed work will likely

be based on the input/output relationship design attribute.
The fourth subtask is to define the term design utility and find a technique to measure the

utility of a design. The design utility for the proposed work will likely be based on the performance

design attribute.
The fifth subtask is to find a set of design transformers where each design transformer creates

a new design from an old design, and maintains the design equivalence between the two designs.

The properties of the set should be considered.

3O
ORIGINAL PA_ |S

OF POOR QUALITY

The sixth subtask is to find respecification strategies which create new designs which cannot be

created by a design transformer. The degree of formality of the respecification strategies and their

relationship with the design equivalence should be considered.

5.2 Proof-of-Concept Task

The second task is to apply the design methodology to a realistic problem as a proof-of-concept.

The problem which has been chosen is the National Aeronautics and Space Administration (NASA)
Clouds and the Earth's Radiant Energy System (CERES) cloud retrieval algorithm [8, 57]. The

NASA-Langley members of the cloud retrieval algorithm group (Dr. Eric Schmidt, Dr. Bryan

Baum, and Dr. Bruce Wielicki (project leader)) have provided preliminary algorithmic information

which suggests potential implementations at several grains of parallelism. Several designs using this

problem will be created. The computer-specific designs will be evaluated on several fronts. One

front will focus upon a formal evaluation of the designs. Another front will focus upon software

which is based on the created designs.

31

References

[1] Active Memory Technologies, 65 Suttons Park Avenue, Reading, UK. DAP Series AMT
Technical Overview, October 1989.

[2] Fran Allen, Michael Burke, Philippe Charles, Ron Cytron, and Jeanne Ferrante. An overview
of the PTRAN analysis for multiprocessing. In E. N. Houstis, T. S. Papatheodorou, and C. D.

Polychronopoulos, editors, Supercomputing: First International Conference Athens, Greece

Proceedings, Lecture Notes in Computer Science, pages 194-211. Springer-Verlag, June 1987.

[3] George S. Almasi and Allan Gottlieb. Itighly Parallel Computing. Computer Science and

Engineering. Benjamin/Cummings, Redwood City, CA, first edition, 1989.

[4] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum, S. Ham-

marling, A. McKenney, and D. Sorensen. LAPACK: A portable linear algebra library for

hlgh-performance computers. LAPACK Working Note 20 CS-90-105, Computer Science De-

partment, University of Tennessee, Knoxville, TN 37996, May 1990.

[5] E. Anderson, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, S. ttammarllng, and W. Ka-
han. Prospectus for an extension to LAPACK: A portable linear algebra library for high-

performance computers. LAPACK Working Note 20 CS-90-118, Computer Science Depart-

ment, University of Tennessee, Knoxville, TN 37996, November 1990.

[6] Edward Anderson and Jack Dongarra. Results from the initial release of LAPACK. LAPACK

Working Note 16 CS-89-89, Computer Science Department, University of Tennessee, Knoxville,

TN 37996, November 1989.

[7] Vasanth Balasundaran, Ulrich Kremer, Ken Kennedy, Kathryn McKinley, and Jaspal Subhlok.
The ParaScope editor: An interactive parallel programming tool. In Proceedings of Super-

computing '89, pages 540-550. IEEE Computer Society and ACM SIGARCH, ACM Press,

November 1989.

[8] Bruce R. Barkstrom. CERES Data Analysis Algorithm Plan (Addendum 3, Version 1.0).
Atmospheric Sciences Division, NASA Langley Research Center, tIampton, VA 23665-5225,

August 1990.

[9] Adam Beguelln, Jack J. Dongarra, G. A. Geist, Robert Manchek, and V. S. Sunderam. Graph-
ical development tools for network-based concurrent supercomputing. In Proceedings of Su-

percomputing '91, pages 435-444. ACM and IEEE, IEEE Computer Society Press, November

18-22, 1991.

[10] Walt Brainerd. FORTRAN 77. Communications of the ACM, 21(10):806-820, October 1978.

[11] Orlie Brewer, Jack Dongarra, and Danny Sorensen. A graphics tool to aid in the generation
of parallel FORTRAN programs. In COMPSAC 89: Proceedings of the Thirteenth Annual

International Computer Software and Applications Conference, pages 89-93. IEEE Computer

Society Press, September 20-22, 1989.

[12] James C. Browne. Understanding execution behavior of software systems. LE.E.E. Computer,

17(7):83-87, July 1984.

32

[13] Curt Burmeister.ParallelFortran:X3tt5/91-0023-d.InternalCommitteeDocument(07-23-91).

[14] NicholasCarrieroand David Gelernter. How to write parallel programs: A guide to the
perplexed.ACM Computing Surveys, 21(3):323-358, September 1989.

[15] Centre for Parallel Computing, QMW University of London. DAP Fortran-Plus, 1990.

[16] K. Mani Chandy. Programming parallel computers. In ttoward E. Sturgis, editor, Proceedings

of the 1988 International Conference on Parallel Processing, Volume II: Software, pages 314-

321, University Park and London, August 15-19, 1988. The Pennsylvania State University,

The Pennsylvania State University Press.

[17] K. Mani Chandy and Carl Kesselman. Parallel programming in 2001. LE.E.E. Software,

8(6):11-20, November 1991.

[18] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foundation. Addison-Wesley,

Reading, Massachusetts, 1988.

[19] Barbara Chapman, Piyush Mehrotra, and Hans Zima. Vienna Fortran-a Fortran language ex-
tension for distributed memory multiprocessors. ICASE Report 91-72, Institute For Computer

Applications In Science and Engineering, NASA Langley Research Center, September 1991.

[20] Alex L. Cheung and Anthony P. Reeves. The Paragon multicomputer environment: a first
implementation. Technical Report EE-CEG-89-9, School of Electrical Engineering, Cornell

University, July 1989.

[21] Longchyr Chang and Brian T. Smith. Classification and evaluation of parallel programming
tools. Technical Report CS90-22, Department of Computer Science, University of New Mexico,

November 1990.

[22] X3It5 Technical Committee. Parallel extensions for Fortran 77, XJH5 language binding.

[X3H5/91-0040-C](07-24-91).

[23] Intel Scientific Computers. iPSC/2 and iPSC/860 Programmer's Reference Manual. Intel

Corporation, Beaverton, Oregon, revision 003 edition, June 1990.

[24] Intel Scientific Computers. iPSC/2 and iPSC/860 User's Guide. Intel Corporation, Beaverton,

Oregon, revision 006 edition, June 1990.

[25] Ron Cytron, Jeanne Ferrante, and Vivek Sarkar. Experiences using control dependence in
PTRAN. In David Gelernter, Alexander Nicolau, and David Padua, editors, Languages and

Compilers for Parallel Computing, Research Monographs in Parallel and Distributed Comput-

ing, pages 186-212. MIT Press, 1990.

[26] Ingemar Dahlstrand. Software Portability and Standards, volume 27 of Computers and their
Applications. Ellis Horwood Limited, Chichester, West Sussex, England, first edition, 1984.

[27] John Darlington, Mike Reeve, and Sue Wright. Declarative languages and program transforma-
tion for programming parallel systems: A case study. Concurrency: Practice and Experience,

2(3):149-169, September 1990.

33

[28] Jack Dongarra,Danny Sorensen,and Orlie Brewer. Toolsand methodologyfor program-
ming parallelprocessors.In M. H. Wright, editor, Proceedings of the IFIP WG 2.5 Working

Conference on Aspects of Computation on Asynchronous Parallel Processors, pages 125-137.

North-ttolland, 1989.

[29] It. Allan Fencl and Chua-Huang tIuang. On the design of parallel algorithms for non-linear

space-time representations. In Proceedings of International Computer Symposium, Volume _,

pages 457-464, December 17-19, 1990.

[30] tI. Allan Fencl and Chua-Huang tIuang. On the synthesis of programs for various paral-
lel architectures. Technical Report OSU-CISRC-10/90-TR-32, Department of Computer and

Information Science, Ohio State University, October 1990.

[31] Geoffrey Fox, Seema Hiranandani, Ken Kennedy, Charles Koelbel, Uli Kremer, Chau-Wen
Tseng, and Min-You Wu. FORTRAN D language specification. Rice COMP TRg0-141, De-

partment of Computer Science, Rice University, December 1990, revised February, 1991.

[32] Andrew S. Grimshaw. A software environment for high-performance parallel computing. In
Proceedings of the 1991 Minnowbrook Workshop on Software Engineering for Parallel Com-

puting, July 16-19, 1991.

[33] Language Working Group. A review and analysis of Fortran 8x. Technical Report 87-40,
Mathematics and Computer Sciences Division, Argonne National Laboratory, October 1987.

[34] Mark D. Guzzi, David A. Padua, Jay P. Hoeflinger, and Duncan H. Laurie. Cedar Fortran and
other vector and parallel Fortran dialects. In Proceedings of Supercomputing '88, pages 114-

121. IEEE Computer Society and ACM SIGARCH, IEEE Computer Society Press, November

1988.

[35] C.A.R. Itoare. An axiomatic basis for computer programming. Communications of the ACM,

12(10):576-583, October 1969.

[36] C.A.R. Hoare. Communicating sequential processes. Communications of the ACM, 21(8):666-

677, August 1978.

[37] D.J. Hunt. AMT DAP-a procesor array in a workstation environment. Active Memory Tech-
nologies, 65 Suttons Park Avenue, Reading, UK, vol 4 no 2 edition, April 1989.

[38] American National Standards Institute. American National Standard for Information Systems

Programming Languages Fortran. June 1989.

[39] tIarry F. Jordan, Muhammad S. Benten, Gita Alaghband, and Ruediger Jakob. The Force:

A highly portable parallel programming language. In COMPSAC 89: Proceedings of the
Thirteenth Annual International Computer Software and Applications Conference, pages II-

112 - II-117. IEEE Computer Society Press, September 20-22, 1989.

[40] Alan II. Kaxp. Programming for parallelism. LE.E.E. Computer, 20(5):43-57, May 1987.

[41] Alan II. Karp and Robert G. Babb II. A comparison of 12 parallel Fortran dialects. LE.E.E.

Software, 5(2):190-222, September 1988.

34

[42] DavidB. Loveman.Digital EquipmentCorporationhighperformanceFortranproposal.Pre-
sentedat the RiceUniversityHighPerformanceFortranForum,January27,1992.

[43] C. McCrearyandtt. Gill. Automaticdeterminationof grainsizefor efficientparallelprocessing.
Communications of the ACM, 32(9):1073-1078, September 1989.

[44] Piyush Mehrotra and John Van Rosendale. Programming distributed memory architectures
using I(ali. ICASE Report 90-69, Institute For Computer Applications In Science and Engi-

neering, NASA Langley Research Center, October 1990.

[45] Michael Metcalf and John Reid. Fortran 90 Explained. Oxford Science Publications, 1990.

[46] David A. Padua and Micheal J. Wolfe. Advanced compiler optimizations for supercomputers.
Communications of the A CM, 29(12):1184-1201, December 1986.

[47] Cherri M. Pancake. Software support for parallel computing: Where are we headed? Com-
munications of the ACM, 34(11):53-64, November 1991.

[48] Cherri M. Pancake and Donna Bergmark. Do parallel languages respond to the needs of
scientific programmers? LE.E.E. Computer, 23(12):13-23, December 1990.

[49] Douglas M. Pase. Cray Research Inc. MPP Fortran programming model, draft 1.2. Presented
at the Rice University High Performance Fortran Forum, January 2, 1992.

[50] Constantine D. Polychronopoulos, Milind B. Girkar, Mohammad R.. Haghighat, Chia L. Lee,
Bruce P. Leung, and Dale A. Schouten. The structure of Parafrase-2: an advanced paralleliz-

ing compiler for C and Fortran. In David Gelernter, Alexander Nicolau, and David Padua,

editors, Languages and Compilers for Parallel Computing, Research Monographs in Parallel

and Distributed Computing, pages 423-453. MIT Press, 1990.

[51] Anthony P. Reeves. Parallel Pascal: An extended Pascal for parallel computers. Journal of
Parallel and Distributed Computing, 1:64-80, August 1984.

[52] Anthony P. Reeves. Paragon: a programming paradigm for multicomputer systems. Technical

Report EE-CEG-89-3, School of Electrical Engineering, Cornell University, January 1989.

[53] Matthew Rosing, Robert B. Schnabel, and Robert P. Weaver. The DINO programming lan-
guage. Journal of Parallel and Distributed Computing, 13(1):30 42, September 1991.

[54] Joel Saltz, Kathleen Crowley, Ravi Mirchandaney, and tIarry Berryman. Run-time scheduling
and execution of loops on message passing machines. Journal of Parallel and Distributed

Computing, 8:303-311, 1990.

[55] Brian T. Smith. Parallel computing forum(PCF) Fortran. In M. H. Wright, editor, Proceedings
of the IFIP WG 2.5 Working Conference on Aspects of Computation on Asynchronous Parallel

Processors, page 235. North-tIolland, 1989. abstract only.

[56] K. Sridharan, M. McShea, C. Denton, B. Eventoff, J. C. Browne, P. Newton, M. Ellis, D. Gross-
bard, T. Wise, and D. Clemmer. An environment for parallel structuring of FORTRAN pro-

grams. In Emily C. Plachy and Peter M. Kogge, editors, Proceedings of the 1989 International

35

Conference o1_ Parallel P1vcessing, Volume II: Software, pages II-98 - 11-106, University Park

and London, August 8-12, 1989. The Pennsylvania State University, The Pennsylvania. State

University Press.

[57] CERES Data Management Team. Clouds and the Earth's Radiant Energy System (CERES)
Data Management Plan. NASA Langley Research Center, Hampton, VA 23665-5225, June

1990.

[58] Thinking Machines Corporation, Cambridge, Massachusetts. Getting Started in CM Fortran,
version 5.2-0.6 edition, November 1989.

[59] Tim Wise. private communication, April 1992. Scientific and Engineering Software, Inc.

[60] Janet Wu, Joel S_ltz, Harry Berryman, and Seema Hiranandani. Distributed memory compiler
design for sparse problems. ICASE Report 91-13, Institute For Computer Applications In

Science and Engineering, NASA Langley Research Center, January 1991.

[61] Steven Ericsson Zenith. A rationale of programming with Ease. lecture note from a NASA

ICASE lecture, May 1, 1991.

36

