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Abstract  

An  analog digi ta l  system i s  presented for t he  
generation of truly random (aperiodic) digital sequences. 
This model is based on a very simple piecewise-linear 
discrete map which is suitable for implementation using 
monolithic analog sampleadata techniques. Simulation 
results are given illustrating the optimum choice of the 
model parameters. Circuit implementations are reported 
for the discrete map using both switched-capacitor (SC) 
and switched-current (SI) techniques. The layout of a (SI) 
prototype in  a 3pm n-well double poly double metal 
technology is included. 

Introduction 

A random number generator is a basic building block in 
communication and instrumentation application[l]. Also, 
there are  many simulation problems arising both in 
science and engineering where random numbers are 
required [2]. These potential applications are wide and 
interesting enough as to challenge design engineers to 
conduct research towards the electronic implementation of 
this kind of signal generators. 

The use of maximum cycle feedback-shift-registers 
(FSR) provided a way for the electronic generation of a 
signal exhibiting certain pseudorandom properties. This 
kind of hardware implementation is commonly used for the 
purpose of testing VLSI circuits, where the unavoidable 
periodicity of the sequence may not be an important 
drawback. Typical operating systems of mainframe 
computers include, on the other hand, software for the 
generation of random sequences exhibiting ”better” 
characteristics than the ones provided by FSR. However 
periodicity can be always detected over a more or less long 
time. Besides, increasing the quality of the sequence 
requires a tradeoff with the increase of CPU time. 

All these drawbacks result as a consequence of the use 
of purely digital techniques. Periodicity can be avoided by 
resorting to the use of analog techniques. In particular a 
very simple random number generator model is proposed 
in  this paper which exploits the chaotic behavior of 
nonlinear discrete-time systems. This model can be 
implemented in monolithic form using state of the ar t  
sampled-data analogue circuit techniques together with 
digital circuitry, thus making possible on-chip generation 
of truly-random signals in combined analog/digital chips. 

An archi tecture  for  random number generator 

Fig.1 shows the conceptual block diagram for a 
monolithic A/D random number generator. Three different 
blocks can be observed: 

1) The discrete map. 
2) The comparator. 
3) The digital processor 
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Figure 1:Conceptual block diagram for a random 
number  generator  based on  a discrete map. 

The discrete map is the crucial building block for a 
monolithic random number generator.  It has  to be 
designed to provide a chaotic (aperiodic) analog signal d n ) .  
Starting from this analog signal, a one-bit digital sequence 
d(n)  can be obtained by comparison with a reference level. 
Although for r ( n )  being chaotic the resulting digital 
sequence is fully aperiodic, some correlation can be usually 
observed among successive samples of d ( n ) .  Besides, 
different probabilities measures are typically obtained for 
one and zero events of d(n) .  The digital processor in Fig. 1 
is intended to equalize those probabilities and to eliminate 
correlations among successive samples. 

The  discrete map 

Starting from an arbitrary initial point x ( 0 )  in I ,  a 
discrete-time chaotic signal x(n)  can be generated by 
applying the following iterative formula: 

x(n)=f ix (n- l ) ]  n=1,2,3 ... (1) 

which is called a discrete map of the interval I .  
The implementation of a discrete map is conceptualized 

in Fig.1. A delay block and a non-linear operator are 
required. Many non-linear operators are qualified to 
produce chaos [3,4]. Only some of them are however 
suitable for monolithic implementation. In particular we 
will focus here on piecewise-linear (PL) functions because 
they can be very easily and accurately implemented in 
MOS VLSI [5,6]. 

Let us start by considering the following discontinuous 
PL map: 

where sgn(n) holds for the stgn function: 
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Parameters A and B determine the properties of the 
signal generated by a discrete map based in (2a). Fig.2 
illustrates the parameter dependence of this function. 
Analysis shows that arameter A is only a scale factor. On 
the other hand, difgrent  qualitative behaviors can be 
obtained by changing parameter B ,  namely: 

Figure 2: Paramete r  deDendence of the man in @a). 
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- For B < 1, a stable periodic orbit results, the sequence 
x(n)  oscillating between the values : 

x;=A/(I + R )  (3) 
x.1 -A/( l  +B) 

This is obviously an undesirable situation for the 
application being considered. 

- For B > 1  There are no stable periodic orbits of any 
period. 

- For B > 2  there are points inside the region (-A,A) 
whose orbits diverge so leading to unstable global 
behavior.This situation is illustrated in Fig.3. 

Figure 3: Illustrating divergence of the map  in (2a). 

Let us concentrate on the range of parameter values 
where neither stable orbits nor divergent points are found, 
( 1  <B <2). Three subintervals can be distinguished for this 
case inside the interval (-A,A): 

(04) All the orbits starting in this interval remain 
confined to it. 

( A , A l ( B - l ) )  All the orbits starting here map into the 
subinterval (-A,A) 

(A/ (B- l ) ,m)  All the orbits starting here are divergent. 

These different properties of the subintervals are  
illustrated in Fig.4a. 

In practical implementation of (2a), design criteria 
should be provided to avoid the correspondent circuit to be 
locked a t  parasitic stable points, caused by the saturation 
of the active devices. Owing to previous considerations we 
conclude that this can be achieved by setting the level of 
the bias sources a t  a value comprised in the second 
subinterval above. I t  is in fact equivalent to transform the 
original map into the one in Fig.4b. Observe that any orbit 
eventually going into one of the saturation regions is 
forced to return to the region ofinterest ( - A l ( B - l ) , A / ( B - l ) ~ .  

Observe from Fig.4a that  the value of B has 60 be 
selected small enough to provide wide lateral  safety 
.ubintervals: (Al(1 -B) , -A) ,  (A,Al(B-1)). On thepther hand, 
the larger the value of B ( B S 2 )  is the more suitable is the 
signal x(n) for the generation of random numbers. As a 
matter of fact an ideal Bernouilli shift results for B =2 [41. 

We hence see that  a tradeoff in the values of B is 
required in any practical design. This tradeoff can be 
avoided by resorting to a slightly more complex map which 
is shown in Fig.5 and whose equation is: 

I ,: 

1.' 

Figure 4: a)Illustrating orbits from the  different 
subintervals;  b)Avoiding parasitic stable points by 

p rope r  bias setting 

(4) 

where fdx) is given by (2a) with B = 2  and C is some 
constant greater than A. The value of C is proven not to be 
critical by numerical tests. C=2A seems to be a good 
value. As i t  can be seen in Fig.5, points that  lie in the 
region (A, 2A) are re-mapped into the region (0, A). Even if 
the slope B is greater than 2 the map is still stable and 
apparently exhibits the same behavior as  for B less than 2. 

Analog sampled-data implementations 

The discrete map of (4) can be very easily and 
accurately implemented in MOS VLSI . Fig.6 shows a two 
phase stray-insensitive SC circuit. Observe the output of 
the comparator directly codifies the sign of the chaotic 
analog sequence x(n). That means there is no need to use 
the extra comparator in the block diagram of Fig.1. 

In  order to ensure full compatibility with digital 
technologies, switched-current techniques can be used[8]. 
A circuit implementation using this technique is shown in 
Fig.7. Observe only MOS transistors are required. As in 
the SC circuit, the comparator required for the map 
directly provides the random digital sequence. 

IXI<A 
f ix )=  /@ 

Sx-Csgn(x) lx l2A 
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Figure 5: Illustrating the map  in (4) 
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Figure 6: A SC circuit  for the map  in (4) 
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Figure 7a: Basic blocks for a SI map 

Figure 7b: SI implementation of the  map  in (4) 

Simulation Kesults a n d  Digital Processor 

A lot of simulations have been performed to confirm 
suitability of the proposed model. In order to analyze 
regularity properties, a random process consisting of a set 
of around 1000 maps was considered. Parameters in the 
different maps of the set were randomly modified (taking 
into account typical technological deviations) around their 
nominal value. Up to 105 iterations were considered to 
properly analyze stationarity properties. Also, in order to 
more realistic emulate the behavior of an actual circuit 
implementation, a gaussian noise was added to the 
calculated sample of the signal in each iteration step. The 
simulations were carried out on a 15Mflops CONVEX 220 
vectorial computer. 

The bits in the sequences were grouped into digital 
words (both 4 and 8 bits) and the probability of each word 
was measured. For the map of (2a) with B=1.85 (limit 
value) the deviation from the ideal distribution for words 
of 4 bits was 46% in the typical case, and 59% in the worst 
case. On the other hand, for the map (4) with B=2, the 
typical deviation was 12%being 35% in the worst case. 

For both maps,  the observed deviations can be 
interpreted as  being a consequence of the autocorrelation 
of the bits in the original sequence. This interpretation 
suggests a technique to equalize probabilities consisting in 
decreasing the sampling rate for eliminating the self 
correlation.The price to be paid for is a decreasing in the 
operation speed of the circuit which may be not convenient 
depending on the application. 

An alternative method is based on the use of a very 
simple digital element: the T-bistable. Let us remind the 
input-output map of such a digital block: 

Input ++$ State (5) 

Consider now an arbitrary digital sequence driving a 
T-bistable. Taking (5) into account i t  is easy to conclude 
that the digital sequence a t  the output will exhibit the 
same properties for "1" and "0" events. Also if the 
probabilities of " I  " and "0" were already the same, then all 
the sequences of 2 bits will have the same probability a t  
'.he output. To see this keep in mind that the states "0" and 
"1 " are equally probable because they depend on the parity 
of the number of "1 " 5  received by the bistable; as long as 
the input sequence is aperiodic the parity is completely 
random. Thus, we have that connecting two T-bistables to 
the digital generator all the sequences of two bits a t  the 
output have the same probability. 
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In general when n T-bistables are connected to the 
digital enerator, all the sequences of n bits have the same 
probabiyity . 

To prove this consider a system consisting of n T- 
bistables. Given an input sequence r i fn) ,  there is one and 
only one possible state of the system for each possible 
output sequence ro(n). So, if all the states of the system are 
equally probable, all the output sequences are equally 
probable too. Now, all the states of the system are equally 
probable because the state of the first bistable depends on 
the parity of the number of ”1”‘s received, the state of the 
second bistable depends on the parity generated by the 
first (not on the state of it), the third on the second and so 
on. Again as  long as the input sequence is aperiodic, those 
parities are random and so is the state of the system. 

Unfortunately n T-bistables do not guarantee equal 
probability for words over n bits, but we can use a 
hardware inplementation algorithms of the kind proposed 
by Knuth [7] . If we want to generate words of n bits not 
self-correlated, after the process described above, we fill a 
RAM of 2 n  words, then numbers are picked up from RAM 
addresses given b words of the sequence delayed a large 
enough number ofcycles. The address used is then refilled 
with the incoming word and the process continues. A block 
scheme of the digital processor is shown in Fig.8. 

Reg. 0 

Reg.1 

Reg.2 

Address 
4 

Output Input Reg.n 

4 
Figure 8: Block scheme of t he  digital processor. 

Discussion of results 

Piecewise-linear maps are easy to implement using 
sampled-data analogue techniques, either SC or S1,and 
provide a natural way for the generation of truly random 
number generetors in monolithic form. Several prototypes 
of Fig.6 and Fig.7 have been designed both in 3pm and 
2pm CMOS. In particular Fig.9 shows the layout of a SI 
y t o t y p e  for a n-well double poly 3pm CMOS technology. 

imulation results for these prototypes are in accordance 
to the expected theoretical performance. 

. 

Figure 9: Layout of a SI prototype. 
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