11 research outputs found

    Dexterous Soft Hands Linearize Feedback-Control for In-Hand Manipulation

    Full text link
    This paper presents a feedback-control framework for in-hand manipulation (IHM) with dexterous soft hands that enables the acquisition of manipulation skills in the real-world within minutes. We choose the deformation state of the soft hand as the control variable. To control for a desired deformation state, we use coarsely approximated Jacobians of the actuation-deformation dynamics. These Jacobian are obtained via explorative actions. This is enabled by the self-stabilizing properties of compliant hands, which allow us to use linear feedback control in the presence of complex contact dynamics. To evaluate the effectiveness of our approach, we show the generalization capabilities for a learned manipulation skill to variations in object size by 100 %, 360 degree changes in palm inclination and to disabling up to 50 % of the involved actuators. In addition, complex manipulations can be obtained by sequencing such feedback-skills.Comment: Accepted at 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

    Silicone Based Capacitive E-Skin Sensor for Soft Surgical Robots

    Get PDF
    In this extended abstract, we present a soft stretchable multi-modal capacitive skin sensor that can be used for exteroception and proprioception in soft surgical manipulators. A soft skin prototype was made using Ecoflex, embedding three conductive carbon grease terminal layers. This soft skin is capable of measuring stretch and touch simultaneously. The soft skin measures uniaxial stretches from 1 to 1.2475 within an error range of 2.6% and can also quantify as well as localize local indentation. An algorithm is developed that decouples local change, i.e., due to indentation, from global strain, due to stretch. An experimental study was conducted; results are presented

    Strain Sensor-Embedded Soft Pneumatic Actuators for Extension and Bending Feedback

    Get PDF
    For soft robots to leave the lab and enter unstructured environments, proprioception is required to understand how interactions in the field affect the soft structure. In this work, we present sensor-embedded soft pneumatic actuators (sSPA) that can observe both extension and bending. The sensors are strain sensitive capacitors, which are bonded to the interior of fiber-reinforced extension actuators on opposing faces. This construction allows extension and bending to be measured by calculating the mean and difference in sensor responses, respectively. The sSPAs are bonded together to form a flat fascicle to increase the force output and prevent buckling under load, and are robust to component failure by incorporating redundancy. In this paper, we discuss the fabrication of the sensors and their subsequent integration into the actuators. We also report the work capacity and sensor. response of the sSPA fascicles under extension, bending, and the combination of both modes of deformation. The sensor- embedded soft pneumatic actuators presented here will advance the field of soft robotics by enabling closed-loop control of soft robots

    Directly Printable Flexible Strain Sensors for Bending and Contact Feedback of Soft Actuators

    Get PDF
    This paper presents a fully printable sensorized bending actuator that can be calibrated to provide reliable bending feedback and simple contact detection. A soft bending actuator following a pleated morphology, as well as a flexible resistive strain sensor, were directly 3D printed using easily accessible FDM printer hardware with a dual-extrusion tool head. The flexible sensor was directly welded to the bending actuatorโ€™s body and systematically tested to characterize and evaluate its response under variable input pressure. A signal conditioning circuit was developed to enhance the quality of the sensory feedback, and flexible conductive threads were used for wiring. The sensorized actuatorโ€™s response was then calibrated using a vision system to convert the sensory readings to real bending angle values. The empirical relationship was derived using linear regression and validated at untrained input conditions to evaluate its accuracy. Furthermore, the sensorized actuator was tested in a constrained setup that prevents bending, to evaluate the potential of using the same sensor for simple contact detection by comparing the constrained and free-bending responses at the same input pressures. The results of this work demonstrated how a dual-extrusion FDM printing process can be tuned to directly print highly customizable flexible strain sensors that were able to provide reliable bending feedback and basic contact detection. The addition of such sensing capability to bending actuators enhances their functionality and reliability for applications such as controlled soft grasping, flexible wearables, and haptic devices

    Force Control for Soft Robotic Hands Applied to Grasping

    Get PDF
    Robotic grasping has been studied for more than 30 years, but it is still a challenging field. Today, most robotic grippers are rigid, making it hard for them to grasp and handle irregularly shaped objects that are delicate and easily deformed such as a compact disc, an egg, or an empty plastic cup. To tackle this issue, soft robotic hands have been introduced. Despite advantages of soft robotic hands, their applications are still limited to simple pick-and-place tasks. The main reason for this is their lack of sensing capabilities, which leads to the absence of information about the internal state of the hand or the interaction between the hand and the environment. This thesis aims to tackle this issue by integrating appropriate sensors into a soft robotic hand. The information extracted from the sensory readings is then used to develop a control strategy to study the interaction between the hand and objects. Experiments performed on the developed soft hand and controller board showed that the interaction between the hand and objects could be studied by using only sensors integrated into the hand. The final results also showed that this information could be used to successfully control the soft hand in real time to achieve a manipulation task such as grasping deformable planar objects especially thin-shell objects like empty plastic cups

    Directly Printable Flexible Strain Sensors for Bending and Contact Feedback of Soft Actuators

    Get PDF
    This paper presents a fully printable sensorized bending actuator that can be calibrated to provide reliable bending feedback and simple contact detection. A soft bending actuator following a pleated morphology, as well as a flexible resistive strain sensor, were directly 3D printed using easily accessible FDM printer hardware with a dual-extrusion tool head. The flexible sensor was directly welded to the bending actuatorโ€™s body and systematically tested to characterize and evaluate its response under variable input pressure. A signal conditioning circuit was developed to enhance the quality of the sensory feedback, and flexible conductive threads were used for wiring. The sensorized actuatorโ€™s response was then calibrated using a vision system to convert the sensory readings to real bending angle values. The empirical relationship was derived using linear regression and validated at untrained input conditions to evaluate its accuracy. Furthermore, the sensorized actuator was tested in a constrained setup that prevents bending, to evaluate the potential of using the same sensor for simple contact detection by comparing the constrained and free-bending responses at the same input pressures. The results of this work demonstrated how a dual-extrusion FDM printing process can be tuned to directly print highly customizable flexible strain sensors that were able to provide reliable bending feedback and basic contact detection. The addition of such sensing capability to bending actuators enhances their functionality and reliability for applications such as controlled soft grasping, flexible wearables, and haptic devices

    ์‚ฌ๋žŒ ๊ทผ๊ณจ๊ฒฉ ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•œ ๋กœ๋ด‡ ์†๊ฐ€๋ฝ ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› ์œตํ•ฉ๊ณผํ•™๋ถ€(์ง€๋Šฅํ˜•์œตํ•ฉ์‹œ์Šคํ…œ์ „๊ณต), 2023. 2. ๋ฐ•์žฌํฅ.What the manipulator can perform is determined by what the end-effectors, including the robotic hand, can do because it is the gateway that directly interacts with the surrounding environment or objects. In order for robots to have human-level task performance in a human-centered environment, the robotic hand with human-hand-level capabilities is essential. Here, the human-hand-level capabilities include not only force-speed, and dexterity, but also size and weight. However, to our knowledge, no robotic hand exists that simultaneously realizes the weight, size, force, and dexterity of the human hand and continues to remain a challenge. In this thesis, to improve the performance of the robotic hand, the modular robotic finger design with three novel mechanisms based on the musculoskeletal characteristics of the human hand was proposed. First, the tendon-driven robotic finger with intrinsic/extrinsic actuator arrangement like the muscle arrangement of the human hand was proposed and analyzed. The robotic finger consists of five different tendons and ligaments. By analyzing the fingertip speed while a human is performing various object grasping motions, the actuators of the robotic finger were separated into intrinsic actuators responsible for slow motion and an extrinsic actuator that performs the motions requiring both large force and high speed. Second, elastomeric continuously variable transmission (ElaCVT), a new concept relating to continuously variable transmission (CVT), was designed to improve the performance of the electric motors remaining weight and size and applied as an extrinsic actuator of the robotic finger. The primary purpose of ElaCVT is to expand the operating region of a twisted string actuator (TSA) and duplicate the force-velocity curve of the muscles by passively changing the reduction ratio according to the external load applied to the end of the TSA. A combination of ElaCVT and TSA (ElaCVT-TSA) is proposed as a linear actuator. With ElaCVT-TSA, an expansion of the operating region of electric motors to the operating region of the muscles was experimentally demonstrated. Finally, as the flexion/extension joints of the robotic finger, anthropomorphic rolling contact joint, which mimicked the structures of the human finger joint like tongue-and-groove, and collateral ligaments, was proposed. As compliant joints not only compensate for the lack of actuated degrees of freedom of an under-actuated system and improve grasp stability but also prevent system failure from unexpected contacts, various types of compliant joints have been applied to end-effectors. Although joint compliance increases the success rate of power grasping, when the finger wraps around large objects, it can reduce the grasping success rate in pinch gripping when dealing with small objects using the fingertips. To overcome this drawback, anthropomorphic rolling contact joint is designed to passively adjust the torsional stiffness according to the joint angle without additional weight and space. With the anthropomorphic rolling contact joint, the stability of pinch grasping improved.์—”๋“œ์ดํŒฉํ„ฐ๋Š” ๋กœ๋ด‡๊ณผ ์ฃผ๋ณ€ ํ™˜๊ฒฝ์ด ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š” ํ†ต๋กœ๋กœ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๊ฐ€ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ์ž‘์—…์€ ์—”๋“œ์ดํŽ™ํ„ฐ์˜ ์„ฑ๋Šฅ์— ์ œํ•œ๋œ๋‹ค. ์‚ฌ๋žŒ ์ค‘์‹ฌ์˜ ํ™˜๊ฒฝ์— ๋กœ๋ด‡์ด ์ ์šฉ๋˜์–ด ์‚ฌ๋žŒ ์ˆ˜์ค€์˜ ๋‹ค์–‘ํ•œ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์‚ฌ๋žŒ ์† ์ˆ˜์ค€์˜ ์„ฑ๋Šฅ์„ ๊ฐ–๋Š” ๋กœ๋ด‡ ์†์ด ํ•„์ˆ˜์ ์ด๋ฉฐ ์‚ฌ๋žŒ ์† ์ˆ˜์ค€์˜ ์„ฑ๋Šฅ์€ ๋‹จ์ˆœํžˆ ํž˜-์†๋„, ์ž์œ ๋„๋งŒ์„ ํฌํ•จํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹Œ ํฌ๊ธฐ์™€ ๋ฌด๊ฒŒ ๊ทธ๋ฆฌ๊ณ  ๋ฌผ์ฒด ์กฐ์ž‘์— ๋„์›€์„ ์ฃผ๋Š” ์—ฌ๋Ÿฌ ์† ํŠน์„ฑ๋„ ํฌํ•จํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ˜„์žฌ๊นŒ์ง€ ์‚ฌ๋žŒ ์† ์ˆ˜์ค€์˜ ๋ฌด๊ฒŒ, ํฌ๊ธฐ, ํž˜ ๊ทธ๋ฆฌ๊ณ  ์ž์œ ๋„๋ฅผ ๋ชจ๋‘ ๋งŒ์กฑ์‹œํ‚ค๋Š” ๋กœ๋ด‡ ์†์€ ๊ฐœ๋ฐœ๋˜์ง€ ์•Š์•˜์œผ๋ฉฐ ์—ฌ์ „ํžˆ ๋„์ „์ ์ธ ๊ณผ์ œ๋กœ ๋‚จ์•„์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋กœ๋ด‡ ์†๊ฐ€๋ฝ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์‚ฌ๋žŒ์˜ ๊ทผ๊ณจ๊ฒฉ ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•œ ์„ธ ๊ฐ€์ง€์˜ ์ƒˆ๋กœ์šด ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ œ์•ˆํ•˜๊ณ  ์ด๋ฅผ ํ†ตํ•ฉํ•œ ๋ชจ๋“ˆํ˜• ๋กœ๋ด‡ ์†๊ฐ€๋ฝ ๊ตฌ์กฐ๋ฅผ ๋ณด์ธ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ์‚ฌ๋žŒ์˜ ์† ๊ทผ์œก ๋ฐฐ์น˜์™€ ์œ ์‚ฌํ•œ ๋‚ด์žฌ/์™ธ์žฌ ๊ตฌ๋™๊ธฐ ๋ฐฐ์น˜๋ฅผ ์ ์šฉํ•œ ํž˜์ค„ ๊ตฌ๋™ ๋กœ๋ด‡ ์†๊ฐ€๋ฝ ๊ตฌ์กฐ๋ฅผ ์ œ์•ˆํ•˜๊ณ  ๋ถ„์„ํ•œ๋‹ค. ๋กœ๋ด‡ ์†๊ฐ€๋ฝ์€ ๋‹ค์„ฏ ๊ฐœ์˜ ์„œ๋กœ ๋‹ค๋ฅธ ํž˜์ค„๊ณผ ์ธ๋Œ€๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์‚ฌ๋žŒ ์†๋™์ž‘ ๋ถ„์„์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ๋กœ๋ด‡ ์†๊ฐ€๋ฝ์˜ ๊ตฌ๋™๊ธฐ๋Š” ๋Š๋ฆฐ ์†๋„๋ฅผ ๋‹ด๋‹นํ•˜๋Š” ๋‚ด์žฌ ๊ตฌ๋™๊ธฐ์™€ ๋น ๋ฅด๊ณ  ํฐ ํž˜์ด ๋ชจ๋‘ ์š”๊ตฌ๋˜๋Š” ์™ธ์žฌ ๊ตฌ๋™๊ธฐ๋กœ ๊ตฌ๋ถ„๋œ๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ๊ตฌ๋™๊ธฐ์˜ ํฌ๊ธฐ์™€ ๋ฌด๊ฒŒ๋ฅผ ์œ ์ง€ํ•˜๋ฉฐ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ƒˆ๋กœ์šด ๊ฐœ๋…์˜ ๋ฌด๋‹จ ๋ณ€์†๊ธฐ Elastomeric Continuously Variable Transmission (ElaCVT) ์„ ์ œ์•ˆํ•˜๊ณ  ์ด๋ฅผ ๋กœ๋ด‡ ์†๊ฐ€๋ฝ์˜ ์™ธ์žฌ ๊ตฌ๋™๊ธฐ์— ์ ์šฉํ•˜์˜€๋‹ค. ElaCVT๋Š” ์„ ํ˜• ๊ตฌ๋™๊ธฐ์˜ ์ž‘๋™ ์˜์—ญ์„ ํ™•์žฅํ•˜๊ณ  ์ถœ๋ ฅ๋‹จ์— ๊ฐ€ํ•ด์ง€๋Š” ์™ธ๋ถ€ ํ•˜์ค‘์— ๋”ฐ๋ผ ๊ฐ์†๋น„๋ฅผ ์ˆ˜๋™์ ์œผ๋กœ ๋ณ€๊ฒฝํ•˜์—ฌ ๊ทผ์œก์˜ ํž˜-์†๋„ ๊ณก์„ ์„ ๋ชจ์‚ฌํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ทผ์œก์˜ ํŠน์„ฑ์„ ๋ชจ์‚ฌํ•˜๊ธฐ ์œ„ํ•ด ์„ ํ˜• ์•ก์ถ”์—์ดํ„ฐ๋กœ ElaCVT์— ์ค„ ๊ผฌ์ž„ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ ์šฉํ•œ ElaCVT-TSA๋ฅผ ์ œ์•ˆ, ๊ทผ์œก์˜ ๋™์ž‘ ์˜์—ญ์„ ๋ชจ์‚ฌํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๋กœ๋ด‡ ์†๊ฐ€๋ฝ์˜ ๋ชจ๋“  ๊ตฝํž˜/ํŽผ์นจ ๊ด€์ ˆ์— ์ ์šฉ๋œ ์‚ฌ๋žŒ์˜ ๊ด€์ ˆ๊ตฌ์กฐ๋ฅผ ๋ชจ์‚ฌํ•œ ์œ ์—ฐ ๊ตฌ๋ฆ„ ์ ‘์ด‰ ๊ด€์ ˆ (Anthropomorphic Rolling Contact joint)์„ ์ œ์•ˆํ•œ๋‹ค. Anthropomorphic rolling contact joint๋Š” ์‚ฌ๋žŒ ๊ด€์ ˆ์˜ tongue-and-groove ํ˜•์ƒ๊ณผ collateral ligament๋ฅผ ๋ชจ์‚ฌํ•˜์—ฌ ๊ด€์ ˆ์˜ ์•ˆ์ •์„ฑ์„ ํ–ฅ์ƒ์‹œ์ผฐ๋‹ค. ๊ธฐ์กด์˜ ์œ ์—ฐ ๊ด€์ ˆ๊ณผ ๋‹ฌ๋ฆฌ ๊ด€์ ˆ์ด ํŽด์ง„ ์ƒํƒœ์—์„œ๋Š” ์œ ์—ฐํ•œ ์ƒํƒœ๋ฅผ ์œ ์ง€ํ•˜๋ฉฐ ๊ตฝํ˜€์ง„ ์ƒํƒœ์—์„œ๋Š” ๊ฐ•์„ฑ์ด ์ฆ๊ฐ€ํ•œ๋‹ค๋Š” ํŠน์ง•์„ ๊ฐ–๋Š”๋‹ค. ํŠนํžˆ, ๊ฐ•์„ฑ ๋ณ€ํ™”์— ๋ณ„๋„์˜ ๊ตฌ๋™๊ธฐ๊ฐ€ ์š”๊ตฌ๋˜์ง€ ์•Š์•„ ๊ธฐ์กด์˜ ๊ด€์ ˆ์—์„œ ๋ฌด๊ฒŒ, ํฌ๊ธฐ ์ฆ๊ฐ€ ์—†์ด ํ•ด๋‹น ํŠน์ง• ๊ตฌํ˜„์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ์ด๋Š” ๋กœ๋ด‡ ์†๊ฐ€๋ฝ์— ์ ์šฉ๋˜์–ด ์†๊ฐ€๋ฝ์„ ํŽด๊ณ  ๋ฌผ์ฒด๋ฅผ ํƒ์ƒ‰ํ•˜๋Š” ๊ณผ์ •์—์„œ๋Š” ์ถฉ๊ฒฉ์„ ํก์ˆ˜ํ•˜์—ฌ ์•ˆ์ •์ ์ธ ์ ‘์ด‰์„ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ๋ฌผ์ฒด๋ฅผ ํŒŒ์ง€ํ•˜๋Š” ๊ณผ์ •์—์„œ๋Š” ์†๊ฐ€๋ฝ์„ ๊ตฝํ˜€ ๊ฐ•์ธํ•˜๊ฒŒ ๋ฌผ์ฒด๋ฅผ ํŒŒ์ง€ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•œ๋‹ค. Anthropomorphic rolling contact joint๋ฅผ ์ ์šฉํ•œ ๊ทธ๋ฆฝํผ๋ฅผ ์ด์šฉํ•˜์—ฌ ์ œ์•ˆํ•˜๋Š” ๊ฐ€๋ณ€ ๊ฐ•์„ฑ ์œ ์—ฐ ๊ด€์ ˆ์ด pinch grasping์˜ ํŒŒ์ง€ ์•ˆ์ •์„ฑ์„ ๋†’์ž„์„ ๋ณด์˜€๋‹ค.1 INTRODUCTION 1 1.1 MOTIVATION: ROBOTIC HANDS 1 1.2 CONTRIBUTIONS OF THESIS 10 1.2.1 Intrinsic/Extrinsic Actuator arrangement 11 1.2.2 Linear actuator mimicking human muscle properties 11 1.2.3 Flexible rolling contact joint 12 2 ROBOTIC FINGER STRUCTURE WITH HUMAN-LIKE ACTUATOR ARRANGEMENT 13 2.1 ANALYSIS OF HUMAN FINGERTIP VELOCITY 14 2.2 THE ROBOTIC FINGER WITH INTRINSIC/EXTRINSIC ACTUATORS 18 2.2.1 The structure of proposed robotic finger 18 2.2.2 Kinematics of the robotic finger 20 2.2.3 Tendons and Ligaments of the proposed robotic finger 26 2.2.4 Decoupled fingertip motion in the sagittal plane 28 3 ELASTOMERIC CONTINUOUSLY VARIABLE TRANSMISSION COMBINED WITH TWISTED STRING ACTUATOR 35 3.1 BACKGROUND & RELATED WORKS 35 3.2 COMPARISON OF OPERATING REGIONS 40 3.3 DESIGN OF THE ELASTOMERIC CONTINUOUSLY VARIABLE TRANSMISSION 42 3.3.1 Structure of ElaCVT 42 3.3.2 Design of Elastomer and Lateral Disc 43 3.3.3 Advantages of ElaCVT 48 3.4 PERFORMANCE EVALUATION 50 3.4.1 Experimental Setup 50 3.4.2 Contraction with Fixed external load 50 3.4.3 Contraction with Variable external load 55 3.4.4 Performance variation of ElaCVT over long term usage 55 3.4.5 Specifications and Limitations of ElaCVT-TSA 59 4 ANTHROPOMORPHIC ROLLING CONTACT JOINT 61 4.1 INTRODUCTION: COMPLIANT JOINT 61 4.2 RELATED WORKS: ROLLING CONTACT JOINT 65 4.3 ANTHROPOMORPHIC ROLLING CONTACT JOINT 67 4.3.1 Fundamental Components of ARC joint 69 4.3.2 Advantages of ARC joint 73 4.4 TORSIONAL STIFFNESS EVALUATION 75 4.4.1 Experimental Setup 75 4.4.2 Design and Manufacturing of ARC joints 77 4.4.3 Torsional Stiffness Change according to Joint Angle and Twist Angle 79 4.5 TORSIONAL STIFFNESS WITH JOINT COMPRESSION FORCE DUE TO TNESION OF TENDONS 80 4.6 TORSIONAL STIFFNESS WITH LUBRICATION STRUCTURE 82 4.7 GRASPING PERFORMANCE COMPARISON OF GRIPPERS WITH DIFFERENT ARC JOINTS 86 5 CONCLUSIONS 92 Abstract (In Korean) 107๋ฐ•

    Stretchable metallization technologies for skin-like transducers

    Get PDF
    The skin is not only the largest human organ, capable of accomplishing distributed and multimodal sensing functions. Replicating the versatility of skin artificially is a significant challenge, not only in terms of signal processing but also in mechanics. Stretchable electronics are an approach designed to cover human and artificial limbs and provide wearable sensing capabilities: motion sensors distributed on the hand of neurologically impaired patients could help therapists quantify their abilities; prostheses equipped with multiple tactile sensors could enable amputees to naturally adjust their grasp force. Skin-like electronic systems have specific requirements: they must mechanically adapt to the deformations imposed by the body they equip with minimal impediment to its natural movements, while also providing sufficient electrical performance for sensor transduction and passing electrical signals and power. A metallization ensuring stable conductivity under large strains is a prerequisite to designing and assembling wearable circuits that are integrated with several types of sensors. In this work, two innovative metallization processes have been developed to enable scalable integration of multiple sensing modalities in stretchable circuits. First, stretchable micro-cracked gold (Au) thin films were interfaced with gallium indium eutectic (EGaIn) liquid metal wires. The Au films, thermally evaporated on silicone elastomer substrates, combined high sheet resistance (9 to 30 Ohm/sq) and high sensitivity to strain up to 50%. The EGaIn wires drawn using a micro-plotting setup had a low gauge factor (2) and a low sheet resistance (5 mOhm/sq). Second, a novel physical vapor deposition method to deposit of thin gallium-based biphasic (solid-liquid) films over large areas was achieved. The obtained conductors combined a low sheet resistance (0.5 Ohm/sq), a low gauge factor (~1 up to 80% strain), and a failure strain of more than 400%. They could be patterned down to 10 ยตm critical dimensions. Skin-like sensors for the hand were assembled using the two processes and their capabilities were demonstrated. Thin (0.5 mm) silicone strips integrating EGaIN wires and micro-cracked Au strain gauges were mounted on gloves to encode the position of a biomimetic robotic finger and a human finger. In combination with soft pressure sensors, they enabled precise grasp analysis over a limited range of motion. Then, biphasic films were micro-patterned on silicone to assemble 50 ยตm thin epidermal strain gauges. The strain gauges were attached on a user's finger and accurately encoded fine grasping tasks covering most of the human hand range of motion. The biphasic films were also used to power wireless MEMS pressure sensors integrated in a rubber scaffold. The device was mounted on a prosthetic hand to encode normal forces in the 0 N to 20 N range with excellent linearity. The epidermal strain sensors are currently being used to quantify the tremors of patients with Parkinson's disease. In the future, the unique properties of the biphasic films could enable advanced artificial skins integrating a high density of soft transducers and traditional high-performance circuits
    corecore