700 research outputs found

    Robust Optimization of PDEs with Random Coefficients Using a Multilevel Monte Carlo Method

    Full text link
    This paper addresses optimization problems constrained by partial differential equations with uncertain coefficients. In particular, the robust control problem and the average control problem are considered for a tracking type cost functional with an additional penalty on the variance of the state. The expressions for the gradient and Hessian corresponding to either problem contain expected value operators. Due to the large number of uncertainties considered in our model, we suggest to evaluate these expectations using a multilevel Monte Carlo (MLMC) method. Under mild assumptions, it is shown that this results in the gradient and Hessian corresponding to the MLMC estimator of the original cost functional. Furthermore, we show that the use of certain correlated samples yields a reduction in the total number of samples required. Two optimization methods are investigated: the nonlinear conjugate gradient method and the Newton method. For both, a specific algorithm is provided that dynamically decides which and how many samples should be taken in each iteration. The cost of the optimization up to some specified tolerance τ\tau is shown to be proportional to the cost of a gradient evaluation with requested root mean square error τ\tau. The algorithms are tested on a model elliptic diffusion problem with lognormal diffusion coefficient. An additional nonlinear term is also considered.Comment: This work was presented at the IMG 2016 conference (Dec 5 - Dec 9, 2016), at the Copper Mountain conference (Mar 26 - Mar 30, 2017), and at the FrontUQ conference (Sept 5 - Sept 8, 2017

    Interior-point methods for PDE-constrained optimization

    Get PDF
    In applied sciences PDEs model an extensive variety of phenomena. Typically the final goal of simulations is a system which is optimal in a certain sense. For instance optimal control problems identify a control to steer a system towards a desired state. Inverse problems seek PDE parameters which are most consistent with measurements. In these optimization problems PDEs appear as equality constraints. PDE-constrained optimization problems are large-scale and often nonconvex. Their numerical solution leads to large ill-conditioned linear systems. In many practical problems inequality constraints implement technical limitations or prior knowledge. In this thesis interior-point (IP) methods are considered to solve nonconvex large-scale PDE-constrained optimization problems with inequality constraints. To cope with enormous fill-in of direct linear solvers, inexact search directions are allowed in an inexact interior-point (IIP) method. This thesis builds upon the IIP method proposed in [Curtis, Schenk, Wächter, SIAM Journal on Scientific Computing, 2010]. SMART tests cope with the lack of inertia information to control Hessian modification and also specify termination tests for the iterative linear solver. The original IIP method needs to solve two sparse large-scale linear systems in each optimization step. This is improved to only a single linear system solution in most optimization steps. Within this improved IIP framework, two iterative linear solvers are evaluated: A general purpose algebraic multilevel incomplete L D L^T preconditioned SQMR method is applied to PDE-constrained optimization problems for optimal server room cooling in three space dimensions and to compute an ambient temperature for optimal cooling. The results show robustness and efficiency of the IIP method when compared with the exact IP method. These advantages are even more evident for a reduced-space preconditioned (RSP) GMRES solver which takes advantage of the linear system's structure. This RSP-IIP method is studied on the basis of distributed and boundary control problems originating from superconductivity and from two-dimensional and three-dimensional parameter estimation problems in groundwater modeling. The numerical results exhibit the improved efficiency especially for multiple PDE constraints. An inverse medium problem for the Helmholtz equation with pointwise box constraints is solved by IP methods. The ill-posedness of the problem is explored numerically and different regularization strategies are compared. The impact of box constraints and the importance of Hessian modification on the optimization algorithm is demonstrated. A real world seismic imaging problem is solved successfully by the RSP-IIP method

    Second order adjoints for solving PDE-constrained optimization problems

    Get PDF
    Inverse problems are of utmost importance in many fields of science and engineering. In the variational approach inverse problems are formulated as PDE-constrained optimization problems, where the optimal estimate of the uncertain parameters is the minimizer of a certain cost functional subject to the constraints posed by the model equations. The numerical solution of such optimization problems requires the computation of derivatives of the model output with respect to model parameters. The first order derivatives of a cost functional (defined on the model output) with respect to a large number of model parameters can be calculated efficiently through first order adjoint sensitivity analysis. Second order adjoint models give second derivative information in the form of matrix-vector products between the Hessian of the cost functional and user defined vectors. Traditionally, the construction of second order derivatives for large scale models has been considered too costly. Consequently, data assimilation applications employ optimization algorithms that use only first order derivative information, like nonlinear conjugate gradients and quasi-Newton methods. In this paper we discuss the mathematical foundations of second order adjoint sensitivity analysis and show that it provides an efficient approach to obtain Hessian-vector products. We study the benefits of using of second order information in the numerical optimization process for data assimilation applications. The numerical studies are performed in a twin experiment setting with a two-dimensional shallow water model. Different scenarios are considered with different discretization approaches, observation sets, and noise levels. Optimization algorithms that employ second order derivatives are tested against widely used methods that require only first order derivatives. Conclusions are drawn regarding the potential benefits and the limitations of using high-order information in large scale data assimilation problems

    An Efficient Parallel-in-Time Method for Optimization with Parabolic PDEs

    Full text link
    To solve optimization problems with parabolic PDE constraints, often methods working on the reduced objective functional are used. They are computationally expensive due to the necessity of solving both the state equation and a backward-in-time adjoint equation to evaluate the reduced gradient in each iteration of the optimization method. In this study, we investigate the use of the parallel-in-time method PFASST in the setting of PDE constrained optimization. In order to develop an efficient fully time-parallel algorithm we discuss different options for applying PFASST to adjoint gradient computation, including the possibility of doing PFASST iterations on both the state and adjoint equations simultaneously. We also explore the additional gains in efficiency from reusing information from previous optimization iterations when solving each equation. Numerical results for both a linear and a non-linear reaction-diffusion optimal control problem demonstrate the parallel speedup and efficiency of different approaches
    corecore