10,032 research outputs found

    A committee machine gas identification system based on dynamically reconfigurable FPGA

    Get PDF
    This paper proposes a gas identification system based on the committee machine (CM) classifier, which combines various gas identification algorithms, to obtain a unified decision with improved accuracy. The CM combines five different classifiers: K nearest neighbors (KNNs), multilayer perceptron (MLP), radial basis function (RBF), Gaussian mixture model (GMM), and probabilistic principal component analysis (PPCA). Experiments on real sensors' data proved the effectiveness of our system with an improved accuracy over individual classifiers. Due to the computationally intensive nature of CM, its implementation requires significant hardware resources. In order to overcome this problem, we propose a novel time multiplexing hardware implementation using a dynamically reconfigurable field programmable gate array (FPGA) platform. The processing is divided into three stages: sampling and preprocessing, pattern recognition, and decision stage. Dynamically reconfigurable FPGA technique is used to implement the system in a sequential manner, thus using limited hardware resources of the FPGA chip. The system is successfully tested for combustible gas identification application using our in-house tin-oxide gas sensors

    Design of an analog/digital truly random number generator

    Get PDF
    An analog-digital system is presented for the generation of truly random (aperiodic) digital sequences. This model is based on a very simple piecewise-linear discrete map which is suitable for implementation using monolithic analog sampled-data techniques. Simulation results are given illustrating the optimum choice of the model parameters. Circuit implementations are reported for the discrete map using both switched-capacitor (SC) and switched-current (SI) techniques. The layout of a SI prototype in a 3-μm n-well double-polysilicon double-metal technology is included

    Method and apparatus for frequency spectrum analysis

    Get PDF
    A method for frequency spectrum analysis of an unknown signal in real-time is discussed. The method is based upon integration of 1-bit samples of signal voltage amplitude corresponding to sine or cosine phases of a controlled center frequency clock which is changed after each integration interval to sweep the frequency range of interest in steps. Integration of samples during each interval is carried out over a number of cycles of the center frequency clock spanning a number of cycles of an input signal to be analyzed. The invention may be used to detect the frequency of at least two signals simultaneously. By using a reference signal of known frequency and voltage amplitude (added to the two signals for parallel processing in the same way, but in a different channel with a sampling at the known frequency and phases of the reference signal), the absolute voltage amplitude of the other two signals may be determined by squaring the sine and cosine integrals of each channel and summing the squares to obtain relative power measurements in all three channels and, from the known voltage amplitude of the reference signal, obtaining an absolute voltage measurement for the other two signals by multiplying the known voltage of the reference signal with the ratio of the relative power of each of the other two signals to the relative power of the reference signal

    Application of multiobjective genetic programming to the design of robot failure recognition systems

    Get PDF
    We present an evolutionary approach using multiobjective genetic programming (MOGP) to derive optimal feature extraction preprocessing stages for robot failure detection. This data-driven machine learning method is compared both with conventional (nonevolutionary) classifiers and a set of domain-dependent feature extraction methods. We conclude MOGP is an effective and practical design method for failure recognition systems with enhanced recognition accuracy over conventional classifiers, independent of domain knowledge

    Photovoltaic sample-and-hold circuit enabling MPPT indoors for low-power systems

    No full text
    Photovoltaic (PV) energy harvesting is commonly used to power autonomous devices, and maximum power point tracking (MPPT) is often used to optimize its efficiency. This paper describes an ultra low-power MPPT circuit with a novel sample-and-hold and cold-start arrangement, enabling MPPT across the range of light intensities found indoors, which has not been reported before. The circuit has been validated in practice and found to cold-start and operate from 100 lux (typical of dim indoor lighting) up to 5000 lux with a 55cm2 amorphous silicon PV module. It is more efficient than non-MPPT circuits, which are the state-of-the-art for indoor PV systems. The proposed circuit maximizes the active time of the PV module by carrying out samples only once per minute. The MPPT control arrangement draws a quiescent current draw of only 8uA, and does not require an additional light sensor as has been required by previously-reported low-power MPPT circuits

    A 10-bit Charge-Redistribution ADC Consuming 1.9 μW at 1 MS/s

    Get PDF
    This paper presents a 10 bit successive approximation ADC in 65 nm CMOS that benefits from technology scaling. It meets extremely low power requirements by using a charge-redistribution DAC that uses step-wise charging, a dynamic two-stage comparator and a delay-line-based controller. The ADC requires no external reference current and uses only one external supply voltage of 1.0 V to 1.3 V. Its supply current is proportional to the sample rate (only dynamic power consumption). The ADC uses a chip area of approximately 115--225 μm2. At a sample rate of 1 MS/s and a supply voltage of 1.0 V, the 10 bit ADC consumes 1.9 μW and achieves an energy efficiency of 4.4 fJ/conversion-step

    Phase and Amplitude Interferometry Based Radio Frequency Direction Finder

    Get PDF
    Direction finding (DF) systems have been around for decades, preceding WWII. The main function of these systems is to calculate the direction of arrival of an electromagnetic wave. There are many real-world applications which utilize direction finders and direction-finding techniques, from recreational “fox hunts” to military geolocation systems. The following approach for implementing a direction finding system revolves around the phase and amplitude of a signal that is being radiated at an unlicensed frequency of 2.45Ghz by an RF source. The system is comprised of an antenna array of 4 antennas which can be used receive the radiated signal. By comparing the amplitudes of the signal received by each antenna relative to each other, the quadrant from which the RF source is located in can be identified. By comparing the phase difference, 0° to +/- 180°, of the signal received by each antenna relative to each other, four possible directions can be calculated, one in each quadrant. Using the information discovered from comparing the phase and the amplitudes of the received signal at each antenna, the direction of the RF source can be found. The system runs the direction finding algorithm when the user commands it to from the graphical user interface (GUI), iterates it hundreds of times per second, and averages the found direction to reduce the effects of noise. The direction is then displayed on the GUI

    Design and evaluation of controls for drift, video gain, and color balance in spaceborne facsimile cameras

    Get PDF
    The facsimile camera is an optical-mechanical scanning device which has become an attractive candidate as an imaging system for planetary landers and rovers. This paper presents electronic techniques which permit the acquisition and reconstruction of high quality images with this device, even under varying lighting conditions. These techniques include a control for low frequency noise and drift, an automatic gain control, a pulse-duration light modulation scheme, and a relative spectral gain control. Taken together, these techniques allow the reconstruction of radiometrically accurate and properly balanced color images from facsimile camera video data. These techniques have been incorporated into a facsimile camera and reproduction system, and experimental results are presented for each technique and for the complete system
    corecore