14 research outputs found

    A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems

    Get PDF
    Copyright @ Springer-Verlag 2008Dynamic optimization problems challenge traditional evolutionary algorithms seriously since they, once converged, cannot adapt quickly to environmental changes. This paper investigates the application of memetic algorithms, a class of hybrid evolutionary algorithms, for dynamic optimization problems. An adaptive hill climbing method is proposed as the local search technique in the framework of memetic algorithms, which combines the features of greedy crossover-based hill climbing and steepest mutation-based hill climbing. In order to address the convergence problem, two diversity maintaining methods, called adaptive dual mapping and triggered random immigrants, respectively, are also introduced into the proposed memetic algorithm for dynamic optimization problems. Based on a series of dynamic problems generated from several stationary benchmark problems, experiments are carried out to investigate the performance of the proposed memetic algorithm in comparison with some peer evolutionary algorithms. The experimental results show the efficiency of the proposed memetic algorithm in dynamic environments.This work was supported by the National Nature Science Foundation of China (NSFC) under Grant Nos. 70431003 and 70671020, the National Innovation Research Community Science Foundation of China under Grant No. 60521003, and the National Support Plan of China under Grant No. 2006BAH02A09 and the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01

    A particle swarm optimization based memetic algorithm for dynamic optimization problems

    Get PDF
    Copyright @ Springer Science + Business Media B.V. 2010.Recently, there has been an increasing concern from the evolutionary computation community on dynamic optimization problems since many real-world optimization problems are dynamic. This paper investigates a particle swarm optimization (PSO) based memetic algorithm that hybridizes PSO with a local search technique for dynamic optimization problems. Within the framework of the proposed algorithm, a local version of PSO with a ring-shape topology structure is used as the global search operator and a fuzzy cognition local search method is proposed as the local search technique. In addition, a self-organized random immigrants scheme is extended into our proposed algorithm in order to further enhance its exploration capacity for new peaks in the search space. Experimental study over the moving peaks benchmark problem shows that the proposed PSO-based memetic algorithm is robust and adaptable in dynamic environments.This work was supported by the National Nature Science Foundation of China (NSFC) under Grant No. 70431003 and Grant No. 70671020, the National Innovation Research Community Science Foundation of China under Grant No. 60521003, the National Support Plan of China under Grant No. 2006BAH02A09 and the Ministry of Education, science, and Technology in Korea through the Second-Phase of Brain Korea 21 Project in 2009, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01 and the Hong Kong Polytechnic University Research Grants under Grant G-YH60

    A memetic particle swarm optimisation algorithm for dynamic multi-modal optimisation problems

    Get PDF
    Copyright @ 2011 Taylor & Francis.Many real-world optimisation problems are both dynamic and multi-modal, which require an optimisation algorithm not only to find as many optima under a specific environment as possible, but also to track their moving trajectory over dynamic environments. To address this requirement, this article investigates a memetic computing approach based on particle swarm optimisation for dynamic multi-modal optimisation problems (DMMOPs). Within the framework of the proposed algorithm, a new speciation method is employed to locate and track multiple peaks and an adaptive local search method is also hybridised to accelerate the exploitation of species generated by the speciation method. In addition, a memory-based re-initialisation scheme is introduced into the proposed algorithm in order to further enhance its performance in dynamic multi-modal environments. Based on the moving peaks benchmark problems, experiments are carried out to investigate the performance of the proposed algorithm in comparison with several state-of-the-art algorithms taken from the literature. The experimental results show the efficiency of the proposed algorithm for DMMOPs.This work was supported by the Key Program of National Natural Science Foundation (NNSF) of China under Grant no. 70931001, the Funds for Creative Research Groups of China under Grant no. 71021061, the National Natural Science Foundation (NNSF) of China under Grant 71001018, Grant no. 61004121 and Grant no. 70801012 and the Fundamental Research Funds for the Central Universities Grant no. N090404020, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant no. EP/E060722/01 and Grant EP/E060722/02, and the Hong Kong Polytechnic University under Grant G-YH60

    A parameter optimization method for stress simulation of double horse head pumping unit dynamics model with cable

    Get PDF
    Some components in Double horse head (DHH) pumping unit may occur cracking failure due to high cycle alternating stress, and this makes the research on dynamic stress simulation for them more interesting topic in its maintenance operation. This paper aims to improve the accuracy of dynamic stress simulation model through a parameter optimization method for the cable joints in DHH pumping unit. A series of cylinders was employed to model the steel cable, and the back horse head was also transformed to flexible body, then a rigid-flexible multibody dynamics model with cable was constructed to simulate the dynamic stress of components in DHH pumping unit. Stiffness and damping coefficient in cable joints have a significant effect on the model performance, and an unreasonable value may cause a strong vibrational and undesirable model response, therefore, a Memetic Algorithms based method was proposed to optimize them for improving the simulation accuracy using tested stress as objective function. Results show that the dynamic stress simulated from improved model is much closer to the experimental test compared with the original model, and these optimized parameters are also valid for the model in other working condition

    Proactive local search based on fdc

    Get PDF
    This paper introduces a proactive version of Hill Climbing (or Local Search). It is based on the identification of the best neighborhood through the repeated application of mutations and the evaluation of theses neighborhood by using FDC (Fitness Distance Correlation). The best neighborhood is used during a time window, and then the analysis is repeated. An experimental study was conducted in 28 functions on binary strings. The proposed algorithm achieves good performance compared to other metaheuristics (Evolutionary Algorithms, Great Deluge Algorithm, Threshold Accepting, and RRT)

    A hybrid kidney algorithm strategy for combinatorial interaction testing problem

    Get PDF
    Combinatorial Interaction Testing (CIT) generates a sampled test case set (Final Test Suite (FTS)) instead of all possible test cases. Generating the FTS with the optimum size is a computational optimization problem (COP) as well as a Non-deterministic Polynomial hard (NP-hard) problem. Recent studies have implemented hybrid metaheuristic algorithms as the basis for CIT strategy. However, the existing hybrid metaheuristic-based CIT strategies generate a competitive FTS size, there is no single CIT strategy can overcome others existing in all cases. In addition, the hybrid metaheuristic-based CIT strategies require more execution time than their own original algorithm-based strategies. Kidney Algorithm (KA) is a recent metaheuristic algorithm and has high efficiency and performance in solving different optimization problems against most of the state-of-the-art of metaheuristic algorithms. However, KA has limitations in the exploitation and exploration processes as well as the balancing control process is needed to be improved. These shortages cause KA to fail easily into the local optimum. This study proposes a low-level hybridization of KA with the mutation operator and improve the filtration process in KA to form a recently Hybrid Kidney Algorithm (HKA). HKA addresses the limitations in KA by improving the algorithm's exploration and exploitation processes by hybridizing KA with mutation operator, and improve the balancing control process by enhancing the filtration process in KA. HKA improves the efficiency in terms of generating an optimum FTS size and enhances the performance in terms of the execution time. HKA has been adopted into the CIT strategy as HKA based CIT Strategy (HKAS) to generate the most optimum FTS size. The results of HKAS shows that HKAS can generate the optimum FTS size in more than 67% of the benchmarking experiments as well as contributes by 34 new optimum size of FTS. HKAS also has better efficiency and performance than KAS. HKAS is the first hybrid metaheuristic-based CIT strategy that generates an optimum FTS size with less execution time than the original algorithm-based CIT strategy. Apart from supporting different CIT features: uniform/VS CIT, IOR CIT as well as the interaction strength up to 6, this study also introduces another recently variant of KA which are Improved KA (IKA) and Mutation KA (MKA) as well as new CIT strategies which are IKA-based (IKAS) and MKA-based (MKAS)

    A Hybrid Lehmer Code Genetic Algorithm and Its Application on Traveling Salesman Problems

    Get PDF
    Traveling Salesman Problems (TSP) is a widely studied combinatorial optimization problem. The goal of the TSP is to find a tour which begins in a specific city, visits each of the remaining cities once and returns to the initial cities such that the objective functions are optimized, typically involving minimizing functions like total distance traveled, total time used or total cost. Genetic algorithms were first proposed by John Holland (1975). It uses an iterative procedure to find the optimal solutions to optimization problems. This research proposed a hybrid Lehmer code Genetic Algorithm. To compensate for the weaknesses of traditional genetic algorithms in exploitation while not hampering its ability in exploration, this new genetic algorithm will combine genetic algorithm with 2-opt and non-sequential 3-opt heuristics. By using Lehmer code representation, the solutions created by crossover parent solutions are always feasible. The new algorithm was used to solve single objective and multi-objectives Traveling Salesman Problems. A non Pareto-based technique will be used to solve multi-objective TSPs. Specifically we will use the Target Vector Approach. In this research, we used the weighted Tchebycheff function with the ideal points as the reference points as the objective function to evaluate solutions, while the local search heuristics, the 2-opt and non-sequential 3-opt heuristics, were guided by a weighted sum function

    Meta-learning computational intelligence architectures

    Get PDF
    In computational intelligence, the term \u27memetic algorithm\u27 has come to be associated with the algorithmic pairing of a global search method with a local search method. In a sociological context, a \u27meme\u27 has been loosely defined as a unit of cultural information, the social analog of genes for individuals. Both of these definitions are inadequate, as \u27memetic algorithm\u27 is too specific, and ultimately a misnomer, as much as a \u27meme\u27 is defined too generally to be of scientific use. In this dissertation the notion of memes and meta-learning is extended from a computational viewpoint and the purpose, definitions, design guidelines and architecture for effective meta-learning are explored. The background and structure of meta-learning architectures is discussed, incorporating viewpoints from psychology, sociology, computational intelligence, and engineering. The benefits and limitations of meme-based learning are demonstrated through two experimental case studies -- Meta-Learning Genetic Programming and Meta- Learning Traveling Salesman Problem Optimization. Additionally, the development and properties of several new algorithms are detailed, inspired by the previous case-studies. With applications ranging from cognitive science to machine learning, meta-learning has the potential to provide much-needed stimulation to the field of computational intelligence by providing a framework for higher order learning --Abstract, page iii
    corecore