
Optimization Methods and Software
Vol. 00, No. 00, November 2010, 1–31

RESEARCH ARTICLE

Second order adjoints for solving PDE-constrained optimization

problems

Alexandru Cioaca∗, Mihai Alexe∗ and Adrian Sandu∗

(Received 00 Month 200x; in final form 00 Month 200x)

Inverse problems are of utmost importance in many fields of science and engineering. In the
variational approach inverse problems are formulated as PDE-constrained optimization prob-
lems, where the optimal estimate of the uncertain parameters is the minimizer of a certain cost
functional subject to the constraints posed by the model equations. The numerical solution
of such optimization problems requires the computation of derivatives of the model output
with respect to model parameters. The first order derivatives of a cost functional (defined
on the model output) with respect to a large number of model parameters can be calcu-
lated efficiently through first order adjoint sensitivity analysis. Second order adjoint models
give second derivative information in the form of matrix-vector products between the Hes-
sian of the cost functional and user defined vectors. Traditionally, the construction of second
order derivatives for large scale models has been considered too costly. Consequently, data
assimilation applications employ optimization algorithms that use only first order derivative
information, like nonlinear conjugate gradients and quasi-Newton methods.

In this paper we discuss the mathematical foundations of second order adjoint sensitivity
analysis and show that it provides an efficient approach to obtain Hessian-vector products. We
study the benefits of using of second order information in the numerical optimization process
for data assimilation applications. The numerical studies are performed in a twin experiment
setting with a two-dimensional shallow water model. Different scenarios are considered with
different discretization approaches, observation sets, and noise levels. Optimization algorithms
that employ second order derivatives are tested against widely used methods that require
only first order derivatives. Conclusions are drawn regarding the potential benefits and the
limitations of using high-order information in large scale data assimilation problems.

Keywords: Inverse Problems, Second Order Adjoints, Stiff Equations, Sensitivity Analysis,
Shallow Water Equations, Data Assimilation, Numerical Optimization, PDE-constrained
Optimization

1. Introduction

In the variational approach inverse problems are formulated as minimization prob-
lems, where the control variables are the model parameters to estimate, and the
cost functions are defined on the model output. The minimization is constrained
by the model equations which relate model outputs to model parameters. A family
of inverse problems of particular interest in this paper is data assimilation. Data
assimilation seeks to adjust the model initial, boundary, and parameter values,
such that the mismatch between the model predictions and observations of reality
is minimized in a least squares sense. The underlying models represent discretized
systems of partial differential equations; the variational approach to data assimi-
lation requires the solution of large “PDE-constrained” optimization problems.
An efficient numerical solution to the large scale optimization problem requires

the derivatives of the cost function with respect to the model parameters. The tra-
ditional first order adjoint models (FOA) compute the gradient of the cost function,
i.e., its first order derivatives with respect to model parameters. Second order ad-
joint models (SOA) provide second derivative information in the form of products
between the Hessian of the cost function and a user defined vector.

ISSN: 1055-6788 print/ISSN 1029-4937 online
c© 2010 Taylor & Francis
DOI: 10.1080/1055678xxxxxxxxxxxxx
http://www.informaworld.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computer Science Technical Reports @Virginia Tech

https://core.ac.uk/display/10676246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Alexandru Cioaca, Mihai Alexe and Adrian Sandu

Second order adjoints have been used in data assimilation for numerical weather
prediction within the numerical optimization algorithms by Wang et al., [1, 2], Le
Dimet et al. [3], Ozyurt et al., [4], Daescu and Navon [5]. Other applications of
second order adjoints are discussed in Raffard and Tomlin [6], Charpentier et al.
[7], Le Dimet et al. [3], and Alekseev and Navon [8]. Ozyurt and Barton [4] have
discussed the evaluation of second order adjoints for embedded functions of stiff
systems.
Most applications to date have focused on continuous second order adjoints (ob-

tained by linearizing the underlying ordinary or partial differential equation mod-
els) [1, 3, 4]. Discrete second order adjoints (obtained by linearizing the numerical
approximations of the model) have been obtained by automatic differentiation
[7, 9, 10].
Sandu et. al. [11] have developed a rigorous approach to deriving discrete second

order adjoints for Runge Kutta and Rosenbrock methods, and have applied them
to chemical transport models. Alexe et. al. [?] used second order adjoints for
the shallow water equations in sensitivity analysis and uncertainty quantification.
Alekseev et. al. compared the performance of different minimization algorithms in
the solution of inverse problems [13]. Exploring this previous work constitutes the
motivation behind the following research results.
In this paper we study the modalities of using second order adjoint information

in a popular large-scale optimization problem from the field of computational fluid
dynamics called “variational data assimilation”. We consider the two dimensional
shallow water system in Cartesian coordinates and build two numerical models to
solve them in space-time. For each model we implement first order and second order
adjoints and use them in several data assimilation scenarios to provide derivative
information to various minimization algorithms. By comparing the performance
and accuracy of the algorithms making use only of FOA against those who can
also employ SOA, we are trying to assess the benefits and the drawbacks of the
latter ones.
The paper is organized as follows. In Section 2 we review the derivation of con-

tinuous and discrete second order adjoint equations in the context of ordinary
differential equations (ODEs). Section 3 introduces the reader to the minimization
algorithms used in this study. Section 4 describes the two different implementa-
tions for solving the shallow water equations and their associated adjoint models
and presents the optimization problem posed in the context of data assimilation. In
Section 5 we comment on the numerical results obtained for each minimization al-
gorithm when solving the optimization problem for both implementations. Section
6 summarizes the conclusions of our work and future directions of interest.

2. Second Order Adjoints

2.1. Continuous SOA

Consider a general nonlinear dynamical system described by the following ODE

dU

dt
= f(t, U) , U

(
t0
)
= U0 , t0 ≤ t ≤ tF . (1)

Equation (1) defines the forward model. It can also represent a PDE after dis-
cretization in space in the method of lines framework. The solution is U(t) ∈ Rn,
and the model parameters are the initial conditions U0. Without loss of generality
any model parameters can be transformed into variables by appending additional

Optimization Methods and Software 3

formal evolution equations for parameters.
Consider a cost functional that depends on the solution of the forward model;

without loss of generality it is defined as a function of the state at the final time

J
(
U0
)
= Ψ

(
U
(
tF
))

. (2)

Any cost function that depends on the solution along the entire trajectory can be
brought to the form (2) by introducing additional “quadrature variables” [11]. In
this paper we assume that the functions f and Ψ are at least twice continuously
differentiable.
We are interested to efficiently evaluate the first and second order sensitivities

of the cost function (2) with respect to changes in initial conditions

∂J
∂U0

i

and
∂2J

∂U0
i ∂U

0
j

, 1 ≤ i, j ≤ n .

Throughout this paper vectors will be represented in column format and an upper
script (·)T will denote the transposition operator. The gradient of a scalar function
(e.g., ∂J /∂U0) is a row vector. We denote the Jacobian of the time derivative
function in (1) by

f ′
i,j(t, U) =

∂fi (t, U)

∂Uj

, 1 ≤ i, j ≤ n . (3)

The Hessian of the time derivative function in (1) is a 3-tensor of second order
derivatives

f ′′
i,j,k (t, U) =

∂2fi (t, U)

∂Uj ∂Uk

, 1 ≤ i, j, k ≤ n . (4)

The Hessian allows to express the derivatives of the Jacobian times a user vector.
For any vectors v and w we have that

∂

∂U

[
f ′(t, U) · w

]
· v =

(
f ′′(t, U) · v

)
· w ,

∂

∂U

[
f ′(t, U)T · w

]
· v =

(
f ′′(t, U) · v

)T
· w ,

where the dot operator (·) denotes the regular tensor-vector product.
Small perturbations of the solution (due to infinitesimally small changes δU0 in

the initial conditions) propagate forward in time according to the tangent linear

model δU ′ = f ′(t, U) · δU . Since the evolution of perturbations depends on the
forward solution via the argument of f ′, the forward (1) and the tangent linear
model (5) are evolved together forward in time:

d

dt

[
U
δU

]
=

[
f(t, U)

f ′(t, U) · δU

]
, t0 ≤ t ≤ tF ,

[
U
δU

] (
t0
)
=

[
U0

δU0

]
. (5)

The change in the cost function (2) due to the small change δU0 in the initial

4 Alexandru Cioaca, Mihai Alexe and Adrian Sandu

conditions is

δJ =
∂Ψ

∂U

(
tF
)
· δU

(
tF
)
=

∂J
∂U0

· δU0 .

In the forward sensitivity analysis each integration of the tangent linear model (5)
allows to compute the dot product of the gradient ∂J /∂U0 with the vector of
initial perturbations δU0. The gradient is recovered after n tangent linear model
(5) integrations initialized with linearly independent perturbation vectors.
A more efficient way of calculating the gradient ∂J /∂U0 is provided by the first

order adjoint model [14–16]

dλ

dt
= −f ′(t, U)T · λ , tF ≥ t ≥ t0 ,

λ
(
tF
)
=

(
∂Ψ

∂U

)T (
U(tF)

)
. (6)

The adjoint variables λ(t) ∈ Rn represent the sensitivities of the cost function with
respect to (changes in) the model solution

λ(t) =

(
∂J

∂U(t)

)T

, (7)

and in particular we have that the adjoint variable at the initial time is the trans-
posed gradient of the cost function with respect to initial conditions.
We are now interested in obtaining the second order derivatives of the cost func-

tion with respect to initial conditions [4]. The Hessian of J reads

(
∇2J

)
i,j

=
∂2J

∂U0
i ∂U

0
j

=
∂λi(t

0)

∂U0
j

, 1 ≤ i, j ≤ n . (8)

The Hessian has n2 elements. In most engineering problems n is very large and
computing the entire Hessian is not practical. We will therefore look to compute
Hessian times vector products σ = ∇2J · u for any user-defined vector u

σi =
(
∇2J · u

)
i
=

∂λi(t
0)

∂U0
· u , (9)

or, in slightly greater generality, we consider initial perturbations δU0 = u and
look to compute the second order adjoint variables

σ(t) =
∂λ(t)

∂U0
· δU0 =

∂λ(t)

∂U(t)
· δU(t) .

The second order adjoint variables are small perturbations of the first order adjoint
variables resulting from changes δU0 in the initial forward conditions U0. Conse-
quently, the time evolution of second order adjoints is described by the tangent
linear model of the first order adjoint equation (6). Like with (5) the first and

Optimization Methods and Software 5

second order adjoint variables have to be solved for together, backward in time:

d

dt

[
λ
σ

]
=

[−f ′(t, U)T · λ
−f ′(t, U)T · σ −

(
f ′′(t, U) · δU

)T
· λ

]

[
λ
σ

] (
tF
)
=

[
(dΨ/dy)T U(tF)(

d2Ψ/dU2
) (

U(tF)
)
· δU

(
tF
)
)

]
, tF ≥ t ≥ t0 .

The first equation in (10) is the second order adjoint ordinary differential equation

and defines the time evolution of the second order adjoint variable σ.

2.2. Discrete SOA

Similar considerations hold for discrete systems, following [11]

Ûk+1 = Nk

(
Ûk
)

, k = 0, · · · , N − 1 , Û0 given , (10)

and the discrete cost function of the form

Ĵ
(
Û0
)
= Ψ̂

(
ÛN
)

. (11)

The discrete system (10) represents a numerical discretization of (1) with a one-
step numerical method. The cost function (11) is defined on the numerical solution,
and approximates the continuous cost function (2) defined on the exact solution.
We denote the Jacobian matrix of the discrete time-marching operator by

N ′
k(Û) = ∂Nk/∂Û , and the Hessian three-tensor by N ′′

k (Û) = ∂2Nk/∂Û
2. The

tangent linear model of (10) is

δÛk+1 = N ′
k

(
Ûk
)
· δÛk , 0 ≤ k ≤ N − 1 , δÛ0 = u . (12)

The first and second order discrete adjoint equations are [11]

λ̂k

σ̂k

 =

−
(
N ′

k(Û
k)
)T

· λ̂k+1

−
(
N ′

k(Û
k)
)T

· σ̂k+1 −
(
N ′′

k (Û
k) · δÛk

)T
· λ̂k+1

 (13)

[
λ̂N

σ̂N

]
=

[
(∂Ψ̂/∂Û)T (ÛN)

(∂2Ψ̂/∂Û2)
(
ÛN
)
· δÛN

]
, N − 1 ≥ k ≥ 0 .

At the end of the backward in time integration (13) provides the gradient and the
Hessian vector product

λ̂0 =

(
∂Ĵ
∂Û0

)T

, σ̂0 =
∂2Ĵ
(
∂Û0

)2 · u .

6 Alexandru Cioaca, Mihai Alexe and Adrian Sandu

3. Optimization Algorithms

Two types of methods are popular for solving large-scale, unconstrained optimiza-
tion problems: Newton methods and nonlinear conjugate gradients. Both classes
use derivative information such as the gradient and/or Hessian of the function to be
minimized. The particular methods used in this study are summarized in Table 1
along with the class to which they belong, their use of second order derivatives and
the name of the particular software implementation used here. The abbreviation
“CG” stands for “Nonlinear Conjugate Gradients”.

Table 1. Optimization Algorithms

Method Class Second-Order Derivative Software Available

L-BFGS quasi-Newton NO YES (L-BFGS-B)
Truncated Newton Newton + CG YES YES (TNPACK)

Moser-Hald Newton YES NO
Hybrid quasi-Newton + CG NO YES (HYBRID)

Nonlinear CG CG NO YES (CG+)
CG Descent CG NO YES (CGDESCENT)
Daniel CG CG YES NO

The value of the cost function (described in detail in the next section, for now we
will refer to it as J) is computed on the solution obtained by running the forward
model in time. The gradient of the cost function (∇J) is computed from the FOA,
presented in the previous section under the notation λ. The explicit Hessian (∇2J)
is not available but we can compute its action on a vector by using the SOA (σ).
The software packages have been optimized over the course of years by the au-

thors and community members to improve performance and robustness. The meth-
ods that are not available as maintained software packages were implemented by
the authors of this paper following the same principles as the curated versions.
Global convergence is ensured by a linesearch procedure. The software libraries

for nonlinear conjugate gradients and all the Newton methods presented below use
the linesearch procedure from MINPACK [17] with the exception of CG Descent
which uses the linesearch described in [18]. Daniel-CG and Moser-Hald use a line-
search procedure implemented by the authors around the same procedure from CG
Descent.
A presentation of each of these methods follows.

3.1. Newton methods

Newton methods look for the minimizer U∗ of the given cost function J (U) by
updating U[k] in an iterative fashion (index between brackets indicates iteration
number) based on the formula (14a) where p[k] is the search direction obtained
from the Newton iteration (14b).

U[k+1] = U[k] + p[k] , (14a)

p[k] = B[k] · ∇J (U[k]) . (14b)

In the classic version of this algorithm, the matrix B[k] is computed as the inverse
of the Hessian of the function to be minimized evaluated at the current iterate (15a).
Since the cost of computing the Hessian and inverting it is very high, many methods
of approximating this operation are available. Also, in finite precision calculations
it might not always be positive definite which makes the search direction p[k] no
longer a descent direction. One workaround to the cost associated with B[k] is to

Optimization Methods and Software 7

compute the matrix only for the initial solution U[0] and reuse it throughout all
subsequent iterations (15b). This approach is known as “simplified Newton”.

Bclassic
[k] = −

(
∇2J (U[k])

)−1
, (15a)

Bsimplified
[k] = −

(
∇2J (U[0])

)−1
. (15b)

The following methods take a more sophisticated approach towards approximat-
ing B.

3.1.1. L-BFGS-B

The BFGS method is considered to be the “gold standard” algorithm for vari-
ational data assimilation. It is described in great detail in [19, 20] where it is
compared against other quasi-Newton methods.
BFGS generates an approximation of the second order information through an

update formula that uses data from the model output and its gradient at each
iteration and also preserves symmetry and positive definiteness of this approximate
Hessian. The idea was originally proposed by Davidon in [21] and improved by
Fletcher in [22].
“Limited memory” BFGS (L-BFGS) is a version of BFGS that is suited for

large-scale problems whose Hessian matrix cannot be computed or stored at a
reasonable cost [23]. The idea is to use only information generated by the model
during the most recent iterations. Information from earlier iterations is discarded
as it is considered to be less relevant to the current behavior of the Hessian. Despite
this approximation the method yields a linear rate of convergence. Many studies
have shown that an optimal value for the number of iterations stored in the memory
belongs in the range [3, 7] and increasing it beyond 7 usually does not improve the
performance of the algorithm.
The L-BFGS-B implementation of Nocedal, Zhu et al (introduced in [24]) has

been used throughout the following tests. This is a standard optimization package
used in industry and academia for variational data assimilation. The letter ”B”
stands for ”bounded” as this particular implementation is able to handle bound
constraints on the iterates.
The number of recent iterations stored in memory (variable ’m’ in L-BFGS-B)

was set to 7. The parameter ’factr’ controls the desired accuracy of the iterative
algorithm and it was set to 102 (corresponding to high accuracy).

3.1.2. Truncated Newton - TNPACK

Truncated Newton (TN) or inexact Newton methods is another class of meth-
ods derived from Newton-Raphson focusing on generating the search direction by
solving the linear system (14b) in p[k] with B−1

[k] as the system matrix. An iterative

linear solver can be employed for this task that only needs Hessian-vector products
for the evaluation of the left-hand side. The particular version of TN used for the
following tests is also known as Newton-CG and it consists of series of inner itera-
tions to solve the linear system for the search direction using conjugate gradients
and outer iterations that use this search direction along with a linesearch algorithm
to update the solution. Because CG is designed to solve positive definite systems
and the Hessian may have negative eigenvalues when not close to a solution, the
CG iteration terminates as soon as a direction of negative curvature is generated.
This guarantees that the search direction is a descent direction and convergence
rate is quadratic.
The code used for this algorithm is TNPACK of Schlick, Fogelson and Xie [25, 26].

8 Alexandru Cioaca, Mihai Alexe and Adrian Sandu

It is a robust and flexible implementation. Most of the parameters are customiz-
able. The user can select among various factorization methods and termination
criteria. Another important feature is the choice between computing the Hessian
using finite-differences or second order adjoints. Tests have been performed with
both methods (referred to as TNPACK-FD for Hessian approximated through
finite differences of the gradient and TNPACK-SOA for Hessian-vector product
computed using second-order adjoints). Some parameters specific to this software
package were changed from the default values to improve convergence. The max-
imum number of PCG iterations in each Newton iteration was set to 50 and the
maximum number of function calls inside the line search routine was set to 20.

3.1.3. Hybrid

The Hybrid method [27, 28] (HYBR) alternates m iterations of BFGS with k
iterations of TN). The inverse of the approximate Hessian is passed between these
two algorithms: TN uses it in the CG inner iterations as a preconditioner for the
linear system whose solution is the search direction and L-BFGS uses it as an
initial approximation for the inverse Hessian. This way the information gathered
by one method is used by the other. It is hoped that the advantages of the two
methods complement each other’s shortcomings. TN needs few iterations to reach
the solution but it is computationally intensive and the second order derivative
information gathered is lost from one outer iteration to the other. L-BFGS needs
many iterations that are inexpensive but the algorithm to update the Hessian is
less accurate than TN and it can perform poorly on ill-conditioned problems.
In the following tests, the implementation by Morales and Nocedal [27] was

used. The parameters used for the BFGS module were assigned the same values as
specified above for L-BFGS-B. Similary, the parameters of the truncated Newton
part have been aligned to those used for TNPACK. The best results were obtained
when alternating 15 iterations of BFGS with 5 iterations of TN.

3.1.4. Moser-Hald

This algorithm is a Newton-type inversion free method proposed by Jurgen Moser
[29] and improved by Ole Hald [30]. The method is quadratically convergent and
sharp error estimates were found by Potra and Ptak [31]. Starting from a given ini-
tial condition U[0] and an approximation G[0] of the inverse of the Hessian (usually
the identity matrix) the iterations of the algorithm go as follows:

U[k+1] = U[k] −G[k] · ∇J (U[k]) (16a)

G[k+1] =
(
2I −G[k] · ∇2J (U[k+1])

)
·G[k] (16b)

Implementing this algorithm using second order adjoints is not straightforward
as it makes use of the full Hessian which is usually not available. A workaround
around this issue is to multiply the recursion formula (16b) with ∇J (U[k]) in
order to obtain the expression of a Hessian-vector product (17a) which allows us to
employ SOA models. Expanding similarly the expression for the second step to aim
for obtaining Hessian-vector products wherever we have a Hessian increases their
number to three (equivalent with three SOA runs). We can continue recursively
with subsequent iterations and generalize that we need exactly 2k + 1 SOA runs
for iteration k.
We implemented a reduced version of Moser-Hald consisting of the following

steps inside each iteration:

Optimization Methods and Software 9

(i) First MH step - steepest descent

U[k+1] = U[k] + α[k] · ∇J (U[k]) (17a)

(ii) Second MH step requiring one Hessian vector product

U[k+2] = U[k+1] − α[k+1] ·
(
2G[k] · ∇J (U[k+1]) + (17b)

G[k] · ∇2J (U[k+1]) ·G[k] · ∇J (U[k+1])
)

(iii) Third MH step requiring three Hessian vector products
(iv) Fourth MH step requiring seven Hessian vector products
(v) Restart

Future work for this algorithm must consist in finding a way to store the infor-
mation about the Hessian from one cycle to another and increasing the robustness
of the code. The linesearch routine used for each step was implemented according
to Hager and Zhang [18]. Although the information accumulated during the three
steps is lost at the end of each cycle, the results are very promising for regular
unconstrained optimization problems.

3.2. Nonlinear Conjugate Gradients

The nonlinear conjugate gradients algorithm is an extension of the well-known lin-
ear conjugate gradient method of solving linear systems of equations [32]. Fletcher
and Reeves first proposed the nonlinear version in [33] and it consists in two im-
portant changes to the linear case:

• The residual r is replaced by the gradient of the objective function

• The next iterate is obtained by performing a linesearch along the search direction
generated by the conjugate gradient formulas.

If the cost function is a strongly convex quadratic and α[k] the exact minimizer
then the algorithm reduces to the linear version. Each iteration requires only one
evaluation of the objective function and its gradient and no matrix operations are
involved.
Each flavor of CG+ is different in the way it generates the search direction. This

is accomplished through the formula to compute the scalar value β[k].

p[k+1] = −∇J (U[k]) + β[k+1] · p[k] (18a)

The Fletcher-Reeves formula is:

βFR
[k+1] =

∇J (U[k+1])
T · ∇J (U[k+1])

∇J (U[k])T · ∇J (U[k])
, (18b)

while the Polak-Ribiere formula is:

βPR
[k+1] =

∇J (U[k+1])
T ·
(
∇J (U[k+1])−∇J (U[k])

)
∥∥∇J (U[k])

∥∥2 (18c)

These are only two of the most popular examples but the literature contains
many other versions developed over the years.

10 Alexandru Cioaca, Mihai Alexe and Adrian Sandu

3.2.1. Classic Nonlinear Conjugate Gradients

The particular implementation of this method used for our studies is CG+, de-
scribed in [34]. The bests results were obtained when choosing β[k] to be computed
with the “Polak-Ribiere positive” method (18c).

3.2.2. CG Descent

CG Descent (conjugate gradient with guaranteed descent) is a nonlinear conju-
gate gradient algorithm recently developed by Hager and Zhang. The theory and
the code (CGDESCENT, referred to as CGDES in this paper) are presented in
[35]. The general discussion for nonlinear conjugate gradient holds for this algo-
rithm too. Its main feature represents the way β[k] is computed in order to make
sure the search directions are descent directions.
This new scheme addresses limitations in the previous conjugate gradient schemes

as the search direction is always a descent direction so the algorithm improves the
solution with each iteration. This is an improvement over other nonlinear conjugate
gradient methods which sometimes get stuck at a particular solution and are not
able to advance further, a phenomenon known as “jamming”
Most of the inner parameters of the algorithm are customizable making it one of

the most flexible non-commercial optimization software. Since the parameters can
influence the behavior of the method, a program searching for the parameter-space
of a given problem was also made available (see [35]). For this particular model
the default values of the parameters were used because no improvement was found
when running the optimization with modified values.

3.2.3. Daniel CG

This method is another version of the nonlinear conjugate gradient. It was de-
veloped by J.W. Daniel, [36–38]. What makes Daniel CG distinct from other non-
linear CG methods is the use of second order information in the computation of
each search direction. The β[k] parameter proposed by Daniel is:

βD
[k] =

∇J (U[k+1])
T · ∇2J (U[k]) · p[k]

pT
[k]
∇2J (U[k]) · p[k]

(19)

This method has been considered for a long time to be impractical as it required
second order information. However since automatic differentiation made possible
the computation of the (discrete) second order adjoints which can provide Hessian-
vector products this became a viable method. Its only obvious drawback is the extra
time needed to run the second order adjoint.
The code for this algorithm has been developed by the authors of the paper

and it uses a linesearch routine heavily inspired by the one developed by Hager
and Zhang for their CGDES package and presented in their paper [18]. During the
tests ’jamming’ was frequently noticed: Daniel CG sometimes enters an infinite
cycle when using the strong Wolfe conditions for linesearch. This has been avoided
by using approximate Wolfe. We will refer to our implementation as CGDAN in
this paper.

4. Applications

4.1. The Problem Setting

We consider the two dimensional Saint-Venant PDE system that approximates
fluid flow inside a shallow basin (also known as “Shallow Water Equations” and

Optimization Methods and Software 11

introduced in [39]):

∂

∂t
h+

∂

∂x
(uh) +

∂

∂y
(vh) = 0

∂

∂t
(uh) +

∂

∂x
(u2h+

1

2
gh2) +

∂

∂y
(uvh) = 0

∂

∂t
(vh) +

∂

∂x
(uvh) +

∂

∂y
(v2h+

1

2
gh2) = 0 .

The spatial domain is square shaped (Ω = [−3, 3]2), and the integration window
is t0 = 0 ≤ t ≤ tF = 0.1. Here h(t, x, y) denotes the fluid layer thickness, and
u(t, x, y), v(t, x, y) are the components of the velocity field. g is the standard value
of the gravitational acceleration. The boundary conditions are periodic in both
directions. For ease of presentation, we arrange the n discretized state variables in
a column vector

U =

ĥ

ûh

v̂h

 ∈ Rn . (20)

We implemented two numerical models to solve these equations, presented below.

4.2. Explicit timestepping model

In the first version of the model we use a finite volume-type scheme for space dis-
cretization and a fourth-order Runge-Kutta scheme for timestepping. This method
was introduced by Liska and Wendroff in [39].
The tangent linear model, first-order and second-order adjoints were generated

through automatic differentiation of the forward model using TAMC [40, 41]. The
operation is straight-forward as TAMC parses the source code that is implementing
the numerical model and generates the derived code in the same programming
language. For more details about automatic differentation see [42].
A question that arises naturally is how large is the overhead of the code generated

through automatic differentation. Table 2 illustrates the CPU times of TLM, FOA
and SOA models, normalized with respect to the CPU time of a single forward
model run. It is seen that a full second order adjoint integration is about 3.5
times more expensive than a single first order adjoint run and the latter takes 3.7
times longer than the forward run. The time for SOA is a large value as it takes
longer time to compute than approximating it though finite difference (2 FOA
runs). We consider these to be large values but for the purpose of this test they
still are computationally feasible. Please note that these values apply only for our
particular implementation (method of lines) and the overhead can greatly vary
with the complexity of the numerical method or the automatic differentiation tool
used.
Because the overhead is already large and no code optimization was able to

reduce it significantly, we decided to run the model and its adjoints in conjunction.
For example each time the tangent linear model or first-order adjoint are run,
the forward model is run beforehand. Similarly, in order to compute the second
order adjoint one must first run the forward, first-order adjoint and tangent linear
models. Hence the actual timing values are the ones displayed in the right hand side
of the table. In automatic differentiation this is done naturally in order to create

12 Alexandru Cioaca, Mihai Alexe and Adrian Sandu

Table 2. Wall-clock CPU times for explicit timestepping

model, normalized with respect to a single forward model run

FWD 1
TLM 2.5 FWD + TLM 3.5
FOA 3.7 FWD + FOA 4.7
SOA 12.8 FWD + TLM + FOA + SOA 20

checkpoints for the solution of the forward model. However, when the differences
between the CPU time of the model and its adjoints are smaller, an implementation
that avoids re-running the FWD model can be more effective.

4.3. Implicit timestepping model

The second version of the model puts an emphasis on performance and better CPU
time ratios between the model and its adjoint. Discretization in space is accom-
plished by a third order upwind scheme on both axis (see [43]). For timestepping
we use the Crank-Nicolson scheme in [44] and solve the nonlinear equation with
Newton-Raphson’s method. For this we derive offline the explicit Jacobian of the
space discretization. Since its structure is sparse, the Jacobian is factorized with
the sparse solvers library UMFPACK [45–48]. The computation and factorization
of the Jacobian are the most time-consuming parts of the forward model; we de-
cided to use a simplified version of Newton’s method over five steps, where we
would compute and factorize the Jacobian at the first step and the subsequent
four would reuse this factorization.
From the derived expressions of the TLM (21b), FOA (21c) and SOA (21d) we

can see that the factorization of I − 0.5∆t · f ′ obtained at each timestep can be
reused in all these models. Also, the right hand side expression contains the actual
Jacobian in a matrix-vector product so if we save it on disk during the forward
model run then we can reload and reuse it at the corresponding timestep in the
derived models. Tests have shown that using binary format for storing the Jacobian
is faster than recomputing it. As for the SOA, it contains two extra terms and the
symbol H denotes the Hessian of the space discretization. Since in each case we are
confronted with a Hessian-vector-vector product we use automatic differentation
on the space discretization twice to generate its second order adjoint and then just
“plug in” the procedure generated by TAMC in our model. In equations for the
forward model (21a), TLM (21b), FOA (21c) and SOA (21d), we use f for the
discretization in space, f ′ for its Jacobian and f ′′ for the Hessian.

Un+1 − ∆t

2
f(Un+1) = Un +

∆t

2
f(Un) , (21a)

(
I − ∆t

2
f ′(Un+1)

)
· δUn+1 =

(
I +

∆t

2
f ′(Un)

)
· δUn , (21b)

(
I − ∆t

2
f ′(Un+1)T

)
· λn =

(
I +

∆t

2
f ′(Un)T

)
· λn+1 , (21c)

Optimization Methods and Software 13

Table 3. Wall-clock CPU times for implicit

timestepping model, normalized with re-

spect to a single forward model run

FWD 1
TLM 0.1
FOA 0.1
SOA 0.15 SOA+TLM 0.25

(
I − ∆t

2
f ′(Un+1)T

)
· σn =

(
I +

∆t

2
f ′(Un)T

)
· σn+1 (21d)

+
∆t

2

(
f ′′(Un) · δUn

)T · λn+1

+
∆t

2

(
f ′′(Un+1) · δUn+1

)T · λn .

The timing for each model in this implementation is presented in Table 3. The
ratios are very different from what we obtained for explicit timestepping as all
derived models need only about 10-15% of the forward model CPU time to execute.
In contrast with the explicit timestepping case, this time we decided to improve
the performance of the model even further by disentangling the execution of the
forward, tangent-linear and adjoint models. This way, we can run the forward
model only when necessary while the adjoints can be run independently by using
the checkpoints of the appropriate previous forward model run. For example, one
can run the forward model and store its timeseries and then run the TLM or FOA
for the same solution as many times as desired without having to rerun the model.
However, since the SOA depends on the TLM, these two are still ran in conjunction
so the actual CPU time needed to obtain the Hessian-vector product is the sum of
these two (Table 3) but they reuse the stored trajectories of the FWD and FOA.
This approach needs more storage space and careful bookkeeping in both models
and optimization software libraries but is definitely feasible and efficient.
Because of the nature of the numerical scheme chosen for timestepping, this

implementation is more expensive per timestep iteration than the previous one
(explicit timestepping) by a factor of 103. Almost 20% of the CPU time is spent
computing the Jacobian of the space discretization and more than 60% factorizing
it. However, implicit timestepping schemes have the advantages of being able to
use large timesteps and to solve stiff differential equations. In our tests we used the
same value for the time step in order to align the simulation scenarios as much as
possible and we only present normalized CPU times in our results.
We can say that if the explicit timestepping model was a worse-case scenario

because of the large overhead in the adjoint models, then the implicit timestepping
could be a favorable-case scenario as the numerical method allowed several perfor-
mance improvement tricks such as reusing factorizations or intermediate data. The
lesson to learn from this implementation is that through the usage of a combination
of favorable schemes and software tools we can come up with an implementation
that does not necessarily have to obey the paradigm that derived models take
longer to run and are unfeasible for computation.
We note that another case in which small overheads can be obtained is usually

employed in large-scale models whose adjoints are very hard to derive on the whole
through automatic or symbolic differentiation and finite differences would not be
feasible as well. For these models, the adjoints are usually obtained from a simpli-
fied version of the forward model that can capture some relevant behavior of the
processes. A good example is WRF (Weather Research & Forecast), a complex cli-
mate model implementing dynamics, physics and chemistry of the atmosphere, but
whose tangent linear and adjoint models were generated through automatic differ-

14 Alexandru Cioaca, Mihai Alexe and Adrian Sandu

entiation applied only on the dynamical core [49]. Repeating the same process one
can generate a reduced second order adjoint which can prove to be helpful in op-
timization problems, sensitivity analysis, uncertainty quantification, etc. However,
this particular approach is not the scope of our study.

4.4. Data Assimilation Problem

Data assimilation is the process by which measurements are used to constrain model
predictions. The information from measurements can be used to obtain better
initial and boundary conditions. Variational data assimilation allows the optimal
combination of three sources of information: a priori (background) estimate of the
state of the system, knowledge of the interrelationships among the variables of the
model and observations of some of the state variables. The optimal initial state U0

(also called the analysis) is obtained by minimizing the function

J (U0) =
1

2
(U0 − U b)T ·B−1 · (U0 − U b)

+
1

2

K∑

k=1

(
Hk(Uk)− zk

)T
· R−1

k ·
(
Hk(Uk)− zk

)
(22)

The first term of the sum quantifies the departure from the background state at
the initial time t0, while the second term measures the distance to the observations,
which are taken at times tk inside the assimilation window [t0, tF]. The block-
diagonal background error covariance matrix B is built to take into account of the
spatial correlations of the variables, as well as the periodic boundary conditions.
Hk is the observation operator defined at assimilation time tk. It maps the discrete
model state Uk ≈ U(tk) to the observation space. Rk is the observations error
covariance matrix.
The efficient numerical minimization of (22) requires the gradient of the cost

function as well as second order derivative information when available. 4D-Var
usually relies on adjoint sensitivity analysis to provide information about the first
and second order derivatives of the objective function (see, e.g., [50, 51]). Varia-
tional data assimilation is a perfect example of nonlinear numerical optimization
where the the minimization of the cost function is constrained by a numerical model
associated with a set of PDEs, hence PDE-constrained optimization.
The main focus of this study is to determine whether the 4D-Var data assim-

ilation process can be improved by using a minimization algorithm that employs
second order derivatives to minimize the 4D-Var cost function. A comparison of the
performance of each minimization algorithm on our particular models can provide
valuable guidelines even for situations when a second-order adjoint is not available,
but a first-order adjoint is. Our tests employ the optimization algorithms described
in the section above for the minimization of the 4D-Var fit function in the context
of data assimilation.
As seen in the description of the implementation of our explicit timestepping

model, second order adjoints might take significantly longer to run than the for-
ward model or its first-order adjoint but even in this case they could either improve
the rate of convergence or help provide a more accurate solution. It is also a compre-
hensive test for the popular optimization algorithms (L-BFGS-B, CG+ or HYBR)
against algorithms that were considered in the past to be less effective, mainly
because of the expensive computations involved.

Optimization Methods and Software 15

5. Numerical Results and Discussion

In the context of this paper, 4D-Var will be used to assess the potential benefits
of second order adjoints in variational data assimilation and compare several min-
imization algorithms for this heavy nonlinear problem. The algorithms presented
above will be used to minimize the cost function (22) and generate the analysis
Ua. The scenario is presented below:

• The 2-D grid is divided into 40 grid points on each direction (1600 in total).
The number of time steps for the model runs is selected to be N = 50 for both
explicit and implicit timestepping models.

• The reference solution is generated for the height component h as a Gaussian
pulse of amplitude A = 30 while the velocity fields u and v are assigned the
value 2 at each grid point.

• The model is ran with the reference as initial condition in order to generate the
synthetic observations. The observation frequency is set to once every 5 time
steps.

• The observation error covariance R is a diagonal matrix (based on the assumption
that the observational errors are uncorrelated). The standard deviation of these
errors was set to 2% of the value of the observations.

• The background solution U b is generated by applying a correlated perturbation
on the reference profile for h. At each grid point, u and v are assigned the values
2.2 and respectively 1.8.

• Two versions of the background error covariance B were generated for a standard
deviation of 8%. The first is a diagonal matrix corresponding to the case when
the errors for each grid point are independent between them. This is obviously
a simplification of the real case because neighboring grid points can affect each
other and errors might propagate on localized areas. This real-case scenario was
tested by using a second version of B with a nondiagonal structure and the
correlation distance of 5 grid points. This will help the 4D-Var method to spread
the information from observations in each cell based on information passed from
its neighbors.

An important aspect in the usage of optimization algorithms is fine-tuning pa-
rameters such as convergence and tolerance constants, maximum number of model
runs inside a specific context, etc. Several parameters were chosen to be common
for all methods and assigned the following values:

• The stopping criterion is set to
∥∥∥∇J (U0

[k])
∥∥∥ < 10−6 ·max(1,

∥∥∥U0
[k]

∥∥∥).
• Wolfe conditions parameters are set to c1 = 10−4 and c2 = 0.9 for Newton

methods and c2 = 0.1 for nonlinear conjugate gradients.
• A maximum number of 200 iterations is allowed for each optimization. The ex-

ception is TNPACK which was set to run for a maximum of 100 outer iterations.

When comparing the results obtained with each optimization method two impor-
tant issues will be followed: how close does the method converge to the reference
(accuracy) and how fast is this convergence over time (performance). The main in-
dicators used to analyze the accuracy of the data assimilation process are the misfit
between the optimized solution and the reference solution, and the cost function
and gradient of the optimized solution. The misfit measure used is the root mean
square error (RMSE) as in relation (23) where n stands for the dimension of the
problem.

16 Alexandru Cioaca, Mihai Alexe and Adrian Sandu

RMSE =

∥∥U ref − Ua
∥∥

√
n

(23)

It is important to remember that in 4D-Var data assimilation the effect of de-
creasing the RMSE between the analysis and the reference is a side-effect of mini-
mizing the cost function. This means that there are two meanings for the relative
performance of each algorithm: how much it minimizes the cost function, providing
statistics of interest to the field of nonlinear optimization and how much the RMSE
is reduced, an aspect of interest from a data assimilation point of view. Please re-
member that we generate a reference solution just so we have something to test
the analysis against. In normal data assimilation operations one knows only the
background and observations and the reduction in the misfit towards the actual
state of the atmosphere might or might not have been reduced at the same scale
that the 4D-Var was reduced.
Note that we can start from the same initial condition but obtain different analy-

sis states for the 4D-Var cost function based on the number and type of observations
used in assimilation and the error covariance matrices B and R. The reduction in
the cost function achieved by the tested methods should be interpreted relative to
each other only under the same scenario. The background field (initial condition)
is the same for all experiments, though, so the median reduction in RMSE of a
particular scenario might suggest a more favorable setting for data assimilation.
Three scenarios are presented for both models:

• Perfect dense observations, B diagonal (the “easy” scenario, useful to emphasize
the general performance of each algorithm);

• Perturbed sparse observations, B diagonal (the least-available-information sce-
nario);

• Perturbed sparse observations, B nondiagonal (the computationally demanding
scenario but also the closest to an operational setting)

These scenarios have been selected from a larger set based on different combina-
tions among these features and variations of parameters such as error covariances,
total number of model timesteps or the frequency at which observations are used.
The scenarios not presented here provided redundant conclusions.
The first scenario computes the cost function using observations for each point of

the grid for all three variables (h, u and v). In real-case scenarios observations are
usually not available for each point of the grid but it is useful to assess this ideal
case. Also, this scenario can be equivalent to the methodology that interpolates
sparse observations in space, which is becoming a popular practice in data assimi-
lation tools such as GSI or WRFVAR. Synthetic observations were generated from
a reference run of the forward model and are not perturbed for this scenario which
should theoretically be a less challenging optimization problem.
For the second and third scenarios, synthetic observations are taken at every

fourth point of the grid in both directions and perturbed for all three variables.
Thus only 6.25% of the observations used in the dense case are available. This
is consistent with the real-case setting where observations always come perturbed
because the instruments used by meteorological stations or satellites are affected by
inherent inaccuracies. The difference between these scenarios comes in the structure
of the background error covariance matrix. The former uses a diagonal B and the
latter a nondiagonal B. The advantage of using nondiagonal B consists in the fact
that throughout the process of minimizing the cost function, the information can
be spread out among correlated neighboring cells.

Optimization Methods and Software 17

For each model and for each scenario we are presenting two plots on loglog scale,
one of them for the relative reduction of the cost function and the other for the
relative reduction in the RMSE (in time, normalized by one forward model run)
and a table containing the value of the relative reduction in cost function, norm
of its gradient and RMSE for the analysis obtained through each method and the
optimization statistics: number of iterations, model runs and CPU time (again,
normalized).
No minimization algorithm used any form of preconditioning. Also, BFGS and

HYBR were initialized through a cold-start. The number of the inner iterations in
truncated Newton was limited to 15 as larger values would not have been feasible
for using second order adjoints for the first model and smaller values would not
factorize the Hessian accurately enough.

5.1. Results for the explicit timestepping model

5.1.1. Scenario 1

The cost function and RMSE plots (Figures 1, 2) show that each method behaves
as predicted since the value of the 4D-Var cost function is decreased with each
iteration.
CG+ and CGDES evolve head-to-head and from the iteration markers we can

infer that CGDAN follows a similar trajectory but the use of second-order adjoints
lags it behind the two other nonlinear conjugate gradient methods. The most ac-
curate solution is provided by CG+. L-BFGS and HYBR generate similar iterates,
especially in the short-run where the latter performs L-BFGS iterations. The fact
that HYBR converges slower once it switches to iterations of truncated Newton
is quite surprising and does not confirm the theoretical superiority of this method
over pure L-BFGS. All these five methods converge to solutions of similar cost
function values. Compared to them, the two versions of TNPACK are more accu-
rate and minimize the cost function to a smaller value. Finally, Moser-Hald looks
competitive for the initial iterations but restarting the algorithm every four itera-
tions slows the convergence gradually until it reaches 200 iterations. The algorithm
does not benefit from a robust implementation so this makes the authors hope its
convergence properties could be exploited in future work. Unfortunately this is the
only scenario where it worked so a good implementation should not only treat the
issue of restarts through which the accumulated second order information is lost
but also to be able to treat more difficult minimization scenarios.
The evolution of the RMSE (Figure 2) generally is correlated with that of the

cost function as the rate at which the algorithms converge is the same. Two unusual
aspects have to be underlined. Although we would expect the RMSE trajectory to
monotonously decrease just like the cost function, this is not the case for all meth-
ods. L-BFGS, CGDAN and both truncated Newton decrease the RMSE along with
the cost function down to a point and then the RMSE starts increasing although
the cost function keeps decreasing. This may or may not be have implications on
the data assimilation procedure (we will see later that it is application-specific)
but it is difficult to detect in a real-case scenario because the reference will not be
available to watch the evolution of the RMSE. In the course of the minimization
process we would expect the analysis to be closest to the real state of the system
as it is the minimizer of our fit function but we can definitely see this may not
be the case. Moreover, except for the convergence criteria for the cost function,
there is no other way of stopping the iterations when the overall lowest value of
the RMSE has been attained. We can see from the RMSE plots that if it not were

18 Alexandru Cioaca, Mihai Alexe and Adrian Sandu

for this switch in monotony, TNPACK would have generated the solution with the
smallest RMSE with a reduction of about 51% in both FD and SOA. The other
unusual aspect is related but of lesser importance: the trajectories of L-BFGS and
HYBR are wiggly in some regions so the RMSE keeps increasing and decreasing
on small intervals but the overall tendency is to decrease.
Table 4 confirms numerically the conclusion drawn from the two figures regarding

the reduction in the initial cost function and RMSE. The reduction in the gradient
norm is also of interest because it shows the fact that truncated Newton, through its
composite structure of outer and inner iterations, is closer to the actual minimum
of the 4D-Var function. For the short time window (about 50 model runs) the most
effective methods at reducing the RMSE are L-BFGS, HYBR and TNFD. This is
a very unfavorable case for the algorithms using SOA since they lose from the start
time in the equivalent of 20 model runs for executing only one SOA.
From the second part of Table 4 we can see that the algorithms which make use of

the fewest model runs are CG+ and L-BFGS with a ratio of about 1.7 respectively
1.5 FWD and FWD+FOA runs for each iteration. However, TNFD also keeps up
in time with these two algorithms as the decrease in the outer iterations is more
significant than the decrease attained by CG+ and L-BFGS on each iteration due to
the superior accuracy of the factorization computed inside the inner iterations. We
also have to consider the fact that truncated Newton uses many inner iterations for
the last outer iterations (usually the limit) but the decrease is not that significant
anymore.
We can infer from this scenario that truncated Newton is more accurate than the

other methods at minimizing the 4D-Var cost function but that does not necessarily
translate into a superior accuracy of providing a minimizer of the misfit towards
the reference.

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

R
el

at
iv

e
re

du
ct

io
n

in
 c

os
t f

un
ct

io
n

CPU Time [Forward Model Runs]

L−BFGS
HYBR
CG+
CGDES
CGDAN
TNFD
TNSOA
HALD

Figure 1. Cost function evolution with compute time for explicit timestepping model. Scenario 1: Perfect
and dense observations, diagonal B

Optimization Methods and Software 19

10
0

10
1

10
2

10
3

0.5

0.57

0.66

0.76

0.87

1

R
el

at
iv

e
re

du
ct

io
n

in
 R

M
S

E

CPU Time [Forward Model Runs]

L−BFGS
HYBR
CG+
CGDES
CGDAN
TNFD
TNSOA
HALD

Figure 2. RMSE evolution with compute time for explicit timestepping model. Scenario 1: Perfect and
dense observations, diagonal B

Table 4. Explicit timestepping model. Scenario 1: Perfect and dense observations, diagonal B

L-BFGS HYBR CG+ CGDES CGDAN TNFD TNSOA HALD

RMSE 5.28e-1 5.21e-1 5.22e-1 5.21e-1 5.39e-1 5.66e-1 5.65e-1 6.4e-1
J (Ua) 2.2e-3 2.4e-3 2.3e-3 2.3e-3 2.2e-3 1.24e-3 1.23e-3 8.4e-3

‖∇J (Ua)‖ 2.3e-3 6.6e-3 3.3e-3 3.7e-3 2.6e-3 5e-4 4e-4 1.54e-2
Iterations 84 63 57 57 76 25 23 200
FWD 123 102 131 113 141 427 137 400

FWD+FOA 123 102 131 170 217 427 137 600
FWD+FOA+
TLM+SOA 0 0 0 0 76 0 304 550
CPU Time 611 500 655 1044 2311 2166 4577 3100

5.1.2. Scenario 2

As described above, the second scenario uses sparse observations which reduce
the space of the cost function. The background error covariance matrix is still
diagonal so the algorithms face a more difficult problem, that of reconciling less
observations that do not capture the entire state of the system with a background
whose gridpoints contain errors that are strictly tied to each gridpoint and cannot
be corrected through local correlations.
Figure 3 shows that the evolution of each cost function follows a global trend, just

like in the previous scenario. However, the difference between the two truncated
Newton and the rest is smaller. From Figure 4 we see that the evolution of the
RMSE for each algorithm also behaves similarly to the previous scenario, including
the unwanted increase in the misfit on the last iterations. The only algorithm who
does not act in this manner is CG+. In the short-run TNFD, L-BFGS and HYBR
are still the most well-performing algorithms.
The numbers in Table 5 confirm that this was a harder scenario for 4D-Var as the

mean reduction in RMSE achieved by all algorithms is around 80% of the initial
value, worse than the previous scenario’s 40%.

20 Alexandru Cioaca, Mihai Alexe and Adrian Sandu

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

R
el

at
iv

e
re

du
ct

io
n

in
 c

os
t f

un
ct

io
n

CPU Time [Forward Model Runs]

L−BFGS
HYBR
CG+
CGDES
CGDAN
TNFD
TNSOA

Figure 3. Cost function evolution with compute time for explicit timestepping model. Scenario 2: Per-
turbed and sparse observations, diagonal B

10
0

10
1

10
2

10
3

0.77

0.81

0.85

0.9

0.95

1

R
el

at
iv

e
re

du
ct

io
n

in
 R

M
S

E

CPU Time [Forward Model Runs]

L−BFGS
HYBR
CG+
CGDES
CGDAN
TNFD
TNSOA

Figure 4. RMSE evolution with compute time for explicit timestepping model. Scenario 2: Perturbed and
sparse observations, diagonal B

5.1.3. Scenario 3

The last scenario for this model makes use of a nondiagonal B with a correlation
distance of 5 units. This means that we consider the error in each cell of the
background field to arise not only from computational errors internal to it but also
from propagating errors between neighbours, which is indeed an assumption closer
to the way errors occur in real models.

Optimization Methods and Software 21

Table 5. Explicit timestepping model. Scenario 2: Perturbed and sparse observations, diagonal B

L-BFGS HYBR CG+ CGDES CGDAN TNFD TNSOA

RMSE 7.8e-1 8.1e-1 7.8e-1 7.8e-1 7.8e-1 8.5e-1 8.2e-1
J (Ua) 6.8e-3 6.4e-3 7e-3 6.8e-3 6.8e-3 5.6e-3 5.6e-3

‖∇J (Ua)‖ 3.1e-3 4.4e-3 4.3e-3 4.1e-3 2.7e-3 3.4e-3 2.3e-3
Iterations 69 91 51 59 59 17 16
FWD 95 155 116 114 113 324 107

FWD+FOA 95 155 116 173 172 324 107
FWD+FOA+
TLM+SOA 0 0 0 0 59 0 188
CPU Time 466 766 577 1055 1822 1611 2922

First thing to notice from the plots is that CGDES and CGDAN broke down at
the second iteration. The problem persisted even after modifying the parameters
of the optimization methods such as the Wolfe conditions but neither of them
was able to pass the second iteration. The situation replicated even when using
approximate Wolfe conditions.
Just like in the previous scenarios, the algorithms evolve in time tightly clustered

together. The exception is TNFD which takes longer to converge. Looking at the
evolution of the RMSE we can see that it is monotonous and it does not start
increasing towards the final iterations. This behavior can be associated with the
use of a nondiagonal B which gives more degrees of freedom for correcting the
error.
Excluding the two algorithms that break, the mean reduction in RMSE is some-

where around 38% which is the best among all three scenarios. This means that
there is more available information, also confirmed by the fact that all algorithms
reached the maximum limit of iterations. Computationally, L-BFGS and HYBR are
the least-intensive using about 1 FWD run and 1 FWD+FOA for each iteration.

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

R
el

at
iv

e
re

du
ct

io
n

in
 c

os
t f

un
ct

io
n

CPU Time [Forward Model Runs]

L−BFGS
HYBR
CG+
CGDES
CGDAN
TNFD
TNSOA

Figure 5. Cost function evolution with compute time for explicit timestepping model. Scenario 3: Per-
turbed and sparse observations, nondiagonal B

22 Alexandru Cioaca, Mihai Alexe and Adrian Sandu

10
0

10
1

10
2

10
3

10
4

0.35

0.43

0.53

0.66

0.81

1

R
el

at
iv

e
re

du
ct

io
n

in
 R

M
S

E

CPU Time [Forward Model Runs]

L−BFGS
HYBR
CG+
CGDES
CGDAN
TNFD
TNSOA

Figure 6. RMSE evolution with compute time for explicit timestepping model. Scenario 3: Perturbed and
sparse observations, nondiagonal B

Table 6. Explicit timestepping model. Scenario 3: Perturbed and sparse observations, nondiagonal

B
L-BFGS HYBR CG+ CGDES CGDAN TNFD TNSOA

RMSE 3.9e-1 3.9e-1 3.9e-1 7.9e-1 7.9e-1 3.8e-1 3.8e-1
J (Ua) 1.3e-4 1.4e-4 1.1e-4 6.3e-1 6.3e-1 9e-5 9e-5

‖∇J (Ua)‖ 1.4e-2 5.2e-3 3.9e-3 - - 8e-4 8e-4
Iterations 200 200 200 2 2 100 100
FWD 217 246 400 3 3 1536 200

FWD+FOA 217 246 400 3 3 1536 200
FWD+FOA+
TLM+SOA 0 0 0 0 2 0 1436
CPU Time 1078 1220 2012 22 33 7700 19310

5.2. Results for the implicit timestepping model

5.2.1. Scenario 1

Because the TLM, FOA and SOA take about the same time to execute, the use
of using second order derivative information in the optimization process does not
bring a considerable overhead. Most of the computation is done in the forward
model so this is a fair comparison between using first order and second order
adjoints.
As predicted, the trajectories of the cost function (Figure 7) for each algorithm

evolve closer together in time. L-BFGS, HYBR and TNSOA converge slightly faster
than the conjugate gradients flavors. TNFD proves to be the slowest to converge
since for the inner iterations the finite differences require that the forward model
is ran each time. TNSOA is definitely faster, since its inner iterations need only
the recomputation of the TLM and the SOA. Basically they switch roles from the
explicit version where the CPU time for the SOA slow down significantly the latter.
However, both converge again to the same value for the cost function and RMSE
which means that they provided similar analyses disregarding the discretization
scheme. One of them (TNFD) is suitable for use on models whose SOA is too
costly or just unavailable but FWD and FOA are feasible and the other one for

Optimization Methods and Software 23

the case where the FWD and FOA are costly but the TLM and SOA can be ran
many times. An interesting aspect for this implementation is the fact that the final
value of the RMSE for all algorithms is the minimum on that particular trajectory.
There is no increase in the RMSE like in the explicit timestepping model. Another
difference from the results obtained with the explicit model for the same scenario
setting is the fact that each algorithm undergoes more iterations and with the
exception of TN the rest achieves the maximum limit of 200 iterations.
In the short-run TNSOA has a significant reduction in both cost function and

RMSE, even for a window of CPU time equivalent to as few as 10 forward runs
which means it is feasible even for operational use.

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

R
el

at
iv

e
re

du
ct

io
n

in
 c

os
t f

un
ct

io
n

CPU Time [Forward Model Runs]

L−BFGS
HYBR
CG+
CGDES
CGDAN
TNFD
TNSOA

Figure 7. Cost function evolution with compute time for implicit timestepping model. Scenario 1: Perfect
and dense observations, diagonal B

Table 7. Implicit timestepping model. Scenario 1: Perfect and dense observations, diagonal B

L-BFGS HYBR CG+ CGDES CGDAN TNFD TNSOA

RMSE 4e-1 4.1e-1 3.9e-1 3.9e-1 4e-1 3.7e-1 3.7e-1
J (Ua) 9e-5 9.1e-5 7.3e-5 7.5e-5 7.9e-5 5.9e-5 6e-5

‖∇J (Ua)‖ 0.00072 0.00058 0.0005 0.00055 0.00119 0.00023 0.00024
Iterations 200 200 200 200 200 63 63
FWD 210 241 400 448 448 974 64
ADJ 210 241 400 200 200 974 64
SOA 0 0 0 0 200 0 910

CPU Time 200 250 380 398 435 914 214

5.2.2. Scenario 2

This scenario uncovers a weakness of TNSOA. From the two Figures (9, 10)
we can see that this algorithm suffers most from the lack of information which
characterizes this scenario as it converges to a solution much more inaccurate (large
RMSE) than the solutions provided by the other algorithms, although the cost
function is decreased at about the same rate. Even TNFD manages to converge
to a better minimizer and it only uses 12 outer iterations as opposed to the 45
of TNSOA. It is debatable whether the apparent faster convergence of the latter
on the first iterations (up to 10 forward model runs) might make it worth using.

24 Alexandru Cioaca, Mihai Alexe and Adrian Sandu

10
0

10
1

10
2

10
3

0.35

0.43

0.53

0.66

0.81

1

R
el

at
iv

e
re

du
ct

io
n

in
 R

M
S

E

CPU Time [Forward Model Runs]

L−BFGS
HYBR
CG+
CGDES
CGDAN
TNFD
TNSOA

Figure 8. RMSE evolution with compute time for implicit timestepping model. Scenario 1: Perfect and
dense observations, diagonal B

Another notable fact is the behavior of CGDES and CGDAN which are faster over
the first many iterations than CG+. By looking at the iteration markers we can see
that all three trajectories follow about the same steps so the superior performance
of the former two should be attributed to the linesearch procedure of Hager [18]
over the one implemented in MINPACK.

Table 8. Implicit timestepping model. Scenario 2: Perturbed and sparse observations, diagonal

B
L-BFGS HYBR CG+ CGDES CGDAN TNFD TNSOA

RMSE 6.95e-1 6.96e-1 6.96e-1 6.96e-1 6.96e-1 7.2e-1 7.8e-1
J (Ua) 4e-3 4e-3 4e-3 4e-3 4e-3 4.1e-3 6.1e-3

‖∇J (Ua)‖ 4e-4 8e-4 2e-4 4e-4 5e-4 1.6e-3 2.8e-2
Iterations 200 200 200 200 200 12 45
FWD 208 245 402 488 468 158 46
ADJ 208 245 402 244 227 158 46
SOA 0 0 0 0 200 0 134

CPU Time 197 232 380 430 448 134 65

5.2.3. Scenario 3

For the implicit model, the third scenario confirms the superior performance of
TNSOA over other algorithms and also the high cost of doing finite differences for
TN. A peculiarity occurs in the minimization undertaken by L-BFGS as although
the cost function seems to evolve normally in time, the RMSE is not reduced
significantly. Excluding L-BFGS, the mean relative reduction in RMSE over all
algorithms amounts at about 37%.
The dotted line in Figures 12 and 12 corresponds to a data assimilation scenario

ran with TNSOA that is using a maximum limit of 30 inner iterations instead
of 15. Factorizing the Hessian with a higher accuracy helps the convergence rate
but it also proves to be less costly. In order to further investigate this issue we
present in Figures 13, 14 a comparison for this third scenario setting between the
two truncated Newton considered throughout these tests, TNFD and TNSOA with
a limit of 15 inner iterations, against TNSOA ran with a cap of 5, 30 and 50 in-

Optimization Methods and Software 25

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

R
el

at
iv

e
re

du
ct

io
n

in
 c

os
t f

un
ct

io
n

CPU Time [Forward Model Runs]

L−BFGS
HYBR
CG+
CGDES
CGDAN
TNFD
TNSOA

Figure 9. Cost function evolution with compute time for implicit timestepping model. Scenario 2: Per-
turbed and sparse observations, diagonal B

10
0

10
1

10
2

10
3

0.65

0.71

0.77

0.84

0.92

1

R
el

at
iv

e
re

du
ct

io
n

in
 R

M
S

E

CPU Time [Forward Model Runs]

L−BFGS
HYBR
CG+
CGDES
CGDAN
TNFD
TNSOA

Figure 10. RMSE evolution with compute time for implicit timestepping model. Scenario 2: Perturbed
and sparse observations, diagonal B

ner iterations. TNSOA-5 and TNFD-15 evolve the solution head-to-head although
TNSOA-5 reaches the stopping criteria earlier on. TNSOA-30 is definitely an im-
provement over TNSOA-15 in speed of convergence but TNSOA-50 doesn’t bring
a significant improvement over the latter. Since the inner iterations are conjugate
gradient iterations, the speed of convergence is related to the conditioning number
of the system and for our particular system the optimum number of inner itera-

26 Alexandru Cioaca, Mihai Alexe and Adrian Sandu

tions seems to be somewhere around 30. In applications where truncated Newton
is employed, this can be improved through preconditioning which would cluster
the eigenvalues together and allow the factorization of the Hessian to be computed
faster.

Table 9. Implicit timestepping model. Scenario 3: Perturbed and sparse observations, nondiag.

B
L-BFGS HYBR CG+ CGDES CGDAN TNFD TNSOA

RMSE 8.3e-1 3.8e-1 3.7e-1 3.8e-1 3.8e-1 3.7e-1 3.7e-1
J (Ua) 2.2e-3 1.1e-3 7.9e-4 8.4e-4 8.2e-4 8.4e-4 8.3e-4

‖∇J (Ua)‖ 3.1e-1 7e-1 1.4e-1 3.5e-1 3.2e-1 4.4e-1 2.8e-1
Iterations 200 200 200 200 200 57 57
FWD 210 242 402 204 212 901 58
ADJ 210 242 402 404 477 901 58
SOA 0 0 0 0 228 0 843

CPU Time 199 229 381 208 251 832 197

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

R
el

at
iv

e
re

du
ct

io
n

in
 c

os
t f

un
ct

io
n

CPU Time [Forward Model Runs]

L−BFGS

HYBR

CG+

CGDES

CGDAN

TNFD

TNSOA

TNSOA−30

Figure 11. Cost function evolution with compute time for implicit timestepping model. Scenario 3: Per-
turbed and sparse observations, nondiagonal B

6. Conclusions and Future Work

This paper discusses the construction of second order adjoints for numerical mod-
els and their use in the solution of PDE-constrained optimization problems. While
first order adjoints efficiently compute the gradient of a cost function (defined on
the model output) with respect to a large number of model parameters, second or-
der adjoints allow to efficiently calculate products between the Hessian of the cost
function and user defined vectors. While it is well accepted that second order in-
formation is important for obtaining accurate minimizers, the large computational
cost of obtaining second derivatives has restricted their use in large scale opti-
mization. In this work we show that Hessian-vector products obtained via adjoint
models can be usefully employed in PDE constrained optimization.

Optimization Methods and Software 27

10
0

10
1

10
2

10
3

0.35

0.43

0.53

0.66

0.81

1

R
el

at
iv

e
re

du
ct

io
n

in
 R

M
S

E

CPU Time [Forward Model Runs]

L−BFGS

HYBR

CG+

CGDES

CGDAN

TNFD

TNSOA

TNSOA−30

Figure 12. RMSE evolution with compute time for implicit timestepping model. Scenario 3: Perturbed
and sparse observations, nondiagonal B

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

R
el

at
iv

e
re

du
ct

io
n

in
 c

os
t f

un
ct

io
n

CPU Time [Forward Model Runs]

TNFD−15
TNSOA−15
TNSOA−5
TNSOA−30
TNSOA−50

Figure 13. Cost function evolution with compute time for implicit timestepping model (TN comparison).
Scenario 3: Perturbed and sparse observations, nondiagonal B

The construction of continuous and discrete SOA for time dependent models is
presented. We implement discrete SOA for two different shallow water equation
models. The first one uses explicit timestepping, and the associated adjoints are
constructed using automatic differentiation. The resulting first and second order
adjoint models have high computational costs, relative to the cost of the forward
model. The CPU time for one FOA run is equivalent to that of 4 forward model

28 Alexandru Cioaca, Mihai Alexe and Adrian Sandu

10
0

10
1

10
2

10
3

0.35

0.43

0.53

0.66

0.81

1

R
el

at
iv

e
re

du
ct

io
n

in
 R

M
S

E

CPU Time [Forward Model Runs]

TNFD−15
TNSOA−15
TNSOA−5
TNSOA−30
TNSOA−50

Figure 14. RMSE evolution with compute time for implicit timestepping model (TN comparison). Scenario
3: Perturbed and sparse observations, nondiagonal B

runs while SOA as 13 forward model runs. The second shallow water model uses
implicit timestepping, and the discrete adjoints are derived and implemented by
hand. The most expensive forward model calculations (LU decompositions) are
checkpointed, and reused in the adjoint runs. As a consequence the cost of each
adjoint is only a fraction of the cost of the forward model. Therefore, the two
shallow water tests illustrate two very different scenarios: in the first the adjoint
calculations are relatively expensive, while in the second their cost is relatively
small.
An extensive numerical study is performed to assess the impact of using sec-

ond order adjoints in four dimensional variational data assimilation. This inverse
problem is of much interest in operational oceanography, weather, and air quality
forecasting. Several optimization algorithms that employ second order information
(TNSOA, Daniel CG, Moser-Hald) are compared against methods that use only
first order derivatives (L-BFGS, Hybrid, nonlinear CG, CG Descent). Some meth-
ods (e.g., Moser-Hald) need to be reorganized such as to employ Hessian-vector
product operations. For some algorithms high quality implementations are avail-
able in existing software libraries. Other algorithms (Daniel CG, Moser-Hald) have
been implemented by the authors; they show promising results, and their perfor-
mance is likely to benefit from improved implementations.
When second order adjoints are costly relative to the forward and the first order

adjoint models, they are not recommended for use. This situation is illustrated
by the explicit shallow water model. The high cost per iteration cannot be offset
by the smaller number of iterations, and the minimization process is overall more
expensive. The analyses are not clearly superior to those obtained with first order
methods. In other words, there is no trade-off between performance and accuracy;
similar analyses take longer to compute. For the explicit model, L-BFGS, Hybrid
and nonlinear conjugate gradients perform best. Their widespread popularity with
the data assimilation community is fully justified.
However, when FOA and SOA have similar computational times, the minimiza-

REFERENCES 29

tion algorithms employing second order information are very competitive. This sit-
uation is illustrated by the implicit shallow water model, where the results of costly
LU decompositions performed during the forward run are reused during the adjoint
runs. The CGDAN algorithm (with our research implementation) performs simi-
larly with other nonlinear conjugate gradients (with high quality implementations);
all provide similar analyses. For this scenario TNSOA has the best performance
in terms of the convergence speed and solution accuracy. When configured to use
no more than 50 inner iterations, TNSOA provides the best minimizer among all
methods, in the shortest CPU time (less than 100 forward model runs).
In an operational data assimilation setting, the analysis has to be provided in a

fixed compute time interval. Therefore, we are also interested in those algorithms
that decrease the 4D-Var cost function the most within the first few iterations.
For explicit timestepping, L-BFGS and Hybrid perform best in regard to this met-
ric. For implicit timestepping, TNSOA is superior to all other algorithms tested. In
summary, the use of second order information for large-scale PDE-constrained opti-
mization problems is beneficial whenever high order derivatives can be obtained at
a low computational cost. This can be achieved by re-using the results of expensive
forward computations during the adjoint run.
A direction of future research is to develop algorithms that combine iterations

based on first and second order information; the second order information is used
only selectively throughout the optimization process. Another direction we plan
to pursue is building approximate but inexpensive adjoints that capture only the
significant features of the model. Tuning, preconditioning, and restarting the min-
imization algorithms are strategies that can significantly improve performance or
accuracy. We believe that as the methodologies will continue to mature, second
order adjoints will become a useful tool for the solution of large-scale inverse prob-
lems.

Acknowledgments

This work was supported by the National Science Foundation through the awards
NSF DMS-0915047, NSF CCF-0635194, NSF CCF-0916493 and NSF OCI-0904397,
by NASA through the award AIST-2005, and by the Houston Advanced Research
Center through the award H-98/2008. The authors thank prof. Florian Potra for
suggesting the Moser-Hald method.

References

[1] Z. Wang, I.M. Navon, F.X. LeDimet and X. Zou. The second order adjoint analysis: theory and
applications. Meteorology and Atmospheric Physics, 50(1-3):3–20, 1992.

[2] Z. Wang, K. Droegemeier and L. White. The adjoint newton algorithm for large-scale unconstrained
optimization in meteorology applications. Computational Optimization and Applications, 10(3):283–
320, 1998.

[3] F.X. LeDimet, I. Navon and D. Daescu. Second order information in data assimilation. Monthly
Weather Review, 130(3):629–648, 2002.

[4] B.D. Ozyurt, and P.I. Barton. Cheap second order directional derivatives of stiff ode embedded func-
tionals. SIAM Journal on Scientific Computing, 26(5):1725–1743, 2005.

[5] D. Daescu and I.M. Navon. Efficiency of a POD-based reduced second-order adjoint model in 4d-var
data assimilation. International Journal of Numerical Methods in Fluids, 53:985–1004, 2007.

[6] R.L. Raffard and C.J. Tomlin. Second order adjoint-based optimization of ordinary and partial differ-
ential equations with application to air traffic flow. In 2005 American Control Conference. Portland,
OR, USA., June 8-10, 2005.

[7] I. Charpentier, N. Jakse and F. Veerse. Second order exact derivatives to perform optimization on
self-consistent integral equations problems. Automatic differentiation of algorithms: from simulation to
optimization, pages 189–195, 2002.

[8] A. Alekseev and I.M. Navon. The analysis of an ill-posed problem using multiscale resolution and

30 REFERENCES

second order adjoint techniques. Computer Methods in Applied Mechanics and Engineering, 190(15–
17):1937–1953, 2001.

[9] R. Griesse and A. Walther. Towards matrix-Free AD-based preconditioning of KKT Systems in PDE-
constrained optimization. In GAMM Annual Meeting 2005 - Luxembourg, pages 47–50. PAMM, 2005.

[10] B.D. Ozyurt and P.I. Barton. Application of targeted automatic differentiation to large scale dynamic
optimization. Lecture Notes in Computational Science and Engineering, pages 235–247. Springer, 2005.

[11] A. Sandu and L. Zhang. Discrete second order adjoints in atmospheric chemical transport modeling.
Journal of Computational Physics, 227(12):5949–5983, 2008.

[12] M. Alexe, A. Cioaca and A. Sandu Obtaining & using second order derivative information in the
solution of large scale inverse problems. High Performance Computing Symposium, Spring Simulation
Multiconference, Orlando, FL, USA., April 12-15, 2010

[13] A.K. Alekseev, I.M. Navon and J.L. Steward. Comparison of advanced large-scale minimization
algorithms for the solution of inverse ill-posed problems. Journal of Optimization Methods & Software,
Vol. 24, No. 1, February 2009, 63-87

[14] D. Daescu, A. Sandu and G.R. Carmichael. Direct and adjoint sensitivity analysis of chemical kinetic
systems with KPP: II – Numerical validation and applications. Atmospheric Environment, 37:5097–
5114, 2003.

[15] A. Sandu, D. Daescu and G.R. Carmichael. Direct and adjoint sensitivity analysis of chemical kinetic
systems with KPP: I – Theory and Software Tools. Atmospheric Environment, 37:5083–5096, 2003.

[16] A. Sandu, D. Daescu, G.R. Carmichael, and T. Chai. Adjoint sensitivity analysis of regional air
quality models. Journal of Computational Physics, 204:222–252, 2005.

[17] J.J., More’, B. Garbow and K. Hillstrom. User guide for the MINPACK-2 test problem collection.
Argonne National Laboratory, Mathematics and Computer Science Division Report, 1991.

[18] H. Zhang and W.W. Hager. A nonmonotone line search technique and its application to unconstrained
optimization. SIAM Journal on Optimization, 14 (2004), pp. 1043-1056.

[19] J.E. Dennis and J.J, More’. Quasi-Newton methods, motivation and theory. SIAM Review, 19(1977),
pp. 46-89

[20] J.E. Dennis and R.B. Schnabel. Numerical methods for unconstrained optimization and nonlinear
equations. Prentice-Hall, Englewood Cliffs, NJ, 1983

[21] W.C. Davidon. Variable metric method for minimization. SIAM Journal on Optimization, 1(1991),
pp. 1-17

[22] Unknown author. Practical methods of optimization. John Wiley Sons, New York, second ed., 1987
[23] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu. A limited memory algorithm for bound constrained

optimization. SIAM Journal on Scientific Computing, 16 (1995), no. 5, pp. 1190–1208.
[24] C. Zhu, R.H. Byrd, P. Lu and J. Nocedal. L-BFGS-B: a limited memory FORTRAN code for solving

bound constrained optimization problems Technical Report, NAM-11, EECS Department, Northwestern
University, 1994.

[25] D. Xie and T. Schlick. Efficient implementation of the truncated-Newton algorithm for large-scale
chemistry applications. SIAM Journal on Optimization, 1998.

[26] D. Xie and T. Schlick. Remark on the updated truncated Newton minimization package, Algorithm
702 ACM Transanctions on Mathematical Software, 1998.

[27] J.L. Morales and J. Nocedal. Enriched methods for large-scale unconstrained optimization. Compu-
tational Optimization Applied, 21 (2002), pp. 143-154.

[28] D.N. Daescu and I.M. Navon. An analysis of a hybrid optimization method for variational data
assimilation. International Journal of Computational Fluid Dynamics, 17(4) (2003), pp. 299-306.

[29] J. Moser. Stable and random motions in dynamical systems with special emphasis on celestial me-
chanics. Herman Weyl Lectures, Annals of Mathematics Studies, Princeton University Press, no. 77,
1973.

[30] O. Hald. On a Newton–Moser type method. Numerical Mathematics, v23, pp. 411-425.
[31] F.A. Potra and V. Ptak. Sharp error bounds for Newton process. Numerical Mathematics v3, pp.

63-72.
[32] M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. Journal of

Research of the National Bureau of Standards, 6 (1992).
[33] R. Fletcher and C.M. Reeves. Function minimization by conjugate gradients. Computer Journal, 7

(1964), pp. 149-154
[34] J.C. Gilbert and J. Nocedal. Global convergence properties of conjugate gradient methods. SIAM

Journal on Optimization, Vol. 2 (1992), pp. 21-42.
[35] W.W. Hager and H. Zhang. CG-DESCENT, A conjugate gradient method with guaranteed descent.

, Jan. 15 2004
[36] J.W. Daniel. The conjugate gradient method for linear and nonlinear operator equations. SIAM

Journal on Numerical Analysis, 4(1):10-26, March 1967
[37] J.W. Daniel. A correction concerning the convergence rate for the conjugate gradient method. SIAM

Journal on Numerical Analysis, 7:277-280, 1970.
[38] J.W. Daniel. Convergence of the conjugate gradient method with computationally convenient modi-

fications. Numerische Mathematik, 10:125-131, 1967.
[39] R. Liska and B. Wendroff. Composite schemes for conservation laws. SIAM Journal of Numerical

Analysis, Vol. 35, No. 6, pp. 2250-2271, December 1998.
[40] R. Giering and Th. Kaminski. Recipes for adjoint code construction. ACM Transactions On Matem-

atical Software, Vol. 24, No. 4, pp. 437-474, 1998.
[41] R. Giering. Tangent linear and Adjoint Model Compiler, Users manual 1.4.

http://www.autodiff.com/tamc, 1999.
[42] A. Griewank. On automatic differentiation. 1988.
[43] R. Courant, E. Isaacson and M. Rees. On the solution of nonlinear hyperbolic differential equations

by finite differences. Communications in Pure Applied Mathematics, 5, 243-255, 1952.
[44] J. Crank and P. Nicolson. A practical method for numerical evaluation of solutions of partial differen-

REFERENCES 31

tial equations of the heat conduction type. Proceedings of Cambridge Philosophical Society, 43, 50-67,
1947.

[45] T. A. Davis. A column pre-ordering strategy for the unsymmetric-pattern multifrontal method. ACM
Transactions on Mathematical Software, vol 30, no. 2, pp. 165-195, June 2004.

[46] T. A. Davis. Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method. ACM Trans-
actions on Mathematical Software, vol 30, no. 2, pp. 196-199, June 2004.

[47] T. A. Davis and I. S. Duff. A combined unifrontal/multifrontal method for unsymmetric sparse
matrices. ACM Transactions on Mathematical Software, vol. 25, no. 1, pp. 1-19, March 1999.

[48] T. A. Davis and I. S. Duff. An unsymmetric-pattern multifrontal method for sparse LU factorization.
SIAM Journal on Matrix Analysis and Applications, vol 18, no. 1, pp. 140-158, Jan. 1997.

[49] Q. Xiao, Y. Kuo, Z. Ma, W. Huang, X. Huang, X. Zhang, D.M. Barker and J. Michalakes. Development
of the WRF adjoint modeling system and its application to the investigation of the May 2004 McMurdo
Antarctica severe wind event. Monthly Weather Review, 136, 3696-3713, 2008.

[50] R. Daley. Atmospheric data analysis. Cambridge University Press, 1991.
[51] E. Kalnay. Atmospheric modeling, data assimilation and predictability. Cambridge University Press,

2002.

