
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Fall 2009

Meta-learning computational intelligence architectures Meta-learning computational intelligence architectures

Ryan J. Meuth

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Computer Engineering Commons

Department: Electrical and Computer Engineering Department: Electrical and Computer Engineering

Recommended Citation Recommended Citation
Meuth, Ryan J., "Meta-learning computational intelligence architectures" (2009). Doctoral Dissertations.
2209.
https://scholarsmine.mst.edu/doctoral_dissertations/2209

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2209&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2209&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2209?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2209&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

META-LEARNING COMPUTATIONAL INTELLIGENCE

ARCHITECTURES

by

RYAN JAMES MEUTH

A DISSERTATION

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

2009

Approved by

Donald C. Wunsch II, Advisor

Daniel Tauritz

Ganesh K. Venayagamoorthy

Randy H. Moss

Daryl Beetner

© 2009

RYAN JAMES MEUTH

ALL RIGHTS RESERVED

iii

ABSTRACT

In computational intelligence, the term ‘memetic algorithm’ has come to be

associated with the algorithmic pairing of a global search method with a local search

method. In a sociological context, a ‘meme’ has been loosely defined as a unit of cultural

information, the social analog of genes for individuals. Both of these definitions are

inadequate, as ‘memetic algorithm’ is too specific, and ultimately a misnomer, as much

as a ‘meme’ is defined too generally to be of scientific use. In this dissertation the notion

of memes and meta-learning is extended from a computational viewpoint and the

purpose, definitions, design guidelines and architecture for effective meta-learning are

explored. The background and structure of meta-learning architectures is discussed,

incorporating viewpoints from psychology, sociology, computational intelligence, and

engineering. The benefits and limitations of meme-based learning are demonstrated

through two experimental case studies – Meta-Learning Genetic Programming and Meta-

Learning Traveling Salesman Problem Optimization. Additionally, the development and

properties of several new algorithms are detailed, inspired by the previous case-studies.

With applications ranging from cognitive science to machine learning, meta-learning has

the potential to provide much-needed stimulation to the field of computational

intelligence by providing a framework for higher order learning.

iv

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Donald C. Wunsch, for his support and

guidance throughout my academic career. This work was supported in part by The

Boeing Company, the National Science Foundation, the Missouri S&T Intelligent

Systems Center, and the M.K. Finley Missouri Endowment.

 I would also like to thank my advisory committee, Dr. Daniel Tauritz, Dr. Kumar

Venayagamoorthy, Dr. Daryl Beetner, and Dr. Randy Moss. Their input and academic

support are greatly appreciated.

Finally I would like to thank my family and friends for their love, emotional

support and warm homes and hearts throughout my long academic journey.

Thank you all. I would not have been able to come this far without you.

v

TABLE OF CONTENTS

Page

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

LIST OF ILLUSTRATIONS ... viii

LIST OF TABLES .. xii

SECTION

1. INTRODUCTION .. 1

2. MEMETIC COMPUTING ... 7

3. A FRAMEWORK FOR HIGHER ORDER LEARNING 15

4. GRAMMATICAL ADAPTIVE RESONANCE THEORY 19

4.1. GENETIC PROGRAMMING .. 20

4.2. ADAPTIVE RESONANCE THEORY ... 23

4.3. GRAM-ART ALGORITHM ... 28

4.3.1. Category Match. .. 33

4.3.2. Vigilance Test. .. 34

4.3.3. Weight Update. ... 34

4.4. GRAM-ART PROPERTIES ... 38

4.4.1. Vigilance and Template Size. ... 42

4.4.2. Template Drift. .. 43

4.4.3. Computational Complexity. .. 44

4.5. TWO-DIMENSIONAL CLUSTERING ... 44

4.6. IRIS DATA-SET ... 47

vi

4.7. MUSHROOM DATA-SET ... 54

4.8. UNIX USER DATA-SET ... 60

4.9. DISCUSSION ... 61

5. META-LEARNING GENETIC PROGRAMMING .. 63

5.1. EVEN-PARITY PROBLEM OVERVIEW .. 63

5.1.1. Case 1 – Non-Meta XOR3 Evolution. .. 67

5.1.2. Case 2 – Meta-Learning XOR3 Evolution...................................... 70

5.1.3. Case 3 – Selection and Odd-Parity Evolution................................. 71

5.2. META-GP ARCHITECTURE .. 73

5.3. META-GP EVALUATION: THE PARITY PROBLEM 76

5.3.1. Genetic Programming Baseline. ... 77

5.3.2. Automatic Function Definition. .. 79

5.3.3. Parity Evaluation. .. 84

5.4. META-GP EVALUATION: PAC-MAN .. 87

5.4.1. Experimental Setup. .. 89

5.4.2. Results. .. 90

6. META-LEARNING TRAVELING SALESMAN SOLUTION 92

6.1. META-TSP ALGORITHM .. 98

6.1.1. Tour Normalization. .. 99

6.1.2. Tour Hash.. 100

6.1.2.1 Hash overhead. ..102

6.1.2.2 Maximum difference of collisions.102

6.1.3. Tour Comparison. ... 103

vii

6.1.4. 2D Euclidean ART.. .. 103

6.1.5. Tour-Hierarchy Creation. .. 105

6.1.6. Exhaustive Optimization. .. 106

6.1.7. Merge Operation. .. 107

6.1.8. Algorithmic Complexity Analysis. ... 110

6.2. META-TSP EVALUATION .. 112

6.2.1. Experimental Setup. .. 113

6.2.2. Results. .. 117

6.2.2.1 Effect of ART vigilance. ...117

6.2.2.2 Effect of sub-tour limit. ...125

6.2.2.3 Effect of memory vigilance. ..129

6.2.2.4 Effect of algorithm configuration.139

6.2.3. Discussion. .. 144

6.3. FUTURE DEVELOPMENT ... 147

7. DISCUSSION ... 148

7.1. PRESENTED CAPABILITIES .. 148

7.2. LIMITATIONS ... 149

7.3. RESEARCH CHALLENGES ... 150

BIBLIOGRAPHY ... 152

VITA .. 160

viii

LIST OF ILLUSTRATIONS

Figure Page

3.1. Meta-learning architecture. .. 16

3.2. Meta-meta learning. ... 18

4.1. Topological structure of Fuzzy-ART. .. 27

4.2. Example function trees for “X AND Y” on the left, and “NOT X” on the right. 30

4.3. Prototype tree node. ... 30

4.4. Prototype tree resulting from the combination of “X AND Y” and “NOT X”

 trees. ... 31

4.5. Template distribution changes across symbol updates for two nodes, “X” and

 “Y” on left and right, respectively, each with 5 possible symbols. 36

4.6. Activation plot for a two-node template after initial update of symbol pair

 {X3, Y2}. ... 37

4.7. Activation plot of two-node template after update of symbol pairs {X3, Y2},

 and {X4, Y4}. ... 37

4.8. Activation plot of two-node template after updates of {X3, Y2}, {X4, Y4},

 {X3, Y3}. ... 38

4.9. 2D data with variance (a) and covariance (b). ... 40

4.10. Gaussian best match to 2D varying (a) and co-varying data (b). 41

4.11. An example input and the best matching Gaussian distribution. 41

4.12. A non-parametric match to an example input. ... 41

4.13. 3-Symbol 2D clustering activation plots of templates resulting from

 application of points sampled from two normal distributions, one centered in

 the bottom left (Template 1), and one centered in the top right (Template 2). 45

4.14. 10-symbol 2D clustering activation plots of templates resulting from

 application of points sampled from two normal distributions, centered in

 the top right (Templates 1-3). ... 46

ix

4.15. 10-symbol 2D clustering activation plots of templates resulting from

 application of points sampled from two normal distributions, centered in the

 bottom left (Templates 4-6). .. 47

4.16. ART variant classification performance on the IRIS data-set. 51

4.17. ART variant clustering profile on the IRIS data-set. ... 51

4.18. K-Means IRIS data-set performance. .. 52

4.19. Gram-ART Performance on the IRIS data set over varying vigilance and

 number of symbols per data dimension. .. 53

4.20. Gram-ART class counts generated on the IRIS data set over varying

 vigilance and number of symbols per data dimension. .. 54

4.21. Gram-ART and Fuzzy-ART classification performance on the mushroom

 data-set. .. 59

4.22. Gram-ART and Fuzzy-ART clustering profile on the mushroom data-set. 59

4.23. Gram-ART performance on the UNIX user data set over varying vigilance

 settings. ... 61

5.1. Illustration of function representation as tree structure. .. 64

5.2. XOR tree representation. ... 65

5.3. Three-input XOR tree representation... 65

5.4. Simplified two-input XOR. .. 66

5.5. Simplified three-input XOR. .. 66

5.6. Initial non-meta learning XOR2 individual. .. 67

5.7. Intermediate step in development of 3-bit XOR function after a single

 generation. .. 68

5.8. Meta-learning genetic programming architecture. ... 74

5.9. Baseline even parity performance. ... 78

5.10. Evolutionary profiles for the 3-bit even parity problem utilizing GP with

 combinations of Gram-ART and diversity control. ... 81

x

5.11. Clustering profiles for Gram-ART on the even parity genetic programming

 problem. ... 82

5.12. Example function utilization after dynamic function definition. 83

5.13. Example function utilization after dynamic function and diversity control. 83

5.14. Parity performance of Meta-GP algorithm configurations. 87

5.15. Meta-GP performance on the PAC-MAN benchmark.. 91

6.1. Small TSP instance of approximately 30 points. ... 94

6.2. TSP Instance after first clustering pass. ... 94

6.3. Second clustering pass. ... 95

6.4. Final clustering pass, with global cluster M8 ... 96

6.5. Tree of sub-problems (clusters). .. 96

6.6. Completed memes, M1 through M8. ... 97

6.7. Merger of memes into a final tour. .. 97

6.8. Completed tour... 98

6.9. Division of a TSP instance. .. 106

6.10. Optimization descending the tour hierarchy, left to right, top to bottom. 108

6.11. Bottom-up merging of tours... 109

6.12. Leonardo da Vinci’s Mona Lisa as a continuous line drawing. 114

6.13. Cost by E-ART vigilance for algorithm configurations. 120

6.14. Mean tour hierarchy depth by E-ART vigilance. ... 121

6.15. Generated tour size proportion by E-ART vigilance. .. 121

6.16. Execution time by E-ART vigilance, without memory. .. 122

6.17. Execution time by E-ART vigilance, with memory, ascending order. 122

6.18. Execution time by E-ART vigilance, with memory, descending order. 123

xi

6.19. Execution time by E-ART vigilance for algorithm configurations. 123

6.20. Execution time by sub-tour limit, without memory. .. 126

6.21. Execution time by sub-tour limit, with memory, ascending order. 127

6.22. Execution time by sub-tour limit, with memory, descending order. 127

6.23. Execution time by sub-tour limit for algorithm configurations. 128

6.24. Execution time by memory vigilance, ascending order. .. 133

6.25. Execution time by memory vigilance, descending order. 134

6.26. Memory size by memory vigilance, ascending order. ... 135

6.27. Memory size by memory vigilance, descending order. ... 136

6.28. Memory growth by memory vigilance, ascending order. 136

6.29. Memory growth by memory vigilance, descending order. 137

6.30. Memory hit rate by memory vigilance, ascending order. 137

6.31. Memory hit rate by memory vigilance, descending order. 138

6.32. Cost by memory vigilance for algorithm configurations. 138

6.33. Execution time by memory vigilance for algorithm configurations. 139

6.34. Costs by problem across all algorithm configurations, and optimality. 144

6.35. Execution time by problem, across all algorithm configurations. 145

6.36. Execution time by problem size and algorithm configuration. 145

6.37. Time and Cost comparison of TSP solution methods. .. 146

xii

LIST OF TABLES

Table Page

2.1. Generational descriptions of memetic algorithms. .. 10

4.1. A simple binary BNF grammar.. 21

4.2. Code listing for prototype node structure. ... 32

4.3. Code listing for tree node structure. ... 32

4.4. Trace process pseudo-code. ... 33

4.5: Weight update pseudo-code. .. 35

4.6. IRIS BNF grammar. ... 48

4.7. Confusion matrix for best-performing discretized Fuzzy-ART on IRIS

 dataset. Vigilance value is 0.96. ... 52

4.8. Confusion matrix for best-performing classical Fuzzy-ART on IRIS

 data-set. Vigilance value is 0.96. ... 52

4.9. Confusion matrix for best-performing Gram-ART on IRIS data-set. 52

4.10. Mushroom BNF grammar, non-terms, seed and terminals. 56

4.11. Mushroom BNF grammar production rules. .. 57

5.1. Analysis of variance comparing baseline GP optimizer and optimizer

 with automatic function definition and curriculum control. 86

5.2. Analysis of variance comparing baseline GP optimizer and meta-learning

 optimizer with selection, automatic function definition and curriculum control. 86

5.3. Analysis of variance comparing GP optimizer with only automatic function

definition, and meta-learning optimizer with selection, automatic function

 definition and curriculum control. .. 86

5.4. The PAC-MAN grammar. ... 88

5.5. Analysis of variance comparing baseline and memory configurations. 90

5.6. Analysis of variance comparing memory and meta-learning configurations. 91

xiii

5.7. Analysis of variance comparing baseline and meta-learning configurations. 91

6.1. Definition of complexity analysis parameters. .. 110

6.2. TSP instance descriptions. ... 113

6.3. Meta-TSP experimental parameter configurations. ... 115

6.4. TSP instances used for supervisory training. ... 116

6.5. Analysis of variance on effect of ART vigilance on cost for Meta-TSP

 without memory. .. 119

6.6. Analysis of variance on effect of ART Vigilance on cost for Meta-TSP with

 memory and ascending order. .. 119

6.7. Analysis of variance on effect of ART vigilance on cost for Meta-TSP with

 memory and descending order. .. 120

6.8. Analysis of variance on effect of ART Vigilance on execution time for

 Meta-TSP without memory. ... 124

6.9. Analysis of variance on effect of ART vigilance on execution time for

 Meta-TSP with memory and ascending order. ... 124

6.10. Analysis of variance on effect of ART vigilance on execution time for

 Meta-TSP with memory and descending order. ... 124

6.11. Analysis of variance on effect of sub-tour limit on cost for Meta-TSP

 without memory. .. 125

6.12. Analysis of variance on effect of sub-tour limit on cost for Meta-TSP

 with memory and ascending order. .. 126

6.13. Analysis of variance on effect of sub-tour limit on cost for Meta-TSP

 with memory and descending order. .. 126

6.14. Analysis of variance on effect of sub-tour limit on execution time for

 Meta-TSP without memory. ... 128

6.15. Analysis of variance on effect of sub-tour limit on execution time for

 Meta-TSP with memory and ascending order. ... 128

6.16. Analysis of Variance on effect of sub-tour limit on cost for Meta-TSP

 with memory and descending order. .. 129

xiv

6.17. Analysis of variance on effect of memory vigilance on cost for Meta-TSP

 with memory and ascending order. .. 132

6.18. Analysis of variance on effect of memory vigilance on cost for Meta-TSP

 with memory and descending order. .. 132

6.19. Analysis of variance on effect of memory vigilance on execution time for

 Meta-TSP with memory and ascending order. ... 134

6.20. Analysis of variance on effect of memory vigilance on execution time for

 Meta-TSP with memory and descending order. ... 135

6.21. Analysis of variance on effect of algorithm configuration on cost by

 test-bed problem. .. 140

6.22. Analysis of variance on effect of algorithm configuration on execution

 time by test-bed problem. ... 141

6.23. Optimality of mean costs by algorithm configuration. .. 142

6.24. Training statistics for supervised Meta-TSP configuration. 143

1. INTRODUCTION

Over the past several years many hundreds of papers have been published on the

modification and application of only a handful of core computational intelligence

techniques – namely dynamic programming, evolutionary algorithms, neural networks,

fuzzy logic, and data clustering methods. Algorithmically, there have been refinements

and crossovers in these categories, such as heuristic dynamic programming, particle

swarm optimization, evolutionary-trained fuzzy neural networks, and hybrid genetic

algorithms, resulting in significant but relatively modest quality and performance gains.

Beyond these modifications, the investigation of drastically different algorithm designs

has been relatively slow for, while the complexity of machine learning and optimization

problems has grown ever larger with the maturity of the internet, digital media, and the

proliferation of data sources in all aspects of human life.

Meanwhile, advancement in hardware technology has brought about affordable

and powerful computing platforms which are more easily accessible. However, it is clear

that increase in computational capacity cannot even come close to addressing the

challenges posed by the complexity of problems, many of which are typical of real-world

scenarios [1]. More advanced and novel computational paradigms must be championed,

particularly from the point of view of algorithm development. Early in the history of

modern computing, algorithms by and large were able to keep up with the demands of

increasing real-world problem complexity. To a certain extent, the algorithms which

typically belong to the category of conventional or exact enumerative procedures were

2

able to surpass the complexity of problems that were typical of what people were trying

to solve. Subsequently, as the complexity of problems continues to push the capability

limits of algorithms, it is evident that the complexity of problems being addressed

overwhelms the algorithms available. It can be envisaged that in time, the spread

between complexity of problems and algorithms will widen if computational intelligence

remains at status quo. There are clear signs that these issues are in the early stages of

being addressed. Research should be putting emphasis not just on learning per se, but

rather on issues pertaining to higher order learning – methods that not only solve a

current instance, but are able to handle problems across instances, to learn about solving

problems.

Computational intelligence to a certain extent manages to contain the gap between

algorithms and problems, but we are beginning to see the growth in problem sizes

outstrip computational resources and algorithms. Examples include large data-mining

projects such as internet search indexing, document understanding, and the ever-present

pursuit of intelligent machines. Modern day optimization techniques can rise to this

challenge by incorporating not just mechanisms for adaptation during the process of

solving an instance of a difficult problem, but rather automatic mechanisms for learning

spanning across instances of problems encountered during the course of long-term

optimization.

Many current methods utilize aspects of these mechanisms in order to increase

performance, but none utilize them all, and few incorporate these features in an automatic

way. A certain degree of similarity may be drawn when compared to case-based

reasoning (CBR), such perceived “experiential” trait similarity in the sense that both

3

encompass mechanisms to draw on “experience” from previously encountered problem

instances is superficial. Unlike CBR methods which rely on the need for explicit

examples and ranking procedures, optimization problems are usually not amenable to

such explicit case by case assessment to yield information that is potentially useful to a

search algorithm [2, 3].

In artificial neural networks (ANN’s), long-term optimization may be

incorporated through extended training, but this often requires the intervention of users,

and often this greatly affects the ANN’s generalization capabilities. Similarly,

evolutionary algorithms require parameter tuning, which has been automated, but often

these tunings are only valid for a specific class or instance of a problem. Simple

architectures of these algorithms and their limitations are further discussed in Section 2.

Emphasis should be placed on the automated construction of a body of

knowledge, more specifically memes and meta-memes that collectively offer capability

with a much broader problem-solving scope in order to deal with the class of problems

being addressed.

As part of a historical context, Wolpert and Macready formalized the “No Free

Lunch Theorem” in 1997, stated simply:

“Any two [non-repeating black-box search] algorithms are equivalent when their performance is averaged

across all possible problems.”

The No Free Lunch (NFL) Theorem was developed specifically for discrete

problems, constraints which few real-world problems satisfy. Additionally, Wolpert and

Macready made the observation that in order to reduce the average cost across a set of

problems and optimizers, one must methodically utilize prior or acquired information

about the matching of problems to procedures, given a priori knowledge gained from

4

experience [4]. The realizations brought by both the details and the mythology of the

NFL changed the research focus of the field of computational intelligence from the

design of individual algorithms to the design of architectures of algorithms and parameter

optimization. It is in this spirit that the development of memetic algorithms has been

motivated [5-14].

Taken alone, current methods tend to be overwhelmed by large datasets and suffer

from the curse of dimensionality. It is the central thesis of this document that a new class

of higher order learning algorithms is needed that can autonomously discern patterns in

data that exist on multiple temporal and spatial scales, and across multiple modes of

input. These new algorithms can be architectures utilizing existing methods as

components, but to design these architectures effectively, some design principles should

be explored.

Ultimately, the curse of complexity cannot be wholly avoided. As the size or

dimension of the problems increases, a greater amount of computation becomes

necessary to find high quality solutions. However, such computation need not be

completed at the exact time that a problem is presented. If a memory mechanism is

provided that can effectively store and retrieve previously used or generalized solutions,

then computation can be shifted into the past, greatly reducing the amount of computation

necessary to arrive at a high quality solution at the time of problem presentation.

One of the major drawbacks of evolutionary algorithms and computational

intelligence methods in general is that the solvers employed usually start from zero

information, or utilize random initial states, independent of how similar the problem

instance is to other instances the method has been applied to in the past. In effect, the

5

optimization methods typically do not incorporate any mechanisms to establish inter-

instance memory. Parameter recommendations and user-seeded known-good initial

evolutionary algorithm populations provide some inter-instance information, though this

knowledge is provided by the operator, and gained through human experience. This

random initialization property is useful for comparing different computational

intelligence methods and in some cases, particularly when computation time is not an

issue, is desirable as it allows the search to be more focused, thus leading to solutions that

would not otherwise have been found efficiently. It is also worth noting that many real-

world problem domains are composed of sub-problems that can be solved individually,

and combined (often in a non-trivial way) to provide a solution for the larger problem

[15, 16].

In some problem instances, such as large instances of the even parity problem, it

is nearly impossible to stochastically arrive at a complete solution without utilizing

generalized solutions for small instances of the problem [17]. It is simple to evolve a

function that performs even parity on 2 bits using only the logical functions AND, OR

and NOT as primitives, but extremely difficult to evolve a 10-bit even parity function

without any a priori information as the space of all possible solutions is immensely

larger, and even the best known solution is complex. By simply defining the general 2-

bit XOR function (the even parity computation for 2 bits), the optimization method has a

higher probability of combining instances of XOR to arrive at an n-bit even-parity

function, greatly accelerating the optimization process.

In playing the game of Go, humans start at the top analyzing strategy and the total

situation, solving a successive sequence of smaller, tractable problems to arrive at a

6

move. However, the learning process is bottom-up - a human player of Go first learns the

legal moves of every piece, and then combines those general move capabilities into

tactics, tactics into strategies and those strategies combine with the strategies of the

opposing player to form a high-level view of the game and players as a whole. At each

level, optimization and generalization are performed to pass information up and down the

play hierarchy. This natural progression is not reflected in the methods that we utilize to

computationally approach problems of this scale. The typical approach is combinatorial

optimization, where a sequence of low-level moves is statistically analyzed in order to

arrive at a plan of play. As a whole, this is a computationally intractable problem, and it

does not even come close to resembling the way humans interact with problems of this

type [18-22]. Additionally, the skills learned in Go may translate across several domains

as general problem solving skills. The ability to translate knowledge from one domain to

another implies the necessity of meta-learning or learning about how or what to learn – in

order to recognize similar problem features in disparate environments and scenarios.

7

2. MEMETIC COMPUTING

Both Darwinian evolution and memetics have been sources of inspiration for

classes of algorithms for problem-solving techniques with memetic algorithms being the

most prominent and direct manifestation of the inspiration. In recent years, there has been

a marked increase in research interests and activities in the field of Memetic Algorithms

(MA). The first generation of MA refers to hybrid algorithms, the combination of

population-based global search (often in the form of an evolutionary algorithm) with a

cultural evolutionary stage. The first generation of MA, though it encompasses

characteristics of cultural evolution (in the form of local refinement) in the search cycle,

may not qualify as a true evolving system according to Universal Darwinism, since all

the core principles of inheritance/memetic transmission, variation and selection are

missing [23]. This suggests why the term MA stirred up criticisms and controversies

among researchers when first introduced [24]. The typical design issues include i) how

often should individual learning be applied, ii) on which solutions should individual

learning be used, iii) how long should individual learning be run, iv) what maximum

computational budget to allocate for individual learning, and v) what individual learning

method or meme should be used for a particular problem, sub-problem or individual [25].

Multi-meme [26], hyper-heuristic [27] and meta-Lamarckian MA [5, 13] are

referred to as second generation MA exhibiting the principles of memetic transmission

and selection in their design [28]. In multi-meme MA, the memetic material is encoded as

part of the genotype. Subsequently, the decoded meme of each respective individual is

then used to perform a local refinement. The memetic material is then transmitted

8

through a simple inheritance mechanism from parent to offspring. On the other hand, in

hyper-heuristic and meta-Lamarckian MA, the pool of candidate memes considered will

compete, based on their past merits in generating local improvements through a reward

mechanism, deciding on which meme to be selected to proceed for future local

refinements. A meme having higher rewards will have greater chances of being replicated

or copied subsequently. For a review on second generation MA, i.e., MA considering

multiple individual learning methods within an evolutionary system, the reader is referred

to [13]. Co-evolution and self-generation MAs introduced in [29] and [30] are described

in [28] as 3rd generation MA where all three principles satisfying the definitions of a

basic evolving system have been considered. In contrast to 2nd generation MA which

assumes the pool of memes to be used is known a priori, a rule-based representation of

local search is co-adapted alongside candidate solutions within the evolutionary system,

thus capturing regular repeated features or patterns in the problem space.

From the three classes of MA outlined, memes can be seen as mechanisms that

capture the essence of knowledge in the form of procedures that affect the transition of

solutions during a search. The level of participation or activation of memes is typically

dictated by certain indicative performance metrics, the objective being to achieve a

healthy balance between local and global search. Memes instead of being performance-

driven should be extended to include capacity to evolve based on the snapshots of

problem instances. In the process of solving a repertoire of problem instances, memes

can culminate based on the recurrence of patterns or structures. From basic patterns or

structures, more complex higher level structures can arise. In this regard, a brain inspired

meta-learning memetic computational system, consisting of an optimizer, a memory, a

9

selection mechanism, and a generalization mechanism that conceptualizes memes not just

within the scope of a problem instance, but rather in a more generic contextual scope is

appropriate. Such traits which are lacking in the 3
rd

 generation MA can serve as the basis

of the 4
th

 generation class of MAs. The reader is referred to Table 2.1 for a summary of

generational description of MAs. The summary, although by no means exhaustive, should

serve as a useful guide on the classifications of the various traits of existing MA research.

The mammalian brain exhibits hierarchical self-similarity, where neurons, groups

of neurons, regions of the brain, and even whole lobes of the brain are connected laterally

and hierarchically. Biological neurons are particularly well suited to this architecture: a

single neuron serves as both a selection and learning mechanism. A neuron only fires

(passing a signal) when it receives significant input from one or more sources, and thus

serves as a correlation detector. Additionally, it learns by modifying the weights of its

inputs based on local information from firing rate, as well as global information from the

chemical environment. Neurons activate when they encounter patterns that have made

them fire before, and are able to adapt in delayed-reward situations due to global signals.

In laterally connected architectures, neuron groups can provide the function of

clustering, as active neurons suppress the activity of their neighbors to pass their

information down the processing chain, providing both selection and routing of

information. The effect of this selectivity is that biological neural architectures route a

spreading front of activation to different down-stream networks based on the similarity of

the features present in the pattern of activation to previously presented patterns.

10

Table 2.1. Generational descriptions of memetic algorithms.

Generation Characteristics Example systems

1
st

Global Search Paired with

Local Search.

i) A Canonical MA [24, 31]

ii) Adaptive global/local search [32]

iii) MA for Combinatorial Optimization

[33]

iv) Evolutionary Gradient search [34]

v) Large-Scale Quadratic Assignment

Problem [35]

vi) Evolutionary Lin-Kernighan for

Traveling Salesman Problem [36]

vii) Dynamic Optimization Problem [37]

and many others.

2
nd

Global Search with Multiple

Local Optimizers. Memetic

Information (Choice of

Optimizer) Passed to

Offspring. (Lamarckian

Evolution)

i) Hyper-heuristic MA [27, 38]

ii) Meta-Lamarckian MA [5]

iii) Multimeme MA [7]

iv) Adaptive Multi-Meme MA [13]

v) Agent-based Memetic Algorithm

[39, 40]

vi) Diffusion Memetic Algorithm [28]

and several others.

3
rd

Global Search with Multiple

Local Optimizers.

i) Co-evolution MA [30]

ii) Self-generation MA [29]

4
th

Mechanisms of Recognition,

Generalization,

Optimization, and Memory

are utilized.

Unknown

As the activation front passes each neuron, the synaptic weights are changed

based on local information – the firing rate of the neuron, the chemical environment, and

the features present in the signal that activated the neuron, slightly changing how an

individual neuron will respond at the next presentation of patterns [41].

Connected in loops, neurons provide short-term memory, process control and

create temporally-delayed clustering. Combining loops and lateral connections at several

levels of neuron groups (groups of neurons, groups of groups, etc) the neural architecture

11

is able to exhibit increasing levels of selection, memory, and control. This is exactly the

architecture that we see in the human cortex – a single cortical column contains recursion

and lateral inhibition, and these cortical columns are arranged in a similar way,

progressing in a fractal learning architecture up to the level of lobes, where sections of

the brain are physically separated [42]. This fractal architecture is similar to the Nth-

order meta-learning architecture described later in Section 4.

The brain inspired meta-learning memetic computational system is thus regarded

here as a 4th generation memetic computational system. The novelty of the proposed

meta-learning memetic system is highlighted in the following list.

i. In contrast to the 2nd generation memetic algorithms, there is no need to pre-

define a pool of memes that will be used to refine the search. Instead memes are

learned automatically - they are generalized information that passed between

problem instances.

ii. Since it satisfies all the three basic principles of an evolving system, it also

qualifies as a 3
rd

 generation memetic computational system. Unlike simple rule-

based representation of meme used in co-evolution and self-generation MAs, the

meta-learning memetic computational system models the human brain, encoding

each meme as hierarchies of cortical neurons [42]. With a self-organizing cortical

architecture, meaningful information from recurring real-world patterns can be

captured automatically and expressed in hierarchical nested relationships. A

human brain stimulated by the recurrence of patterns, builds bidirectional

hierarchical structures upward. The structure starts from the sensory neurons,

12

through levels of cortical nodes and back down towards muscle activating

neurons.

iii. There exists a memory component to store the system’s generalized patterns or

structures of previously encountered problems - these elements could be thought

of as memes.

iv. Selection mechanisms are provided to perform association between problem

features and previously generalized patterns that are likely to yield high-quality

results.

v. Meta-learning about the characteristics of the problem is introduced to construct

meta-memes which are stored in the selection mechanism, allowing higher-order

learning to occur automatically.

vi. Memes and meta-memes in computing are conceptualized for higher-order

learning as opposed to the typical definition of local search method used in all the

works on MAs.

A genetic algorithm learns by passing schema (the genetic information of

individuals) from generation to generation. Through natural selection and reproduction,

useful schemata proliferate and are refined through genetic operators. The central

concept of learning is that of the schema – a unit of information that is developed through

a learning process [43-45]. The typical ‘memetic algorithm’ uses an additional

mechanism to modify schemata during an individual’s ‘lifetime,’ taken as the period of

evaluation from the point of view of a genetic algorithm, and that refinement is able to be

passed on to an individual’s descendants. The concept of schemata being passable just as

13

behaviors or thoughts are passed on is what this document defines as memes – a meme

being a unit of cultural information [5, 13, 46, 47].

Some parallels may be drawn with Learning Classifier Systems (LCS) where

schemata are evolved explicitly, and individuals compete for territory in schema-space

rather than explicitly with each other for survival – thus a population is evolved as a

whole, rather than individuals. In this context, individuals represent a schema, with the

population as a whole becoming a meme, storing the valuable accumulated experience

over the evolutionary process.

Memes can be thought of as an extension of schemata – schemata that are

modified and passed on over a learning process. However, this distinction is a matter of

scale. In a learning method, the current content of the representation could be called a

schema, but when that information is passed between methods, it is more appropriately

regarded as a meme.

This is analogous to the sociological definition of a meme [48]. In this form, a

meme may contain certain food preparation practices, how to build a home or which side

of the road to drive on. Within the individuals of a generation, they are relatively fixed,

but they are the result of a great deal of optimization, capturing the adaptations resulting

from the history of a society. These cultural memes are passed from generation to

generation of the population, being slightly refined at each step – new ingredients are

added to the cooking methods, new building materials influence construction, traffic rules

change, etc. The mechanism that allows this transformation is that of generalization [49-

51]. To communicate an internal schema from one individual to another, it must be

generalized into a common representation – that of language in the case of human

14

society. The specifics of the schema are of no great importance, as they would mean very

little to an individual other than the originator due to the inherent differences between

individuals. For instance, a description of the precise movements necessary to create a

salad, such as the technique used to slice tomatoes and wash lettuce, is less important

than the ingredients and general process of preparing the salad. The salad recipe is a

meme, a generalized representation of the salad, but the recipe alone is insufficient to

produce the salad. The salad recipe is expressed only when it is put through the process

of preparation, of acquiring and preparing the individual ingredients, and combining them

according to the salad meme.

A meme may be thought of as generalized schema. Schemata are refined for an

instance; memes are generalized to the extent of being transmissible between problem

instances. To resolve the potential confusion that may arise, “Memetic Computation” is

loosely defined as a paradigm of computational problem-solving that encompasses the

construction of a comprehensive set of memes thus extending the capability of an

optimizer to quickly derive a solution to a specific problem by refining existing general

solutions, rather than needing to rediscover solutions in every instance.

15

3. A FRAMEWORK FOR HIGHER ORDER LEARNING

A meta-learning system should be composed of four primary components – an

optimizer, a memory, a selection mechanism, and a generalization mechanism, shown in

Figure 3.1. The selection mechanism takes the features of a given problem as input, and

performs a mapping to solutions in the memory that have an expected high quality. The

memory stores previous or generalized solutions encountered by the system, and passes

selected solution(s) on to the optimizer. The optimizer performs specialization and

modification of solutions to optimize a given specific problem instance, while the

generalization mechanism compares the resultant solution with existing solutions in

memory, and either adds a new solution or modifies an existing solution. In memetic

computation terms, the optimizer generates schema or modifies memes into schema, and

then the generalization mechanism converts the schema back into memes for storage in

memory. The selection mechanism provides a mapping on memes, providing recognition

from a problem specification to a likely useful general solution, effectively utilizing

internally represented meta-memes.

With these components, the architecture should be capable of exploiting

information gained in previous problem sessions towards the solution of problems of

increasing complexity. Integrating a cross-instance memory and a selection mechanism

with an optimization method allows the recognition of a situation and the selection of

previously utilized schema as likely high quality solution candidates. The optimization

process then combines and refines these solution candidates to provide a good solution

much faster than if the method had only random initial solutions. Once the solution is

16

deployed, the selection method is trained to associate the situation (stimulus) with the

solution (behavior) utilizing the fitness (reward) of the solution.

Figure 3.1. Meta-learning architecture.

The meta-learning process is itself a learning process, and thus could be

augmented with increasingly higher level memory and selection methods, to allow

complex, high-order solutions to be found. A sort of fractal meta-learning architecture of

this type is expected to work well across a wide variety of real-world problems.

The sequence of learning sessions matters greatly to the expression of complex

behavior. By starting with simple problem instances and presenting successively more

complex scenarios, the problem is decomposed, allowing solutions from sub-problems to

be exploited, increasing the likelihood that higher level solutions will occur.

Additionally, by training these simple solution components, a wider variety of high-level

solutions can be trained more rapidly. For example, when training a dog, teaching him to

‘sit’ decreases the amount of training necessary for both ‘stay’ and ‘beg’ behaviors. This

is analogous to the automatic construction of a ‘Society of Mind’ as described by [52].

17

When constructing optimization architectures, an issue of particular relevance is

that of representation – how the schemata are stored. In genetic algorithms schemata are

stored as strings, while in neural networks schemata are implicitly represented as

interconnection weights, clustering methods store templates for categories, etc. How

these schemata are expressed (and thereby their meaning) is dependent on the expression

structure. In genetic algorithms a string is decoded into a trial problem solution, while

the weights in neural networks are utilized through weighted summation and passing

through a transfer function. This division of representation prevents the simple

utilization of schema across solution methods. To get disparate methods to work

together, great care must be taken to modify all methods to utilize the same schema,

which has been the subject of a great deal of research [5, 53-61].

 First order learning methods consist of a single algorithm that modifies schema to

optimize a system. Individually, all classical machine learning methods fall into this

category. Meta-learning or second-order methods learn about the process of learning,

and modify the learning method, which in turn modifies schema. A simple illustration of

a meta-learning architecture is presented in Figure 3.1. In this figure, schemata are

represented as “procedures”, which are stored in memory. A problem is presented to the

architecture, and a selection mechanism chooses likely valuable schema from memory,

which are then modified to the particular problem instance. High-value schema are then

generalized and stored, the selection mechanism then learns an association between

characteristics of the problem instance and schema that yielded positive results.

These second order methods should be able to be combined with other methods or

layers to produce third-order methods and so on to order N, as illustrated in Figure 3.2.

18

To produce higher order methods, information gained in one problem instance should be

utilized to provide a partial solution to another similar problem instance allowing the

system as a whole to take advantage of previous learning episodes.

Figure 3.2. Meta-meta learning.

19

4. GRAMMATICAL ADAPTIVE RESONANCE THEORY

A new Adaptive Resonance Theory variant is presented that is capable of

clustering variable dimension semantic inputs by creating templates that store a non-

parametric distribution over the symbols and structure of a given grammar. Originally

created as an automatic function definition mechanism for Genetic Programming

architectures, the Gram-ART method has many other useful applications and properties.

The variable cluster geometry of Gram-ART is demonstrated on a 2D clustering task.

Gram-ART performance is shown to be improved compared to that of Fuzzy-ART and

K-means on the benchmark IRIS and mushroom data-sets. The classification properties

of Gram-ART are explored using the UNIX Users identification problem. Gram-ART

demonstrates superior performance on all of these benchmarks.

The Adaptive Resonance Theory (ART) unsupervised learning method has long

been a state of the art clustering tool due to its low run-time complexity and ability to

scale the number of clusters that represent a data-set via a single parameter. Additionally,

the seminal ART1 architecture [62] has been the subject of many research modifications,

resulting in the development of Fuzzy-ART [63], Gaussian ART [64], Category Theory

ART [65], and numerous others.

Genetic Programming (GP) is a rapidly growing field with increasingly valuable

application to a number of important areas [66]. While this evolutionary algorithm is able

to efficiently generate solutions to many problems which significantly outpace those

devised by human experts, there are issues of computational cost to be addressed. In

particular, this document investigates a class of GP's which tend to produce function trees

20

of such magnitude that the approach is rendered less effective in a very short order. The

Gram-ART clustering algorithm is introduced to intelligently and dynamically adjust the

size of the GP function tree in a way to satisfy the dual criteria of efficacy and

computability. Designed to operate within the context of a Backus Naur Form (BNF)

grammar, Gram-ART is capable of clustering variable-dimension inputs. The algorithm is

based on the neural cognitive model known as Adaptive Resonance Theory, and it is the

first such ART-based architecture to address variable-dimension symbolic inputs.

4.1. GENETIC PROGRAMMING

In GP, the genome of an individual is represented as a tree structure, where

operations are applied at branches, leaves are constants and problem parameters [17, 67].

One advantage of GP is that the results can be easily interpreted by humans and formally

verified, a quality that is not present in many other computational intelligence methods

[50].

There has been some development of methods to generalize function blocks

(branches in an individual’s genome) that appear similarly and usefully across individuals

and across generations, making those blocks available as fundamental components in the

next generation of programs [17, 44, 66-69]. In this way, a library of functions are

generated and customized in a meta-evolutionary way. This modification leads to greatly

increased performance and reuse of structures allowing the algorithm to find solutions

that it would have very little chance of finding otherwise. Additionally, by creating

function blocks and removing parts of an individual’s genome from active evolutionary

modification, the probability of high-level architectural changes increases, as the genome

is effectively shortened, and changes are only allowed on parts of the genome that have a

21

higher-level effect. In this way the evolutionary process starts by building and stabilizing

low-level functionality, which grows to higher-level functions that exploit it. The result is

a progressive, fitness-driven increase in program complexity that massively accelerates

how well GP performs both in terms of quality and speed.

To simplify the dynamic function definition, a BNF grammatical definition is

used to specify the set of all functions, variables, and their structural relationships. The

BNF grammar is a way of expressing a language in the form of production rules. A BNF

grammar consists of the tuple {N,T,P,S}, where N is the set of non-terminals such as

<expr>, <op>, <preop>, corresponding to expressions, binary operators and unary

operators, respectively. T is the set of terminals, such as operation symbols AND, OR and

NOT. P is the set of production rules that map from N to T, and S is a seed symbol which

is a member of N. An example of a simple binary BNF grammar is shown in Table 4.1.

Table 4.1. A simple binary BNF grammar.

Using this encoding style, grammars of arbitrary and dynamic complexity can be

implemented, including the grammars of compilable languages and arbitrary functions.

Note that the grammar does not specify the values that X and Y may take, nor does it

N = {expr, op, pre_op, var}

T = {AND, OR, NOT, X, Y}

S = <expr>

P can be represented as:

 1. <expr> ::= <expr> <op> <expr> |

 <preop> <expr> |

 <var>

 2. <op> ::= AND | OR

 3. <pre_op> ::= NOT

 4. <var> ::= X | Y

22

describe the conditions necessary to satisfy the meanings of AND, OR and NOT. The

BNF structure merely describes the structure of the grammar, and how symbols relate to

one another.

A key aspect of the GP process is defining the functions produced through the

evolutionary process. Koza’s early attempts at function definition utilized a rigid

structure where the number of functions and arguments are fixed [70]. This limits the

flexibility of the defined function and limits the complexity of evolved programs. Later

attempts utilized the differential fitness of the population to determine when functions

should be created. This leads to a large number of possibly similar functions, with any

given function having a small chance of being selected.

To automatically generalize useful functions, it is proposed that a clustering

method be utilized with differential fitness selection. The parameters of the clustering

method are tuned to control the number and coarseness of functions generated, providing

a simple mechanism for automatic function definition. As categories are generated on-

line, the templates from each category are added to the grammar as new functions, and

the GP process can then take advantage of these new elements.

For this purpose, a new clustering algorithm based on Adaptive Resonance

Theory is developed that is able to utilize a variable-dimensionality representation to

encode categories against a specified grammar. Currently no Adaptive Resonance Theory

based - clustering method exists that is able to handle symbolic trees or variable-length

representations. This new algorithm is called Grammatical Adaptive Resonance Theory,

or Gram-ART.

23

4.2. ADAPTIVE RESONANCE THEORY

Adaptive Resonance Theory (ART) was developed by Carpenter and Grossberg

as a solution to the plasticity and stability dilemma, i.e., how adaptable (plastic) should a

learning system be so that it does not suffer from catastrophic forgetting of previously-

learned rules (stability) [62, 63, 71]. ART can learn arbitrary input patterns in a stable,

fast, and self-organizing way, thus overcoming the effect of learning instability that

plagues many other competitive networks. ART is not, as is popularly imagined, a neural

network architecture. It is a learning theory hypothesizing that resonance in neural

circuits can trigger fast learning [72]. ART is distinguished by its use of resonance as a

learning mechanism.

Adaptive Resonance Theory exhibits theoretically rigorous properties desired by

neuroscientists which solved some of the major difficulties faced by modelers in the field.

Chief among these properties is stability under incremental learning. In fact, it is this

property which translates well to the computational domain and gives the ART1

clustering algorithm, the flavor of ART most faithful to the underlying differential

Equation model, its high status among unsupervised learning algorithm researchers. At its

heart, the ART1 algorithm relies on calculating a fitness level between an input and

available categories.

What fundamentally differentiates ART1 from similar distance-based clustering

algorithms is a second fitness calculation whereby a given category can reject the

inclusion of an input if the input does not meet the category’s standards as governed by a

single global parameter. Cognitively, this models the brain’s generation and storage of

expectations in response to neuronal stimulation. The initial fitness, measuring the degree

to which each input fits each of the established categories, is considered a short-term

24

memory trace which excites a top-down expectation from long-term memory.

Computationally, this second fitness calculation acts to tune the number of categories,

and it may force the creation of new categories where a k-means styled algorithm would

not, thus exhibiting stronger, more nuanced, classification potential. The ART1 algorithm

has enjoyed great popularity in a number of practical application areas of engineering

interest. Its chief drawback is the requirement that input vectors be binary. The ART2

algorithm was first proposed to address this restriction, but in practice today it is the

Fuzzy-ART modification of ART1 which powers most of the new ART research and

applications.

Fuzzy-ART admits input vectors with elements in the range [0,1]. Typically a sort

of preprocessing called complement coding is applied to the input vectors as well as any

normalization required, mapping the data to the specified range. The Fuzzy-ART’s core

fitness Equations take a different form than those of ART1, leveraging the mechanics of

fuzzy logic to accommodate analogue data vectors. Researchers have concocted a wide

variety of ART-based architectures by modifying the fitness Equations to specialize them

for a given problem domain.

For example, Gaussian ARTMAP uses the normal distribution to partition

categories, with the relevant fitness Equations incorporating the Gaussian kernel. This

parametric statistical approach to ART was the first in what has become a rich field of

study. Other parametric methods incorporate different probability distributions or allow

for alternative preprocessing schemes based on statistics. The Gram-ART architecture

presented in this paper extends this body of knowledge by exploring non-parametric

statistical methods for category determination.

25

Parametric statistics assume much about the underlying distribution of the inputs

to the system. In running a standard t-test, for example, it is required that the data be

generated by Gaussians or have a sufficient quantity of data to ensure the sampling

distribution is normal. It is often the case in practice that such normality assumptions are

invalid. Gram-ART adds to the existing probabilistic ART architectures in that it makes

no such assumptions regarding the distribution of inputs (as compared to, for example,

Gaussian ARTMAP.) Instead, it relies on non-parametric, or distribution-free, statistical

models of the inputs when making its classifications. This allows Gram-ART to

effectively handle data from small samples or about whose structure nothing is known.

The interested reader is directed to [73] for further details regarding non-parametric

statistical analysis.

Other specializations of ART include ARTMAP-IC [74] which allows for input

data to be inconsistently labeled and is shown to work well on medical databases,

Ellipsoidal ARTMAP [75] which calculates elliptical category regions and produces

superior results to methods based on hyper-rectangles in a number of problem domains,

and a version of ART which uses category theory to better model the storage and

organization of internal knowledge [65]. Overall, Adaptive Resonance Theory enjoys

much attention by those studying computational learning for both scientific and

engineering purposes.

Fuzzy-ART incorporates fuzzy set theory into ART and extends the ART family

by being capable of learning stable recognition clusters in response to both binary and

real-valued input patterns with either fast or slow learning.

26

Layers F1 and F2 are connected via adaptive weights W. The orienting subsystem

is controlled by the vigilance parameter ρ. The basic FA architecture consists of two-

layer nodes or neurons, the feature representation field F1, and the category

representation field F2, as shown in Figure 4.1. The neurons in layer F1 are activated by

the input pattern, while the prototypes of the formed clusters, represented by hyper-

rectangles, are stored in layer F2. The neurons in layer F2 that are already being used as

representations of input patterns are said to be committed. Correspondingly, the

uncommitted neuron encodes no input patterns. The two layers are connected via

adaptive weights, ��, emanating from node j in layer F2. After layer F2 is activated

according to the winner-take-all competition between a certain number of committed

neurons and one uncommitted neuron, an expectation is reflected in layer F1 and

compared with the input pattern. The orienting subsystem with the pre-specified vigilance

parameter � �0 � � � 1
 determines whether the expectation and the input pattern are

closely matched. If the match meets the vigilance criterion, learning occurs and the

weights are updated. This state is called resonance, which suggests the name of ART. On

the other hand, if the vigilance criterion is not met, a reset signal is sent back to layer F2

to disable the current winning neuron for the entire duration of the presentation of this

input pattern, and a new competition is performed among the remaining neurons. This

new expectation is then projected into layer F1, and this process repeats until the

vigilance criterion is met. In the case where an uncommitted neuron is selected for

coding, a new uncommitted neuron is created to represent a potential new cluster.

27

Figure 4.1. Topological structure of Fuzzy-ART.

Fuzzy-ART exhibits fast, stable, and transparent learning and atypical pattern

detection. The Fuzzy-ART method has the benefit of being a highly efficient clustering

method with a linear run-time complexity. Algorithmically, there are two steps to ART:

category choice and vigilance test. Let x be the input, �� the weights associated with

category j and � be the vigilance. In category choice, the degree of match is calculated in

Equation 1 for each category j. The vigilance test is calculated in Equation 2. The

algorithm cycles between category choice and the vigilance test until resonance occurs

and the winning weight is updated according to Equation 3. Fast learning occurs when

�
 1.

���

 |����||��| (1)

|����||�| � ρ (2)

28

�����
�
 �������
� ��� � �1 � �
�����
�
 (3)

4.3. GRAM-ART ALGORITHM

The Gram-ART algorithm is a specialization of ART designed to handle variable-

length input patterns represented in a tree structure based on a BNF grammar. Let x be a

tree under the grammar. Let �� be a generalized tree corresponding to category j. Note

here that the category representations in Gram-ART are themselves trees, thus abstracting

the hyper-rectangular prototype forms of earlier manifestations of ART. Each node in the

generalized tree has an array representing the distribution of possible symbols at that

node. Here, r represents the number of nodes in a tree. Finally, let � represent the

vigilance level.

To implement ART for trees, a measure of magnitude is necessary for inputs and

weights. Since the size of the elements of these distributions do not correspond in a

meaningful way to any sense of magnitude, the measure is defined to be simply the

number of nodes present in each tree. That is, the tree-norm operator ||.|| is defined as

||y||= (the count of nodes in y). So, ||x|| = n and ||�� || = r.

Initially, there are no category nodes committed. The first input vector is used to

update, so no initial values of the weights need to be given. It is necessary to define a

notion of overlap or intersection between the input tree and the category templates. It is

not possible to use either the normal intersection operator or the fuzzy-AND operator

29

because x and �� are not guaranteed to be of the same dimensionality. Therefore, the

trace of x in ��, denoted by |� ��| , is defined in Equation 4.

!� ��!
"�#,%&�
'
#()

 (4)

The trace is the sum of the values stored in the weight corresponding to the

symbols in a given input x. This has the effect of comparing root-aligned trees.

A Gram-ART tree is an ordered pair (N,R) where is N a set of nodes and R is a

binary relation describing the structure of the tree. If x and y are nodes, then xRy = 0 if y

is not a successor node of x. If xRy = n, for n>0, then this means that x is the successor

node of y. The Gram-ART trees, unlike some graph theory trees, have an ordered

succession.

Let *
 �+,, -,
 and .
 �+/ , -/
 be Gram-ART trees. Then their intersection

* .
 �+0, -0
 is defined as follows. The root node r is the same for all non-empty

trees and therefore it is in N’. The rest of N’ is built iteratively starting at the root.

Consider all � 1 +, and 2 1 +/ such that 3-�
 3-2. These correspond to the same

node and therefore this node is in the intersection N’. This process is repeated for each of

these nodes until all the nodes in A and B have been so compared. The resulting

intersection tree will then contain the nodes corresponding to the structural overlap

between A and B.

An example is given in Figure 4.2. Given two trees, one for the function “X AND

Y” and another for the function “NOT X.”

30

Figure 4.2. Example function trees for “X AND Y” on the left, and “NOT X” on the

right.

To store the combination of the two, a type of prototype tree is created that holds

a distribution over the symbols at each node, and has a variable number of children. This

prototype tree is not bound by the rules of the BNF grammar, as each node is a

superposition of nodes at a position that have been combined to construct the prototype.

An example prototype node for the example binary grammar is shown in Figure 4.3. Note

that the distribution for each of the symbols is initially zero. Combining the two trees in

Figure 4.2 would result in the proto-tree shown in Figure 4.4.

Figure 4.3. Prototype tree node.

31

Figure 4.4. Prototype tree resulting from the combination of “X AND Y” and “NOT X”

trees.

Note that the distribution at the root node is divided equally between the “AND”

and “NOT” symbols. Also note that each of the child nodes has only one non-zero entry

in the distribution - “X” and “Y” respectively. In the case of “X”, both trees have this

symbol as the first child, updating twice, while “Y” is the child of only the “AND” tree, it

is updated once.

Two node structures ProtoNode and TreeNode are outlined in Table 4.2 and Table

4.3. To compare and update trees, recursive functions that traverse both trees

synchronously are outlined in Table 4.4 and Table 4.5. The ProtoNode structure is used

to construct tree prototypes, which are the templates of Gram-ART. The ProtoNode holds

a distribution over all symbols in a given grammar (Line 2) and the update counters for

each symbol (Line 3), as well as an array of child-nodes (Line 4). The TreeNode

structure, outlined in Table 4.3, holds a single symbol (Line 2) and an array of child-

nodes (Line 3).

32

Table 4.2. Code listing for prototype node structure.

Table 4.3. Code listing for tree node structure.

To find the trace of an input tree on a template tree, the trace process recursively

descends the two trees, retrieving the distribution sample at each node that corresponds to

the symbol in the current node. These distribution samples are summed over all

corresponding nodes to complete the trace.

The Trace function, outlined in Table 4.4, performs the recursive process of

comparing a tree with a prototype. The function first accumulates the probability of a

tree’s symbols occurring in the prototype (Line 2), then increments a counter that tracks

the number of nodes that the trees have in common (Line 3). The function then recurses

on each of the child nodes to accumulate statistics for the remainder of the tree.

1 struct TreeNode

2 Terminal t;

3 TreeNode children[];

4 end struct;

1 struct ProtoNode

2 double dist[];

3 int N[];

4 ProtoNode protochildren[];

5 end struct;

33

Table 4.4. Trace process pseudo-code.

4.3.1. Category Match. The first step in ART is to calculate the strength of the

activations to the category nodes. We define this activation strength, or choice value, for

category j as Equation 5.

���

 |� ��|||��|| (5)

This quantity measures to what extent the input pattern x activates the category

weight entries of ��. If the elements of x correspond to all 1’s in the rows of �� then this

is a perfect match with activation equal to 1. If the category �� is nowhere close to the

input x then the corresponding weight entries will be small so that the match approaches

0. Note that the template might contain more or fewer nodes than the input and this

measure penalizes such mismatches. In the numerator, if the weight value does not exist

to correspond to the input then the value does not get summed. In the denominator, the

size of the weight is counted, lowering the resulting value if the trace has fewer entries.

1 function Trace(TreeNode &A,

 ProtoNode &B,

 double &sum,

 double &size)

2 sum = sum + B.dist[A.t];

3 size = size + 1;

4 For each i in A.children[],

5 CompareNode(A.children[i],

 B.protochildren[i],

 sum,

 size);

6 end function;

34

4.3.2. Vigilance Test. Once 45 has been calculated for all categories, this vector

is sorted and the highest category is checked for vigilance. The purpose of the vigilance

test is to compare how accurately the chosen category can predict the value of the input x,

so the following condition in Equation 6 is checked.

|� ��|||�|| � ρ (6)

If this condition is satisfied, then resonance is said to occur and the weight update

process is initiated. Otherwise, value �� is reset and proceeds with the next highest

category match. If none of the categories pass the vigilance test, then a new blank

uncommitted node is assigned to the current input, and the input is used to initialize the

new node.

4.3.3. Weight Update. Element update is a weighted sum of the frequency with

which a given option has been presented and is calculated using Equation 7, where N is

the number of updates at a node prior to the latest one and 65 is a characteristic function

given by Equation 8.

�#�
 �#� 7 + � 8�+ � 1 (7)

8�
 9 1 :; �#
 � 0 <=>?3�:@?A (8)

35

The recursive process for updating �� is described in Table 4.5. The function first

updates the probability of a tree symbol occurring in that node location using Equation 7

(Line 2), then it increments the number of updates for that symbol (Line 3). The function

then calls itself on each of the child nodes, recursively updating the rest of the tree.

Table 4.5. Weight update pseudo-code.

An example of the effect of template updating process is illustrated in Figures 4.5-

4.8. Three updates are applied to a template with two nodes, labeled X and Y. Each node

holds a distribution over 5 symbols. The updates proceed with input pairs{X3, Y2}, {X4,

Y4}, {X3, Y3}. The changes in the template distributions are shown by the shaded bars

in Figure 4.5.

To further visualize template shapes, a two-dimensional activation plot is

generated by calculating the category match for all possible combinations of symbols,

and plotting the resulting values in a gray-scale grid, where each cell of the grid

corresponds to one combination of symbols. In this visualization scheme, lighter color

represents a higher activation, for example, white is fully activated, and black is zero

activation.

1 function UpdateNode(TreeNode &A,

 ProtoNode &B)

2 B.dist[A.t] = NewWeight(B.dist, B.N);

3 B.N[A.t] = B.N + 1;

4 For each i in A.children[],

5 UpdateNode(A, B);

6 end function

36

Figures 4.6, 4.7, and 4.8 show the changes in activation patterns resulting from

these updates, where brighter areas correspond to higher activation. These activation

maps illustrate the effective cluster shapes. Note that the clusters have no strict geometry,

as they are a non-parametric distribution over symbols.

Figure 4.5. Template distribution changes across symbol updates for two nodes, “X” and

“Y” on left and right, respectively, each with 5 possible symbols.

The first update {X3, Y2}, shown in black, initializes the distribution for the

given symbols. The second update {X4, Y4}, shown in light gray, divides the distribution

between X3, X4 and Y2, Y4 in the X and Y nodes respectively. The third update

{X3,Y3}, shown in dark gray, increases the distribution at X3 due to the recurrence of

the X3 symbol, also deceasing the distribution at X4. In the Y node, the distribution is

again split between Y2, Y3, and Y4, as all of these symbols are equally likely to occur at

this node, given the history of these three updates.

37

Figure 4.6. Activation plot for a two-node template after initial update of symbol pair

{X3, Y2}. Lighter areas indicate locations of higher activation.

Figure 4.7. Activation plot of two-node template after update of symbol pairs {X3, Y2},

and {X4, Y4}.

38

Figure 4.8. Activation plot of two-node template after updates of {X3, Y2}, {X4, Y4},

{X3, Y3}.

4.4. GRAM-ART PROPERTIES

The early papers on ART [76] contain analysis and proofs of various convergence

and stability properties. These proofs focus on the dynamical system approach to

understanding the network architectures; importantly, they do not reference the later

algorithms designed to translate the theory into a computational tool for engineering

applications. While it is true that some results, such as bounds on the sizes of category

recognition regions, can derive from the algorithms of systems such as Fuzzy ART [63],

the core properties of ART reveal themselves most readily when the system is formulated

as differential Equations.

While much important research has been done in the areas of category region

analysis for traditional geometric-cluster ART systems, the approach to analyze

probabilistic ART algorithms, of which Gram-ART is one, necessarily must proceed

39

along a different axis. For example, in [77] it is shown that all Fuzzy ART templates are

distinct and bounds are given on template size and the intersection of two templates given

various conditions. In [78] a detailed analysis of cluster geometry is included for the

purposes of determining when various input patterns have been learned. These results aid

in the tuning of the system. Finally, [79] introduces new category structures based on the

steps in the Fuzzy ART algorithm. These new regions are tied directly to the geometry of

the category templates themselves, and the useful results necessitate the existence of such

structure. While all these advances contribute greatly to the state-of-the-art in ART, they

do not necessarily translate to probabilistic ART systems such as Gaussian ARTMAP and

Gram-ART.

In Gaussian ARTMAP the templates are represented by the parameters for

multidimensional Gaussian distributions—means, standard deviations, and counts. This

probabilistic system is able to better handle noisy data without experiencing category

proliferation. By moving beyond the limitations of a fixed geometry for the data clusters,

the Gaussian ARTMAP system is capable of capturing data which would take several

hyper-rectangles to cover. In particular, Gaussian ARTMAP is adept at clustering data

with independent variance along each dimension. Where Gaussian ARTMAP requires

more clusters is in the face of co-varying data. In these cases multiple Gaussian

distributions are required to cover the data set, illustrated in Figure 4.9 and Figure 4.10.

Gram-ART, due to its non-parametric nature, does not share in this weakness for

co-varying distributions [80]. Gram-ART requires more data to represent the category

template than does Gaussian ARTMAP (which relies on the parameters of the Gaussian

distribution), but the trade-off is that it is not limited by its own parameterization to

40

distributions satisfying certain constraints. Independent variations or co-variations are

handled the same in Gram-ART, as its probability distribution category model can adapt

to whatever structure the input set may present (Figure 4.11 and Figure 4.12). Note that

Gaussian distributions cannot efficiently match co-varying data with only one

distribution, as only the parameters µ and δ are modified. There is no analogue to

rotation. Note that the match has much lower error, and this error is only tied to training

samples and number of discrete columns used for representation.

Whereas Gram-ART may be able to represent a data-set using fewer clusters, the

overall storage requirements of Gram-ART may be higher than that of other clustering

methods. Additionally, discrete non-parametric templates are well-suited to symbolic

representation, a property that very few clustering methods are able to handle naturally.

 (a) (b)

Figure 4.9. 2D data with variance (a) and covariance (b).

41

(a) (b)

Figure 4.10. Gaussian best match to 2D varying (a) and co-varying data (b).

Figure 4.11. An example input and the best matching Gaussian distribution. Note the

large differences between the input (solid line) and the Gaussian (dashed line).

Figure 4.12. A non-parametric match to an example input.

42

4.4.1. Vigilance and Template Size. The Gram-ART system is constructed such

that the degree of match decreases as the size difference between an input and a template

increases. It is clear by examining the Gram-ART category match and vigilance match

equations that there exists a maximum likelihood of update when two trees are the same

size, independent of the values of the symbols that each tree holds.

Additionally, the interaction between the size of an input and the vigilance test

produces a bound on the values that the vigilance value can take such that templates of

sizes equal to the size of the input are able to be updated. For example, a tree with 1 node

will never be updated after its initial creation, except by an identical input, so that the

template can never change. For vigilance values above 0, the trace of an input on a

template is either 1 or 0. A 1 corresponds to a perfect match, and the distribution is not

changed. A 0 results from no match, and will not pass the vigilance test - again the

template does not change. For a tree with 2 nodes, there are four possible match cases

resulting in 3 possible match values, one case producing 0, 2 cases producing 0.5 and 1

case producing 1. Again, only the 0.5 match cases result in a change in weights, so

vigilance has to be less than or equal to 0.5 for a 2-node tree to change. Similarly, a 3-

node tree, 1 match in 3 nodes (0.33) produces a change in the template, as well as 2 in 3

(0.66...), so 0.66 is the max vigilance threshold.

These are the largest values the vigilance threshold can take before templates with

certain numbers of nodes are never updated after they are initially created. Equations 9

and 10 describe the bounds that the vigilance value must take such that a template of a

given non-zero size n may be updated.

43

�BC%
 D � 1D (9)

�B#�
 1D (10)

4.4.2. Template Drift. Template drift is the phenomenon that occurs when a

given category template is updated sufficiently that an input that was initially assigned to

the category is no longer represented by the category template. Given the Gram-ART

weight update Equation, holding the maximum change in weight for a single node it is

trivial to derive Equation 11.

∆�BC%#�
 1+ � 1 (11)

It is clear to see from Equations 7, 8 and 11 that the Gram-ART algorithm is

inherently an infinite window updating algorithm, and thus given infinite updates to a

template, any template could be shaped to any value. This is a problem for any ART

variant and is typically approached by repeated presentations of the same training set

until the system reaches a stable state. In Gram-ART, the learning rate is implicitly

controlled by the number of updates per node, and after the first update to a node, the

maximum change in a weight is 0.5 or less, providing rapid convergence and increasing

template stability.

44

4.4.3. Computational Complexity. Due to the excellent on-line learning

properties of ART variants, their computational complexity is F�G
.
As mentioned previously in the discussion on template drift, ART-based

algorithms typically require several passes through a data set before templates stabilize,

and Gram-ART is no exception. However, most ART-based methods utilize a fixed

input size, where Gram-ART can handle variable length inputs. The space and

computational requirements for search and update will necessarily be larger for certain

data sets. Additionally, the Gram-ART weight update modifies every part of a

distribution at a given node, but if an input and a template differ structurally, then only

the nodes of the common structure are modified.

4.5. TWO-DIMENSIONAL CLUSTERING

To demonstrate arbitrary cluster geometries in Gram-ART, a data-set consisting

of two-dimensional points sampled from two normal distributions is given as input, each

distribution centered at the top-right and bottom left corners. To translate between a

continuous 2D space and a symbolic grammar, the X and Y dimensions are evenly

segmented into three symbols each, giving nine separate regions of activation. One

hundred points were given as input with a vigilance value of 0.7. Two templates were

produced, shown in Figure 4.13. Regions with high activation values are shown in bright

areas while low activation values are shown in black.

Template 1 in Figure 4.13 corresponds to the bottom-left distribution, while

Template 2 captures the top-right distribution. Nearby regions are also partially activated,

illustrating the inherent arbitrary geometry of the clusters.

45

Arbitrary cluster geometries are further illustrated in a second experiment. The X

and Y dimensions were segmented into ten symbols in each dimension which produced

eleven clusters. These templates are each shown by bands of activation in the X and Y

directions in Figure 4.14 and Figure 4.15. Several bands can be seen in each cluster.

Many of these bands even have multiple peaks in them, indicating a complex relationship

among the input data. The sample data is separable and Gram-ART is able to divide the

data non-linearly into clusters. Additionally, the vigilance parameter controls how spread

out the templates can become before a new template is allocated.

Template 1: Template 2:

Figure 4.13. 3-Symbol 2D clustering activation plots of templates resulting from

application of points sampled from two normal distributions, one centered in the bottom

left (Template 1), and one centered in the top right (Template 2).

46

Template 1: Template 2:

Template 3:

Figure 4.14. 10-symbol 2D clustering activation plots of templates resulting from

application of points sampled from two normal distributions, centered in the top right

(Templates 1-3).

47

Template 4: Template 5:

Template 6:

Figure 4.15. 10-symbol 2D clustering activation plots of templates resulting from

application of points sampled from two normal distributions, centered in the bottom left

(Templates 4-6).

4.6. IRIS DATA-SET

To evaluate the performance of the Gram-ART algorithm, the standard Fisher’s

IRIS data-set [81, 82] was used as a benchmark against the Fuzzy-ART and K-Means

methods.

48

The input variables are translated into symbols by finding the max and min of

each variable and then dividing into equal compartments. For instance, the Sepal Length

variable has a min and max value of 2 and 4.4, respectively. Dividing this range into ten

equal bins results in symbol SL1 with range 2 to 2.24, symbol SL2 with range 2.25 to

2.48, etc.

Each input variable is translated into a symbolic representation and input to

Gram-ART for clustering. Combined with a fixed seed, the grammar is able to encode a

fixed-length symbolic representation of the input data.

To evaluate Gram-ART on the IRIS data-set, the IRIS grammar was constructed,

shown in Table 4.6.

Table 4.6. IRIS BNF grammar.

N = {SL, SW, PL, PW}

T = {SL1, SL2, SL3, SL4, SL5, SL6, SL7, SL8, SL9, SL10,

 SW1, SW2, SW3, SW4, SW5, SW6, SW7, SW8, SW9, SW10,

 PL1, PL2, PL3, PL4, PL5, PL6, PL7, PL8, PL9, PL10,

 PW1, PW2, PW3, PW4, PW5, PW6, PW7, PW8, PW9, PW10,}

S = <SL> <SW> <PL> <PW>

P can be represented as:

 1. <SL> ::=

 {SL1 | SL2 | SL3 | SL4 | SL5 |

 SL6 | SL7 | SL8 | SL9 | SL10}

 2. <SW> ::=

 {SW1 | SW2 | SW3 | SW4 | SW5 |

 SW6 | SW7 | SW8 | SW9 | SW10}

 3. <PL> ::=

 {PL1 | PL2 | PL3 | PL4 | PL5 |

 PL6 | PL7 | PL8 | PL9 | PL10}

 4. <PW> ::=

 {PW1 | PW2 | PW3 | PW4 | PW5 |

 PW6 | PW7 | PW8 | PW9 | PW10}

49

In order to compare Fuzzy-ART and Gram-ART it is necessary to explore the

effects of discretization. The IRIS data-set was applied to the Fuzzy-ART method in two

ways, first applying the raw IRIS data, and then by applying the discretizing method

described previously, then substituting the symbol with the midpoint of the numerical

range that the symbol represents. For example, SL2 represents the range 2.25 to 2.48, and

after processing, corresponds to the value 2.364.

To evaluate the performance of each algorithm, the order of records in the data-set

was randomized and applied to each method. This process was repeated 30 times per

method, per parameter configuration. In the ART-based methods, the vigilance was

varied from 0 to 1, in increments of 0.01. K-Means was evaluated for numbers of clusters

between 2 and 30.

Confusion matrices were constructed, and the number of misclassified inputs was

recorded. To produce labels for output categories of the clustering methods, the count of

each actual class falling into a given category was evaluated, and the most-frequently

occurring class was used as the label for the category. This is in contrast to the ARTMAP

procedure - no supervisory match-tracking procedure is used here.

The performance of these algorithms is shown in Figures 4.16 - 4.18, as well as

Tables 4.7 - 4.9. The confusion matrices for the best-performing vigilance values are

given in Tables 4.7 - 4.9. Gram-ART performs significantly better than both variants of

Fuzzy-ART, and performs equally as well as the best K-Means experiment. Fuzzy-ART

and Fuzzy-ART with discretized inputs both perform very similarly, strongly suggesting

that discretization has no effect. Note that symbolic representation does not affect the

performance of Fuzzy-ART, but Gram-ART performs extremely well across a wide range

50

of vigilance values. For all methods, vigilance values below 0.5 produced 100

classification errors. For a wide range of vigilance values (ρ>0.74), Gram-ART produced

a constant number of clusters, corresponding to high performance from Figure 4.16. For

all methods, vigilance values below 0.5 produced only 1 cluster.

As can be seen, Gram-ART performed extremely well, achieving 97.3% accuracy

at the best-performing vigilance value, significantly better than either K-Means or Fuzzy-

ART. Additionally, at the best-performing value, Gram-ART utilized many fewer

categories, indicating that the category templates generated were particularly salient.

It is worth noting that at relatively low vigilance values (less than 0.6) Gram-ART

produces similar performance to that of higher vigilance values (greater than 0.75) while

generating many fewer clusters. In the intervening vigilance range (0.6 to 0.75) Gram-

ART errors increase, though not significantly. This is likely due to the difficulty of

distinguishing species from the given data. It is also expected that if the IRIS dataset was

larger, this effect would be less pronounced, and the performance of Gram-ART would

be constant throughout this range.

To analyze the effect of converting the real-valued input of the raw IRIS data set

to symbolic information, the IRIS data set was applied to Gram-ART with 2, 5, 10, and

100 symbols per dimension. The results are shown in Figure 4.19 and Figure 4.20. Note

that there is a large difference between the performance profiles utilizing 2 and 5

symbols, a smaller difference between 5 and 10 symbols, and very little difference

between 10 and 100 symbols, though the number of clusters generated has changed

significantly.

51

Figure 4.16. ART variant classification performance on the IRIS data-set.

Figure 4.17. ART variant clustering profile on the IRIS data-set.

52

Figure 4.18. K-Means IRIS data-set performance.

Table 4.7. Confusion matrix for best-performing discretized Fuzzy-ART on IRIS dataset.

Vigilance value is 0.96.

D. Fuzzy-ART Actual

P
re

d
ic

te
d

 Setosa Versicolor Virginica

Setosa 0 5 1

Versicolor 0 25 8

Virginica 0 20 41

Table 4.8. Confusion matrix for best-performing classical Fuzzy-ART on IRIS data-set.

Vigilance value is 0.96.

Fuzzy-ART Actual

P
re

d
ic

te
d

 Setosa Versicolor Virginica

Setosa 7 11 1

Versicolor 3 19 8

Virginica 0 20 41

Table 4.9. Confusion matrix for best-performing Gram-ART on IRIS data-set. Vigilance

value is 0.52.

Gram-ART Actual

P
re

d
ic

te
d

 Setosa Versicolor Virginica

Setosa 0 0 0

Versicolor 0 49 3

Virginica 0 1 47

53

Figure 4.19. Gram-ART Performance on the IRIS data set over varying vigilance and

number of symbols per data dimension.

For 2 symbols per data dimension, this is not likely enough information to capture

the complexity of the problem, leading to only a few clusters, and poor performance,

regardless of vigilance. Five symbols per dimension produce much greater capability, but

Gram-ART is not able to produce a high-value classification for any vigilance setting. At

10 symbols per dimension Gram-ART is able to make very accurate classifications with

moderate cluster proliferation. Similarly, 100 symbols per dimension results in accurate

classification, but many clusters are generated.

54

Figure 4.20. Gram-ART class counts generated on the IRIS data set over varying

vigilance and number of symbols per data dimension.

This example illustrates the fact that when dealing with symbolic information,

even when it is based on real-valued measurements, there is no measurement of

proximity between symbols. In order to handle symbolic patterns, Gram-ART trades a

real-valued proximity measure for a temporal proximity measure by accumulating the

frequency of symbol occurrences. Even though the symbol-sets are derived from the

same data set, they can produce radically different results. This also suggests that when

converting real-valued information to symbolic information, there may be 'sweet-spots' -

particular parameter settings that result in efficient clustering.

4.7. MUSHROOM DATA-SET

The Mushroom Database contains information about 8124 species of mushrooms.

It classifies each as poisonous or edible and gives 22 attributes to identify the species.

55

Attributes include qualities like odor, shape, color, population and habitat [83]. Each of

these attributes is given as a character that represents one type of the attribute. For

example, odor is represented by almond (a), anise (l), creosote (c), fishy (y), foul (f),

musty (m), none (n), pungent (p), or spicy (s).

The mushroom data-set is challenging for most clustering methods due to the

symbolic representation of attribute values. This greatly limits the effectiveness of typical

clustering methods, as it is difficult to express the symbols in a format that is able to be

simply processed [57, 84-86]. For example, a previous implementation utilizing

ARTMAP used a large binary vector to represent all combinations of traits [87]. As

Gram-ART is fundamentally a symbolic clustering method, the only difficulty lies in

constructing the grammar, which can be easily derived from the data-set specification.

The mushroom data-set grammar is shown in Table 4.10 and Table 4.11. To

produce labels for output categories of the clustering methods, the count of each actual

class falling into a given category was evaluated, and the most-frequently occurring class

was used as the label for the category. Again, this is in contrast to the ARTMAP

procedure - no supervisory procedure is used.

For comparison, the procedure outlined in [87] was used to apply the mushroom

data set to Fuzzy-ART, the only difference being a supervisory signal is not applied,

Gram-ART and Fuzzy-ART are compared directly.

56

Table 4.10. Mushroom BNF grammar, non-terms, seed and terminals.

The clustering profile and performance over varying vigilance for Gram-ART and

Fuzzy-ART is shown in Figure 4.21 and Figure 4.22. Using a vigilance value of 0.73,

Gram-ART was able to perfectly categorize the mushrooms as poisonous or not. Gram-

ART generated 24 clusters at this vigilance value.

N = {cap-shape, cap-surface, cap-color,

 bruises, odor, gill-attachment, gill-spacing,

 gill-size, gill-color, stalk-shape, stalk-root,

 stalk-surface-above-ring, stalk-surface-below-ring,

 stalk-color-below-ring, veil-type, veil-color,

 ring-number, ring-type, spore-print-color,

 population, habitat}

T = { bell, conical, convex, flat, knobbed, sunken,

 fibrous, grooves, scaly, smooth, brown, buff,

 cinnamon, gray, green, pink, purple, red, white,

 yellow, bruises, no_bruises, almond, anise,

 creosote, fishy, foul, musty, none, pungent, spicy,

 attached, descending, free, notched, close,

 crowded, distant, broad, narrow, black, brown,

 buff, chocolate, gray, orange, enlarging, tapering,

 bulbous, club, cup, equal, rhizomorphs, rooted,

 missing, fibrous, scaly, silky, partial, universal,

 one, two, cobwebby, evanescent, flaring, large,

 pendant, sheathing, zone, abundant, clustered,

 numerous, scattered, several, solitary, grasses,

 leaves, meadows, paths, urban, waste, woods }

S = <cap-shape> <cap-surface> <cap-color> <bruises>

 <odor> <gill-attachment> <gill-spacing> <gill-size>

 <gill-color> <stalk-shape> <stalk-root>

 <stalk-surface-above-ring>

 <stalk-surface-below-ring>

 <stalk-color-below-ring> <veil-type> <veil-color>

 <ring-number> <ring-type> <spore-print-color>

 <population> <habitat>

57

Table 4.11. Mushroom BNF grammar production rules.

P can be represented as:

1. <cap-shape>::= {bell | conical | convex | flat |

 knobbed | sunken }

2. <cap-surface>::= {fibrous | grooves | scaly |

 smooth }

3. <cap-color>::= {brown | buff | cinnamon | gray |

 green | pink | purple | red | white | yellow }

4. <bruises>::= {bruises | no_bruises}

5. <odor>::= {almond | anise | creosote | fishy | foul

 | musty | none | pungent | spicy}

6. <gill-attachment>::= {attached | descending | free |

 notched }

7. <gill-spacing>::= {close | crowded | distant}

8. <gill-size>::= {broad | narrow}

9. <gill-color>::= {black | brown | buff | chocolate |

 gray | green | orange | pink | purple | red | white |

 yellow}

10. <stalk-shape>::= {enlarging | tapering}

11. <stalk-root>::= {bulbous | club | cup | equal |

 rhizomorphs | rooted | missing}

12. <stalk-surface-above-ring>::= {fibrous | scaly |

 silky | smooth }

13. <stalk-surface-below-ring>::= {fibrous | scaly |

 silky | smooth }

14. <stalk-color-above-ring>::= {brown | buff |

 cinnamon | gray | orange | pink | red | white |

 yellow }

15. <stalk-color-below-ring>::= {brown | buff |

 cinnamon | gray | orange | pink | red | white |

 yellow }

16. <veil-type>::= { partial | universal }

17. <veil-color>::= {brown | orange | white | yellow }

18. <ring-number>::= {none | one | two }

19. <ring-type>::= { cobwebby | evanescent | flaring |

 large | none | pendant | sheathing | zone }

20. <spore-print-color>::= { black | brown | buff |

 chocolate | green | orange | purple | white | yellow}

21. <population>::= { abundant | clustered | numerous |

 scattered | several | solitary }

22. <habitat>::= { grasses | leaves | meadows | paths |

 urban | waste | woods }

58

By contrast, Fuzzy-ART was not able to accurately classify the data until

vigilance reached 0.93 (98.3% mean accuracy), at which point an average of 913 clusters

were generated. For Fuzzy-ART, evaluation had to be halted at this point due to limited

computational resources. At vigilance values greater than 0.85, Gram-ART generated

over 1000 clusters, which was set as the maximum threshold. Due to this, Gram-ART’s

classification error began to rise as the resonance procedure was broken.

This example demonstrates that Gram-ART is particularly well-suited to

processing symbolic information, achieving high accuracy with fewer clusters and at

lower vigilance values than the popular Fuzzy-ART method. This improvement is likely

due to Gram-ART's method of representation and update rule. To use symbolic

information in Fuzzy-ART, a single large vector containing all possible symbol values is

created and updated as one - the 22 dimensions with various discrete values of the

mushroom data-set become a single 126 dimensional space. Gram-ARTs representation

treats each dimension separately - maintaining 22 dimensions and storing the frequency

of symbol occurrence within each of those dimensions. Additionally, Gram-ART's update

rule is explicitly probabilistic, while Fuzzy-ART utilizes a probabilistic approximation

based on a fixed learning rule. The Gram-ART representation method and update rule

thus enable higher resolution templates and increased capability for discerning categories

in data.

59

Figure 4.21. Gram-ART and Fuzzy-ART classification performance on the mushroom

data-set.

Figure 4.22. Gram-ART and Fuzzy-ART clustering profile on the mushroom data-set.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 0.2 0.4 0.6 0.8 1

C
la

ss
if

ic
a

ti
o

n
 E

rr
o

rs

Vigilance

Gram-ART Fuzzy-ART

1

10

100

1000

0 0.2 0.4 0.6 0.8 1

N
u

m
b

e
r

o
f

C
lu

st
e

rs

Vigilance

Gram-ART Fuzzy-ART

60

4.8. UNIX USER DATA-SET

To further illustrate the capabilities of Gram-ART, a final experiment was

conducted on the UNIX user data set archived at the UCI machine learning repository

[88]. The UNIX user data contains the transcripts of nine UNIX system users, originally

intended for testing intrusion detection systems. The data set has been sanitized to

remove file names, user names, directory structures and any other possibly identifying

items, while command names, flags, and shell meta-characters have been preserved, as

well as typos. This data set is interesting due to its inherently symbolic nature (each

command is a symbol - over 500 commands possible), as well as its sequential nature and

size (40,000+ sessions constitute the data set). Additionally, the data-set has been studied

extensively in literature, with no previous method achieving over 83.8% correct

classification [89, 90].

Gram-ART was executed utilizing a simple grammar with one non-term –

“<command>” that can take one of 590 values, each corresponding to a UNIX shell

command, flag, or meta-character, such as “dir” or “pwd.” Similarly, there was only one

production rule, specifying that a command may follow another command. Gram-ART

was tested by randomly selecting 1000 sessions from the data-set and verifying their

labeling. This is the same experimental configuration in [89, 90], and it is used here in

order to facilitate a direct comparison of results.

The data was evaluated over varying vigilance values from 0.1 to 0.99, with

performance shown in Figure 4.23. At a vigilance value of 0.9, Gram-ART was able to

achieve 96.5% accuracy on the UNIX user data set, misidentifying the user of only 33

sessions out of the 1000 test sessions. This is a significant increase over the performance

61

reported in the literature for methods such as voting K-Nearest Neighbor (a popular non-

parametric method), various discriminant analysis, and vector methods.

Figure 4.23. Gram-ART performance on the UNIX user data set over varying vigilance

settings.

This experiment demonstrates the full capability and benefit of Gram-ART -

variable data dimensionality, symbolic information, and large corpus of data. The Gram-

ART structure was able to achieve very high performance on this data set as compared to

historical methods due to non-parametric statistical foundations, adaptive-resonance

design, and ability to operate on variable dimension and sequential data.

4.9. DISCUSSION

Gram-ART, a new Adaptive Resonance Theory variant, has been developed with

many valuable properties, including the ability to cluster symbolic information and not

62

only data but the structure of data relative to a grammar. Additionally, the Gram-ART

method is able to develop non-geometrically constrained cluster shapes, which enables an

increased ability to model complex data. This ability was demonstrated through the

application of Gram-ART to several clustering problems, ranging from illustrative 2D

clustering, fixed-dimensionality, real valued standard IRIS database, fixed dimensionality

symbolic Mushroom database, and variable dimensionality, sequential, symbolic UNIX

user data set.

Future research directions of Gram-ART development could include modification

of the trace operator, such as the use of median or minimum of distribution samples, and

investigating the effect on performance. Additionally, the weight update mechanism may

be modified to utilize a kind of Bayesian update rule.

63

5. META-LEARNING GENETIC PROGRAMMING

To demonstrate the principles and advantages of meta-learning, its application to

the even and odd parity problems, standard benchmarks for GP and automatic function

definition methods [70] are examined. A hypothetical GP system is proposed utilizing a

set of Boolean operators to construct individuals implementing the even or odd parity

functions (XOR and XNOR, respectively). Two cases of evolution of the three-input

XOR function are analyzed, both starting with populations implementing the two-input

XOR function, with and without the abstraction that is inherent in a meta-learning

system. A third case is presented illustrating the functionality of a simple selection

mechanism on the odd-parity function.

5.1. EVEN-PARITY PROBLEM OVERVIEW

Koza described the even parity problem succinctly:

“The Boolean even-parity function of k Boolean arguments returns T (True) if an odd number of its arguments

are T, and otherwise returns NIL (False). The concatenation of this returned bit to the original string making the total

string even, hence even-parity.

In applyito the even-parity function of k arguments, the terminal set T consists of the k Boolean arguments D0,

D1, D2, ... involved in the problem, so that

T = {D0, D1, D2, ...}.

The function set F for all the examples herein consists of the following computationally complete set of four

two-argument primitive Boolean functions:

F = {AND, OR, NAND, NOR, NOT}.

The Boolean even-parity functions appear to be the most difficult Boolean functions to find via a blind random

generative search of expressions using the above function set F and the terminal set T. For example, even though there are

only 256 different Boolean functions with three arguments and one output, the Boolean even-3-parity function is so difficult

to find via a blind random generative search that we did not encounter it at all after randomly generating 10,000,000

expressions using this function set F and terminal set T. In addition, the even-parity function appears to be the most

difficult to learn using genetic programming using this function set F and terminal set T [67].”

64

The odd-parity function is similarly constructed, returning true if an even number

of its arguments are true, and otherwise returning false. In GP, the genome of an

individual is represented as a tree structure, where operations are applied at branches, and

the leaves are constants and problem parameters. An illustration of a functional

represented as tree structure is shown in Figure 5.1 [17, 67]. One advantage of GP is that

the results are easily human interpretable and formally verifiable, a quality that is not

present in many other computational intelligence methods [50].

Figure 5.1. Illustration of function representation as tree structure.

The even-2-parity function is simply the XOR function, which is itself a

composition of the terminal set functions in one simple possible configuration. Using a

tree representation, the XOR function is shown in Figure 5.2.

65

a XOR b = (a OR b) AND (a NAND b)

Figure 5.2. XOR tree representation.

Constructing the even-3-parity function using only these primitives is more

difficult, but follows a similar pattern, illustrated in Figure 5.3.

XOR (a, b, c) = (((a OR b) AND (a NAND b)) OR c) AND

(((a OR b) AND (a NAND b)) NAND c)

Figure 5.3. Three-input XOR tree representation.

66

That the three-input XOR structure relies on the recursive use of the two-input

XOR function, replacing the 'a' nodes with XOR nodes, and re-assigning the top-level 'b'

nodes to be the 'c' variable. If a 2-bit XOR function is defined explicitly as in Figure 5.4,

the even-3-parity function becomes greatly simplified, as shown in Figure 5.5.

Figure 5.4. Simplified two-input XOR.

XOR(a, b, c) = (a XOR b) XOR c

Figure 5.5. Simplified three-input XOR.

67

5.1.1. Case 1 – Non-Meta XOR3 Evolution. Taking a GP as an example, in a

non-meta learning system, evolution of the XOR3 function must proceed through at least

two generations.

To further expand on this illustration, consider the best case scenario whereby all

the individuals in the population incorporate the simplified XOR function, as shown in

Figure 5.6.

Figure 5.6. Initial non-meta learning XOR2 individual.

As there are 4 leaf nodes out of 7 total nodes, the probability of selecting a leaf

node for crossover (PL1) is 4/7. Assuming a uniform population of individuals

implementing XOR2 (translating to a 100% probability of choosing another XOR2

individual for crossover) the probability of selecting the root node of another individual

to replace the selected leaf node is (PF1) 1/7.

Then the evolutionary process must select one of the two top-level 'b' nodes for

mutation from the tree which has a total of thirteen nodes, thus the probability of

selecting one correct leaf for mutation (PM1) is 2/13. Choosing from the eight possible

68

node types (the combination of terminal set and functional set), the probability of

selecting the correct 'c' variable (PV1) is 1/8.

At this point the evolutionary reproduction steps are completed, and the individual

shown in Figure 5.7 is evaluated. This partial XOR3 function is not yet complete, but it

correctly completes one test case more than the XOR2 function, which may give it an

evolutionary advantage. Assuming that the individual survives to the next generation and

is again selected as a parent with 100% probability, an additional reproduction step must

be completed to yield an XOR3 function.

Figure 5.7. Intermediate step in development of 3-bit XOR function after a single

generation.

Now the correct leaf node must be selected for crossover, but this time there is

only one node, the 'a' node at a depth of three, from the thirteen possible nodes, so the

probability of selecting the correct leaf node for crossover (PL2) is 1/13. Once again,

69

assuming all other individuals in the population still implement the XOR2 function in

Figure 5.2, the probability of selecting the root of another XOR2 individual to replace the

leaf (PF2) is 1/7. At the completion of crossover, the total number of nodes in the tree

becomes eighteen. At the mutation step, the remaining 'b' node at depth three must be

selected, and the probability of selecting correct leaf for mutation (PM2) is 1/18.

Completing the XOR3, the probability of selecting the correct variable from the total set

of node types (PV2) is 1/8. The completed three-input XOR function is illustrated earlier

in Figure 5.3.

Ignoring changes in the population and evolutionary survivability, the probability

of transitioning from XOR2 to XOR3 in two generations without meta-learning is

calculated:

Pxor3_nonmeta = PL1*PF1*PM1*PV1*PL2*PF2*PM2*PV2 = 1.19 x 10
-7

Where PL1 is the probability of a leaf node selection for crossover during the first

generation, PF1 is the probability of functional root selection for crossover during the first

generation, PM1 is the probability of proper leaf selection for mutation during the first

generation, PV1 is the probability of proper variable selection for mutation during the first

generation, PL2 is the probability of a leaf node selection for crossover during the second

generation, PF2 is the probability of functional root selection for crossover during the

second generation, PM2 is the probability of proper leaf selection for mutation during the

second generation, PV2 is the probability of proper variable selection for mutation during

the second generation.

70

Note that this ignores the significant influence of relative fitness, generational

selection, parent selection, probability of application of crossover/mutation operators and

population influence and may be interpreted as a kind of upper-bound on the probability

that a two-input XOR individual will develop into a three-input XOR without the

abstraction capability of meta-learning.

5.1.2. Case 2 – Meta-Learning XOR3 Evolution. In this case a meta-learning

system is assumed that has already learned a two-input XOR function, performed

generalization and added this to the function set (F = AND, OR, NAND, NOR, NOT,

XOR2). The probability that the system will transition from XOR2 to XOR3 is

calculated using only the mutation step.

With a population uniformly initialized with the two-input XOR and an individual

selected from this population, illustrated in Figure 5.2, the probability of selecting a leaf

node for mutation (PL) is 2/3 as the simplified XOR tree has only 3 nodes, and two of

them are terminals. Having selected a terminal, the probability of selecting the XOR2

function from the node set of six functions and three terminals to replace the leaf node

(PF) is 1/9. Assuming a recursive mutation process, two new leaf nodes must be selected,

and they must contain variables not yet used by the tree to produce a three-input XOR.

The probability of selecting the correct terminal node is 1/9, and this process must be

repeated twice, so the probability of selecting two correct terminal nodes (PV) is (1/9)
2
 or

1/81. Using only one generation the three-input XOR can be developed in a meta-

learning system:

Probability of XOR3 from XOR2: Pxor3_meta = PL*PF*PV = 0.000914

71

Where PL is the probability of a leaf node selection for mutation, PF is the

probability of XOR2 function selection for mutation, PV is the probability of proper leaf

selection for mutation.

Note that using meta-learning, the three-input XOR can also occur with a

crossover and a mutation, where the non-meta learning system must utilize two full

generations. Though the size of the functional set has increased, the number of changes

necessary to place an upper-bound on the probability of a three-input XOR occurring has

been substantially decreased, allowing the evolutionary process to focus on high-level

changes.

In a large population, the XOR3 function may occur in a single generation with a

meta-learning system, where a non-meta learning system must take at least two

generation and probably many thousands of evaluations to evolve an XOR3.

5.1.3. Case 3 – Selection and Odd-Parity Evolution. To demonstrate the

advantages of the complete meta-learning procedure, the 2-bit even-parity problem is first

presented to a theoretical meta-learning system, then the 2-bit odd-parity problem, and

finally the 3-bit even-parity problem. The selection mechanism shall have 2 inputs – the

first is activated only when the system is operating on the even-parity problem, the

second is activated only when operating on the odd-parity problem. Initially, the memory

is empty, so the optimizer is initialized with random solutions.

Presented with the even-2-parity problem, the optimizer outputs a resulting

solution that performs the XOR function – “D0 XOR D1”, where D0 and D1 are the

Boolean arguments of the input. This function is passed to the generalization

mechanism, which removes the absolute references to the Boolean arguments, replacing

72

them with dummy variables ‘A’ and ‘B’, resulting in the function “A XOR B”. This

generalized XOR function is then added to the memory, making the function available as

a primitive. The functional set becomes:

F = {AND, OR, NAND, NOR, NOT, XOR}.

 The selection mechanism is updated to learn an association between the active

‘even-parity’ input and the new memory element. At this point the procedure and

difference in optimization would be no different than if the optimizer were operating

without the rest of the meta-learning architecture.

Next, the odd-2-parity problem is presented, the ‘odd-parity’ input is activated on

the selector mechanism, and having no other elements to select, the sole item in memory

(the generalized “A XOR B” function) is selected to initialize the state of the optimizer.

The optimizer replaces the dummy variables with references to the Boolean arguments

and begins optimization. As only a small modification is necessary, the addition of the

NOT primitive function at a high-level to create an XNOR function, the optimizer has a

high probability of quickly finding a perfect solution to the odd-2-parity problem. This

differs from a randomly initialized optimizer as there would be a lower probability of

finding a good solution due to the need to explore more modifications. Once the meta-

learning optimizer finds the solution, the generalization, memory insert, and selection

training steps are repeated for the XNOR function:

F = {AND, OR, NAND, NOR, NOT, XOR, XNOR}.

Finally, the even-3-parity problem is presented to the meta-learning architecture.

The selection ‘even-parity’ input is activated, and the associated XOR memory element is

used to initialize the optimizer state. The optimizer replaces the XOR dummy variables

73

with argument references, and begins the optimization process. The optimizer need only

make the relatively small change of cascading the XOR function to produce a 3-input

XOR function, where a raw optimization function without a memory or selection method

would need to evaluate and modify many combinations of the original 5 functional

primitives to arrive at a good solution. The meta-learning architecture should be able to

arrive at high-value solutions rapidly by exploiting previously generated solution to

construct high-level solutions.

In this example the memory component stores generalized solutions to previously

encountered problems - these elements could be thought of as memes, as they are

solutions that are passed between problem instances. The selection mechanism performs

association between problem features and solutions that are likely to yield high-value

results. By not only providing the input data to the problem, but additional meta-data

about the characteristics of the problem, the meta-learning architecture should be able to

construct meta-memes and store them using the memory mechanism, allowing higher-

order learning to occur automatically.

5.2. META-GP ARCHITECTURE

A GP Meta-Learning system is constructed by augmenting the Automatic

Function Definition GP with a neural network method that is trained to map between a

parametric description of a given task and the function-categories created by the Gram-

ART method described in Section 5. The output of this mapping is used to

probabilistically bias the use of functions in the initial generation of the GP process. By

seeding the population with genetic information that has been useful in similar situations

in the past, it is expected that the

solution. If a high-quality solution is not found, the exploration/ex

mechanism will drive the system towards new solutions, which will be incorporated into

the function library at the end of training.

provided in Figure 5.8.

This stored learning should allo

encountering similar scenarios, and with careful construction of successive training

scenarios, the method should be able to find good solutions in increasingly complex

scenarios with less computational exp

Figure

in the past, it is expected that the GP will be able to more quickly find a high

quality solution is not found, the exploration/exploitation feedback

mechanism will drive the system towards new solutions, which will be incorporated into

the function library at the end of training. An illustration of the Meta-GP architecture is

This stored learning should allow high-quality solutions to be rapidly found when

encountering similar scenarios, and with careful construction of successive training

scenarios, the method should be able to find good solutions in increasingly complex

scenarios with less computational expense than a classical algorithm.

Figure 5.8. Meta-learning GP architecture.

74

will be able to more quickly find a high-quality

ploitation feedback

mechanism will drive the system towards new solutions, which will be incorporated into

GP architecture is

quality solutions to be rapidly found when

encountering similar scenarios, and with careful construction of successive training

scenarios, the method should be able to find good solutions in increasingly complex

75

The Meta-GP process begins with the presentation of a parametric description of a

problem to the Multi-Layer Perceptron (MLP). This problem description consists of a

real-valued vector with elements in the domain [0,1]. The problem description vector

activates the MLP, producing an output vector with the same dimensionality as the

number of learned, stored functions – the number of categories in the Gram-ART

Structure. Each element of the output vector is interpreted as the probability that a

corresponding function category will be useful in the genetic programming optimization

process. The initial GP population is seeded with automatically defined functions

utilizing fitness proportional selection based on the ‘perceived fitness’ provided by the

MLP output. Using this initial population, the GP optimization process is initiated, and

solutions to the provided problem are generated, evaluated, and evolved. The differential

fitness between a trial individual and its parents is utilized to determine if an individual

should be added to the function library. When the stopping conditions for the

optimization process are met (such as population convergence, or a fitness threshold) the

occurrence frequency of library functions is calculated for the fittest individuals in the

population. This frequency is used to train the MLP to associate the current problem

description with the functions that are most likely to provide fit solutions. This process is

repeated across several instances and sizes of different problems.

The Meta-GP architecture is evaluated on two test-bed problems, the Parity

Problem described in Section 5.1, and variations of the game Pac-Man. The even and

odd-parity problem stack is a standard GP function approximation benchmark, and a

good demonstration problem for functional usage as 2 Bit Even Parity is a sub-problem

of 4-Bit even parity is a sub-problem of 6-bit, etc [17]. The game of Pac-Man is a

76

standard benchmark for the study of evolution of autonomous agents in changing

environments. The Pac-Man scenario allows the demonstration of behaviors such as

task-prioritization (eating dots vs. avoiding ghosts), adaptability, and robustness. Board

size, additional incentives (fruits, extra lives, etc) and monsters can all be modified for

increasing problem complexities. Additionally the Pac-Man framework can be modified

for multi-agent optimization by introducing additional Pac-Men [58], though this is out of

the scope of the current experiments.

5.3. META-GP EVALUATION: THE PARITY PROBLEM

Evaluation of the Meta-GP architecture on the parity problem was completed

through a series of experiments designed to provide information about the additional

effect of each component on the optimization process. This was accomplished through

three primary experiments, each one executing on the even and odd-parity problems, each

ranging in size from 2 to 10 bits. Evolved individuals were evaluated by applying all

possible input combinations, and comparing the output to the correct (even or odd)

output. The number of correct cases was used as the fitness value. This is in contrast to

Koza’s evaluation method, where a relatively small subset of outputs was selected as

evaluation cases.

The first experiment investigates the performance of the GP process alone,

without automatic function definition, and without the influence of the MLP. A second

experiment examines the effect of adding automatic function definition on the system

performance. The third experiment utilizes the full Meta-GP architecture, including

77

automatic function definition, and recognition MLP to explore the influence of these

components on the optimization process.

5.3.1. Genetic Programming Baseline. A baseline performance level was set by

applying the GP process alone to the even and odd parity problem with size ranging from

2 to 10 bits. The experiments were carried out with a population size of 1000 individuals,

and 10K maximum generations. The maximum genome size (number of nodes) was fixed

at 100. One hundred parents were selected from the population using roulette-wheel

selection, generating 100 children. Children were generated using either mutation or

recombination (but not both for a given child) with equal probability, based on empirical

evidence. Diversity control was performed utilizing a mass extinction method with

elitism [85]. Mass extinction was initiated after the average fitness of the population was

equal to the best fitness of the population for a set number of generations, indicating

convergence. Mass extinction with elitism was implemented by saving the top n

individuals, then re-initializing the population. For all experiments with diversity

control, the threshold for initiating mass extinction was 100 generations with 100 elitist

individuals.

To obtain a statistical sampling, experiments were repeated with the same

configuration 30 times, recording the maximum number of generations to completely

solve the presented parity problem. The results are shown in Figure 5.9 for problem

sizes between 2 bits and 5 bits, reported as the percent correct cases achieved. The values

of best fitness individuals are shown using solid lines, while the population average is

shown using dashed lines. The population averages vary greatly due to the use of the

78

mass extinction mechanism, which resets the population when convergence criteria are

detected.

Figure 5.9. Baseline even parity performance.

Note that smaller problem sizes have much higher performance, particularly the

2-bit problems, which achieve perfect performance within 10 generations. Larger

problem sizes take much longer to produce fully-fit individuals, and indeed the 5-bit

problem size fails to produce an individual with 100% fitness in any evaluated run. This

trend follows through the larger problem sizes. The performance data for problem sizes 6

through 10 is omitted here for brevity, as the GP process was not able to achieve over

0.4

0.5

0.6

0.7

0.8

0.9

1

1

4
3

8
5

1
2

7

1
6

9

2
1

1

2
5

3

2
9

5

3
3

7

3
7

9

4
2

1

4
6

3

5
0

5

5
4

7

5
8

9

6
3

1

6
7

3

7
1

5

7
5

7

7
9

9

8
4

1

8
8

3

9
2

5

9
6

7

%
 F

it
n

e
ss

Generation (*10)

Baseline Even Parity Performance

2b Best

2b Avg.

3b Best

3b Avg.

4b Best

4b Avg.

5b Best

5b Avg.

79

60% fitness for a problem size larger than 5 bits. The baseline performance of the odd-

parity problem is effectively identical, as would be expected, and is omitted here for

brevity.

These results illustrate the challenge of directly evolving individuals that

implement parity functionality for large problem instances.

5.3.2. Automatic Function Definition. In Grammatical Evolution architectures,

the Gram-ART unit can serve the purpose of dynamic function definition, providing a

library of generalized functions as cluster templates. If an individual has a non-zero

differential fitness between itself and the higher fitness of its two parents, a search is

initiated to find a sub-tree in the individual that differs from that of its parents. When

found, this sub-tree is passed as input to the Gram-ART method, where it is matched to a

category and modifies a template. The templates are then extracted from Gram-ART and

added to the grammar as high-level functions that are available for new individuals to

utilize. In this way, useful sub-trees are removed from the evolutionary process, and the

genetic operations are then focused on increasingly high-level modifications to the

programs. This type of mechanism maintains population diversity and is able to

counteract the bloat of individuals that causes fitness stagnation [70].

The 3-bit even parity problem was used to evaluate Gram-ART as an automatic

function definition method. The Gram-ART method was evaluated over 11 vigilance

values, ranging from 0.0 to 1.0. Note that the vigilance value of 1.0 corresponds to

creating a new template for each not-equal input, corresponding to classical automatic

function definition methods in literature.

80

The experiments were carried out with a population size of 1000 individuals, and

10K maximum generations. The maximum genome size (number of nodes) was fixed at

100. One hundred parents were selected from the population using roulette-wheel

selection, generating 100 children. Children were generated using either mutation or

recombination (but not both for a given child) with equal probability, based on empirical

evidence. Diversity control was performed utilizing a mass extinction method with

elitism [85]. Mass extinction was initiated after the average fitness of the population was

equal to the best fitness of the population for a set number of generations, indicating

convergence. Mass extinction with elitism was implemented by saving the top n

individuals, then re-initializing the population. For all experiments with diversity

control, the threshold for initiating mass extinction was 100 generations with 100 elitist

individuals.

Experiments were performed by varying two factors – utilization of diversity

control, utilization of Gram-ART. For experiments utilizing Gram-ART, the experiment

was repeated for 11 values of vigilance. To obtain a statistical sampling, experiments

were repeated with the same configuration 30 times, recording the maximum number of

generations to completely solve the 3-bit even parity problem. The results are shown in

Figure 5.10 and Figure 5.11. The dashed lines of Figure 5.10 represent baseline

performance measures for the evolutionary process without automatic function definition.

Note that the evolutionary process without diversity control, utilizing Gram-ART with a

vigilance value of 0.9 out-performs all other configurations.

81

Figure 5.10. Evolutionary profiles for the 3-bit even parity problem utilizing GP with

combinations of Gram-ART and diversity control.

Figure 5.11 shows the effect of diversity control on cluster generation. Under

diversity control, the GP regularly resets, creating a new population and retaining only a

small subset of highly fit individuals. As the new population evolves, many more

individuals are increasing in fitness, creating more functions for utilization. Without

diversity control, this process only occurs at the beginning of the evolutionary process,

and thus function creation stagnates.

82

Figure 5.11. Clustering profiles for Gram-ART on the even parity GP problem.

Figure 5.12 and Figure 5.13 show the normalized distribution of function

utilization by the fittest individuals after completion of the 3-bit even parity problem. It

can be seen that early dynamically generated functions are highly utilized.

For a vigilance value of 0.7, the number of clusters generated using Gram-ART as

automatic function definition is many orders of magnitude smaller than the number of

functions generated without clustering. Less than a hundred functions were generated

using clustering, compared to tens of thousands of functions generated without clustering.

In the genetic process, this increases the probability that any given high-value function

will be selected for utilization in an individual.

83

Figure 5.12. Example function utilization after dynamic function definition.

Figure 5.13. Example function utilization after dynamic function and diversity control.

An analysis of variance was performed, showing that utilizing Gram-ART with

the best vigilance settings (0.9 without diversity control, 0.4 with diversity control), the

84

evolutionary process was significantly improved over all other evolutionary

configurations for a confidence value of H
 0.05.

To see how Automatic Function Definition (ADFS) with Gram-ART compares

with traditional methods, the data already collected need be examined. When the

vigilance value equals zero, this is equivalent to the evolutionary process without any

ADFS, as only one cluster is generated, and it is continually over-written. Similarly, a

vigilance value of 1 is equivalent to traditional ADFS where every generated sub-tree is

kept, and never modified. It can be seen from the results that neither of these extremes is

the best performing on the Even Parity problem - a middle ground must be found, and

Gram-ART fulfills these requirements by contributing symbolic, variable dimension,

structural clustering. Additionally Gram-ART’s infinite-window updating ensures short

term template stability, and enables long-term evolutionary modification.

5.3.3. Parity Evaluation. To evaluate the performance of the full Meta-GP

architecture on the parity problem, three experiments were conducted. The first applied

only the GP optimizer to the 10-bit even parity problem to acquire a baseline

performance metric. The second experiment integrated the memory unit as described

previously as an automatic function definition method.

In the second experiment, the problem size was increased from 2 bits to 10 bits.

Problem size increases were triggered as the optimizing system produced individuals that

achieved100% fitness for the current problem size, or a threshold of 1000 generations had

passed, whichever came first. This increasing problem scheme is known as curriculum

control. The third experiment utilized the full Meta-GP architecture by applying the even

parity problem for problem sizes between 2 and 5, using curriculum control, then

85

applying the system to the odd-parity problem for problem sizes between 2 and 5, before

applying the even-parity problem again for problem sizes between 2 and 10 for final

evaluation. For each problem type in the meta-learning experiment, the corresponding

neural network input was trained on the problem specification (a binary vector of 2

inputs, one for even-parity, one for odd-parity) using back-propagation with a learning

rate of 0.01 and a training threshold of 0.03 mean squared error.

The experiments were completed using the parameter settings described in

Section 5.3.2., and the system was allowed to evolve for 10,000 generations before

terminating. To obtain a statistical sample, the experiments were each completed 1000

times. Table 5.1 shows an analysis of variance comparing the baseline performance to

the optimizer utilizing automatic function definition and curriculum control. For a

confidence value of H
 0.05, there is a very significant difference between the

optimizer utilizing memory, and the baseline optimizer. Indeed, the optimizer utilizing

memory was able to significantly out-perform the baseline by over 100 cases. Table 5.2

compares the baseline and full Meta-GP configurations, again for a confidence value of

H
 0.05. The Meta-GP optimizer drastically out-performs the baseline by an average of

over 250 cases. This is most likely due to the extensive training and library of training

that was constructed and stored in the system’s function library. For completeness, the

analysis between the optimizer using memory and the Meta-GP optimizer are compared

in Table 5.3. Again, there is significant difference between the two optimizers, though it

is much closer than the difference between both optimizers and the baseline.

Figure 5.14 shows the average evolutionary profiles for the different algorithm

configurations. It is worth noting that no algorithm configuration was able to approach

86

perfect performance on the 10-bit even parity function, further demonstrating the

difficulty of evolving such a complex function.

Table 5.1. Analysis of variance comparing baseline GP optimizer and optimizer with

automatic function definition and curriculum control.

Groups Count Sum Average Variance

 Baseline 1000 521096.5 521.0965 7.071009

 w/Memory 1000 623339 623.339 67504.14

 Source of

Variation SS df MS F P-value F crit

Between

Groups 30691889 1 30691889 909.2383 6E-165 3.846117

Within Groups 67443696 1998 33755.6

 Total 98135586 1999

Table 5.2. Analysis of variance comparing baseline GP optimizer and meta-learning

optimizer with selection, automatic function definition and curriculum control.

Groups Count Sum Average Variance

 Baseline 1000 521096.5 521.0965 7.071009

 Meta-Learning 1000 782666.7 782.6667 103230.6

 Source of

Variation SS df MS F P-value F crit

Between

Groups 19489263 1 19489263 377.5612

3.58E-

77 3.846117

Within Groups 1.03E+08 1998 51618.82

 Total 1.23E+08 1999

Table 5.3. Analysis of variance comparing GP optimizer with only automatic function

definition, and meta-learning optimizer with selection, automatic function definition and

curriculum control.

Groups Count Sum Average Variance

 w/Memory 1000 623339 623.339 67504.14

 Meta-Learning 1000 782666.7 782.6667 103230.6

 Source of

Variation SS df MS F P-value F crit

Between

Groups 1266439 1 1266439 14.83516 0.000121 3.846117

Within Groups 1.71E+08 1998 85367.35

 Total 1.72E+08 1999

87

Figure 5.14. Parity performance of Meta-GP algorithm configurations.

5.4. META-GP EVALUATION: PAC-MAN

The Meta-GP architecture was evaluated on the game of PAC-MAN by first

identifying the inputs and outputs of the PAC-MAN agent. Clearly, the agent has outputs

or actions of ‘move-up,’ ‘move-down,’ ‘move-left,’ and ‘move-right.’ Inputs are less

obvious, as the human player has total knowledge of the game state, including dots

remaining to be eaten, location of ghosts, and the appearance of special items. In this

conception of the PAC-MAN game, the agent is blind to all but its immediate

surroundings. The agent inputs include whether or not a wall blocks each of the cardinal

directions, whether or not a dot exists in one of the non-blocked cardinal directions,

whether or not a ghost exists in one of the non-blocked cardinal directions, and whether

or not a pill exists in one of the non-blocked cardinal directions. To further simplify the

0

100

200

300

400

500

600

700

800

900

1

6
4

1
2

7

1
9

0

2
5

3

3
1

6

3
7

9

4
4

2

5
0

5

5
6

8

6
3

1

6
9

4

7
5

7

8
2

0

8
8

3

9
4

6

F
it

n
e

ss

Generation (in tens)

Parity Performance

w/Memory

Meta-Learning

Baseline

88

game, special items (fruit) do not appear. The board size and shape is maintained for all

experiments, but the existence of ghosts is controlled for training purposes. A PAC-

MAN grammar is constructed, shown in Table 5.4.

Table 5.4. The PAC-MAN grammar.

Note that several new symbols and types of symbols have been introduced, particularly

the conditional non-term ‘cond’, and the output non-term ‘term’. The conditional works

like an ‘IF’ statement, evaluating the first child-expression for truth, then passing

evaluation to either the second or the third expression, but never both, depending on the

outcome of the first expression.

N = {expr, op, pre_op, cond, var, term}

T = {AND, OR, NOT, IF

MOVE_UP, MOVE_DOWN, MOVE_LEFT, MOVE_RIGHT,

WALL_UP, WALL_DOWN, WALL_LEFT, WALL RIGHT,

GHOST_UP, GHOST_DOWN, GHOST_LEFT, GHOST_RIGHT,

DOT_UP, DOT_DOWN, DOT_LEFT, DOT_RIGHT,

PWRUP_UP, PWRUP_DOWN, PWRUP_LEFT, PWRUP_RIGHT}

S = <expr>

P can be represented as:

 1. <expr> ::= <expr> <op> <expr> |

 <preop> <expr> |

 <cond> <expr> <expr> <expr> |

 <var> |

 <term>

 2. <op> ::= AND | OR

 3. <pre_op> ::= NOT

 4. <var> ::= WALL_UP | WALL_DOWN | WALL_LEFT | WALL RIGHT|

GHOST_UP | GHOST_DOWN | GHOST_LEFT | GHOST_RIGHT |

DOT_UP | DOT_DOWN | DOT_LEFT | DOT_RIGHT | PWRUP_UP |

PWRUP_DOWN | PWRUP_LEFT | PWRUP_RIGHT

 5. <term> ::= MOVE_UP | MOVE_DOWN | MOVE_LEFT | MOVE_RIGHT

 6. <cond> ::= IF

89

5.4.1. Experimental Setup. The PAC-MAN benchmark was evaluated using

three primary experimental configurations, analogous to the configurations detailed in

Section 5.3.3. The baseline configuration utilizes only the bare GP optimizer, the

memory configuration adds automatic function definition, and the meta-learning

configuration utilizes context recognition and memory along with curriculum control.

In the PAC-MAN benchmark, curriculum control takes the form of task

prioritization – the goal is switched between finding and consuming dots, to avoiding

ghosts, finding power-ups, and capturing ghosts. The memory configuration utilizes no

curriculum control. The meta-learning curriculum control takes the form of the optimizer

first being exposed to the dots-only game priority. In this scenario, ghosts and power-ups

are removed from the game. After 1000 generations of exposure to the dots-only

scenario, the priority is switched to avoiding and hunting ghosts, removing dots from the

game. This is executed for another 1000 generations. For each of these configurations, a

two-bit priority vector is presented to the MLP, one bit for dot priority, and one bit for

ghost priority. At the end of each training phase, high-value functions are associated with

each input vector. During the evaluation runs, both MLP inputs are set to 1, indicating

that behaviors for both priorities should be utilized. The system is then allowed to evolve

players that participate in the full game, including both dots and ghosts.

For all algorithm configurations, fitness is measured by the points accrued,

according to the rules of PAC-MAN. To obtain a statistical sample, each experimental

configuration was repeated 75 times.

90

5.4.2. Results. The results show that the addition of memory, and the training and

integration of separately learned skills can significantly increase the fitness of evolved

individuals playing the game of PAC-MAN. Tables 5.5 - 5.7 display the analysis of

variance of algorithm configuration on evolved player performance. In all cases, a

confidence value of K
 L. LM was used. Comparing the baseline configuration to the

memory configuration in Table 5.5, the difference is small but significant for the given

confidence value. The difference between baseline, memory, and meta- learning

configurations is much greater, shown in Table 5.6 and Table 5.7. This strongly suggests

that the curriculum and recognition methods significantly improve the performance of

evolved PAC-MAN players, further illustrating the power and capabilities of the Meta-

GP architecture, and meta-learning in general.

This trend is confirmed in Figure 5.15, where the average evolutionary profiles

for the algorithm configurations are displayed. Once again, it is clear that the meta-

learning configuration drastically improves performance.

Table 5.5. Analysis of variance comparing baseline and memory configurations.

Groups Count Sum Average Variance

 w/Memory 75 182116.7 2428.223 6236.895

 Baseline 75 163445.2 2179.27 3577.224

 Source of Variation SS df MS F P-value F crit

Between Groups 23241.64 1 23241.64 4.736367 0.031117 3.90506

Within Groups 726244.8 148 4907.059

 Total 749486.4 149

91

Table 5.6. Analysis of variance comparing memory and meta-learning configurations.

Groups Count Sum Average Variance

 w/Memory 75 182116.7 2428.223 6236.895

 Meta-Learning 75 311396.2 4151.949 23482.34

 Source of Variation SS df MS F P-value F crit

Between Groups 1114212 1 1114212 74.98258 7.49E-15 3.90506

Within Groups 2199223 148 14859.62

 Total 3313436 149

Table 5.7. Analysis of variance comparing baseline and meta-learning configurations.

Groups Count Sum Average Variance

 Baseline 75 163445.2 2179.27 3577.224

 Meta-Learning 75 311396.2 4151.949 23482.34

 Source of Variation SS df MS F P-value F crit

Between Groups 1459299 1 1459299 107.8583 2.55E-19 3.90506

Within Groups 2002408 148 13529.78

 Total 3461707 149

Figure 5.15. Meta-GP performance on the PAC-MAN benchmark.

0

500

1000

1500

2000

2500

3000

1 10 100 1000 10000

F
it

n
e

ss

Generations

PacMan Performance

Baseline

w/Memory

Meta-Learning

92

6. META-LEARNING TRAVELING SALESMAN SOLUTION

The Traveling Salesman Problem (TSP) is a standard combinatorial optimization

problem used to evaluate optimization methods [56, 57, 60, 61, 73, 91-98]. TSP

optimization algorithms have a wide range of applications including job scheduling,

DNA sequencing, traffic management, and robotic path planning. To further illustrate the

capabilities of the meta-learning design paradigm, an example is presented using

instances of the TSP. In many of these applications, it is not completely necessary to

determine the optimal solution, thus heuristic methods are used to provide a good quality

solution as fast as possible. It is with this in mind that meta-learning is applied to the

traveling salesman problem.

To apply meta-learning to the TSP problem, the schema of the problem must be

identified. Here the schema takes the form of the ordering of points in a tour. The

addition of a clustering method to divide and conquer the TSP has been shown to greatly

accelerate the solution of the TSP [36]. With this addition, the overall schema for the

optimizer consists of the combination of cluster templates, tour point ordering, and the

locations of points. This schema must be generalized to create a meme, which is trivial

for the cluster templates, but more challenging for the tour ordering and point locations.

The problem is further complicated by the necessity to generalize tours to be applicable

over multiple scales.

For this application, a meme consists of an ordered tour. To create the meme, the

centroid of the group is calculated and subtracted from each point, making the centroid

the origin of the group. The coordinates of each point are then normalized by distance

from the origin. This projects the points into unit-space, and allows comparisons across

93

multiple scales. Each TSP-meme serves as a pre-optimized tour template. Each point in

the TSP-meme can represent a real point in the problem instance, or the centroid of a

group of points, itself represented by a meme.

Given an instance of the TSP, the meta-TSP algorithm utilizes a clustering

method to divide the problem into sub-problems, and divides those sub-problems into

sub-sub problems and so on, until a threshold for sub-problem size is reached. The

relationships between sub-problems are recorded in a tree-representation. Each of these

sub-problems is generalized, and compared against the recorded memes for existing

solutions.

The recognition mechanism must be able to detect structurally similar sub-

problems. The matching mechanism compares two normalized sub-problems by finding

the nearest corresponding points between the memes, and calculating the mean error

between these points.

If a match is found in memory, the existing meme-solution (a point ordering) is

copied to the current sub-problem. If no match exists in memory, the sub-problem is

solved as accurately as possible. With a small enough problem threshold, exact solutions

to sub-problems can be found, depending on computational resources available. The

sub-problem is then stored in memory as a new meme. After all the sub-problems are

solved, they are combined into a global tour by collapsing the problem-tree, and utilizing

a simple constant-time merge algorithm.

To illustrate this process, an example is given utilizing a simple instance of the

TSP, shown in Figure 6.1. A first pass of clustering is shown in Figure 6.2. Note that

cluster M3 contains many points, and that a single point has been left out of the clusters

94

for illustrative purposes. A second pass further divides cluster M3 into clusters M5, M6,

and M7, as shown in Figure 6.3. The final clustering pass assigns all clusters to a global

cluster, M8, in Figure 6.4. The hierarchy of clusters, and thereby sub-problems, is

denoted by the cluster tree in Figure 6.5.

Figure 6.1. Small TSP instance of approximately 30 points.

Figure 6.2. TSP instance after first clustering pass. Each cluster initializes a meme,

labeled with “M#” and a “+” denoting the centroid.

95

At this stage, each sub-problem is optimized independently, as shown in Figure

6.6. Note that some of the sub-problems contain references to other sub-problems,

particularly M3 and M8. The centroids of sub-problems are utilized for optimization and

solution, representing sub-problems as a whole. During the course of optimization, each

sub-problem is normalized, and compared with previously computed, normalized

solutions in the memory. These memes can be stored across instances, building a large

library of pre-computed solutions that can be deployed to yield high quality solutions

rapidly. Sub-problems of a global problem instance can be thought of as new problem

instances, and pre-computed solutions that are generated during the calculation of a

global instance can be applied across sub-problems.

Figure 6.3. Second clustering pass. Note the new clusters, M5, M6, and M7.

For example, the normalized versions of M2 and M4 would be very similar in

structure, and once M2 is computed, the structural similarity of the sub-problems would

96

be recognized, and the ordering of points for M4 need not to be computed, only copied

from M2 to M4. The same process applies across scales and global problem instances.

Figure 6.4. Final clustering pass, with global cluster M8

Figure 6.5. Tree of sub-problems (clusters).

When all sub-problems are completed, the problem hierarchy is collapsed by de-

referencing sub-problems and incrementally merging them with higher level tours.

Figure 6.7 shows the final merge of all complete sub-tours into a final tour. The

completed tour is shown in Figure 6.8.

Figure 6.6. Completed memes, M1 through M8. Super

sub-clusters. Note that memes M2 and M4 are similar in structure, but not scale.

Figure 6.7.

. Completed memes, M1 through M8. Super-clusters reference the centroids of

clusters. Note that memes M2 and M4 are similar in structure, but not scale.

Figure 6.7. Merger of memes into a final tour.

97

clusters reference the centroids of

clusters. Note that memes M2 and M4 are similar in structure, but not scale.

98

Figure 6.8. Completed tour.

6.1. META-TSP ALGORITHM

The design of the Meta-TSP algorithm is based on the concept of a centroid – the

mean component values of all points in a set, this is also known as a center-of-mass. The

centroid is used in the Meta-TSP algorithm to represent a set of points, and it is an

assumption (and indeed source of error) in the algorithm design that calculations

operating on a centroid result in useful information that can be used to make decisions

about how the set represented by the centroid can be organized in large-scale structures.

The primary failing of the centroid representation is that outliers can significantly bias the

value of the centroid. It is vitally important that point-sets are chosen such that outliers

are minimized, and for this reason an ART variant 2D point clustering method is utilized.

Another assumption of the algorithm is that the most-valuable ordering of a point

set is ‘transportable’ to another point set of equal size and similar, if not equal, position.

It is a subject of future research to analytically determine the thresholds and qualities of

99

similarity to which this assertion does and does not apply. Here, this assertion is studied

experimentally by varying the threshold of similarity that is accepted to activate a stored

tour/ordering pair.

The Meta-TSP algorithm consists of three primary stages – recursive generation

of a hierarchy of sub-tours, local optimization of sub-tours, and merging of sub-tours into

a final tour. There are a few operations that are used in several places in the algorithm –

Normalization, casting the components of a point-set into the [0,1] domain, Hash, used to

calculate a key to store and retrieve a tour-ordering, and comparison, determining the

similarity between two normalized tours. Additionally, the segmentation method, an

Adaptive Resonance Theory variant for 2D Euclidean spaces is presented, as well as

analysis of expected algorithmic complexity and overhead of memory operations.

These algorithmic components are described, and then evaluated on a set of

standard TSP instances from the TSPLIB database. Experiments are also conducted to

study the influence of adding memory to the optimization process, comparing memory-

less Meta-TSP instances, and the effect of the order of presentation in memory on

optimization. These results are presented and discussed at the end of this section.

6.1.1. Tour Normalization. Tour normalization is performed to provide a general

representation of a tour; its ordering, and the relative positions of the component points.

Towards this goal, the tour normalization procedure transforms the components of

a set of points from ℜ to the range [0,1]. Given a non-empty set of points P, and the sets

of their components X and Y such that N
 ��, 2
, � 1 O, 2 1 P, QN 1 R. P must also

have more than one element. The minimum elements of X and Y are first found, denoted

as �B#� 1 O, 2B#� 1 P, where �B#� and 2B#� are calculated in Equation 12.

100

�B#�
 min�O

2B#�
 min �P
 (12)

For each point N 1 R, the set RV is calculated by subtracting �B#�, 2B#� from each

N, detailed in Equation 13, this shifts every point into the positive quadrant. From the set

RV, the maximum magnitude is found using Equation 14. This maximum magnitude then

divides the components of R0 shown in Equation 15.

N0
 WN% � �B#�, NX � 2B#�Y
N0 1 R0 , QN 1 R

(13)

ZBC%
 max]^N0%_ � N0X_`, QNV 1 RV (14)

||N||
 a NV%ZBC% , NVXZBC%b
N0 1 R0, ||N|| 1 ||R||

(15)

This results in the normalized tour ||R||, with no component or point magnitude

outside of the range [0,1]. This normalization procedure places bounds on the values that

a set of points can take, allowing simple comparison, while preserving the structure of the

point set and their relative positions.

6.1.2. Tour Hash. In order to store and retrieve tour-orderings efficiently, a hash

multi-map data structure is utilized.

To take advantage of the hash-map, a method for generating keys based on tours

must be developed. Ideally any key-generating method should generate keys as

101

uniformly and as uniquely as possible. As the hash-map is being used as a memory,

which will require the activations of map entries by similar input tours, the uniqueness

requirement may be relaxed somewhat. The components of the tours, and the tours

themselves by extension, are likely to be randomly scattered throughout the tour-space,

satisfying the uniformity requirement.

A common method of calculating the key of a data element is the Zobrist hash,

most often used in chess-playing programs to encode and store the values of game-states

[99]. In the Zobrist hash, every possible combination of piece and position on the chess

board is assigned a random value. A key is generated by applying the XOR function to

the values of the pieces on the current board-state. This method served as the inspiration

for the Tour-Hash method.

Similar to the Zobrist method, the Tour-Hash first creates a table of 64 randomly

generated values. These 64 partial keys each represent one bin in the normalized tour-

space. To encode a point, the axes of the normalized space are divided into 8 bins each, a

point’s position on each axis encoded by 3 bits corresponding to the bin in which the

point-component falls. This is calculated by multiplying each normalized point

component by 8, and flooring the result. For example, the point (0.1, 0.7) is mapped to

the binary values (000, 011). These 3-bit pairs are then concatenated into a single 6-bit

value with the x-value in the most significant location. These bin-codes are calculated for

each point in a given input tour. The bin-code of each point is used to retrieve the

corresponding entry from the partial key table. For each tour-point, the XOR function is

applied to these partial keys to produce the final key.

102

The tour-hash is not guaranteed unique, as the randomly generated partial key

table may have repeats, though this is not likely. Additionally, the XOR combination of

partial keys may produce the same result for different tours. To compensate for this, a

multi-map is used, and secondary checks for matching tour-sizes and similarity

thresholds ensure that recovered stored tours match the input tour as closely as necessary.

Using a 32 bit (long) representation, the key format can store billions of unique keys.

6.1.2.1 Hash overhead. As the tour-hash calculation procedure is simple, and the

hash multi-map data structure has amortized constant time insertion and retrieval, the

computation overhead for utilizing the hash-map is very low. The overhead of other

data-structures such as lists would be much greater, as retrieval in a list is linear with the

number of elements, and the comparison operation itself is linear with the size of tours.

6.1.2.2 Maximum difference of collisions. The discrete nature of the tour-hash

method places a bound on the possible difference between two tours of the same size,

generating the same key. This difference is based on the size of the bins that divide the

normalized tour-space, and the fact that bins are square. The maximum collision

difference is calculated by finding the distance between two opposite corners of a bin.

This is most easily calculated using the (0, 0) bin, developed in Equation 16. This

maximum difference is multiplicative for the size of a tour.

cBC%
 d]18 � 0`
_ �]18 � 0`

_
 d2] 164`
 0.176 (16)

Conversely, two points separated by less than cBC% are not guaranteed to fall in

the bin. Indeed, two points can be separated by a very small amount if they fall on

103

opposite sides of a bin-border. This is a flaw in the tour-hash method that it is hoped will

be addressed with further research.

6.1.3. Tour Comparison. The tour comparison procedure is used to verify that

tours retrieved from memory are sufficiently similar in structure to an input tour. If the

input and retrieved tours are of the same size, the best ordering of the input onto the

retrieved tour is also discovered. This ordering can then be used to reorder the input tour,

taking advantage of stored computation in the form of a memorized tour.

To measure the similarity between two tours, it is necessary to first check that

they are the same size. Tours of differing size, even with similar structures, can have

greatly differing optimal orderings, thus comparisons are restricted to tours of the same

size. Given two tours of the same size, each tour point should be paired with the closest

corresponding point from the opposite tour. This problem is analogous to the assignment

problem, and is itself a combinatorial optimization problem.

In order to avoid combinatorial explosion, and thereby erasing all advantage of

memory, a naïve comparison method is utilized that compares a given point to each

unassigned point in the other tour. The given point is assigned to the opposing tour-point

that is closest. This process of comparison and assignment is repeated for all points,

resulting in a j�D_
 comparison process, rather than a guaranteed optimal j�D!
 process.

6.1.4. 2D Euclidean ART. In order to divide and conquer a large tour into

smaller sub-problems, a method of tour subdivision is needed.

For clustering 2D points, several methods have been used previously, most

commonly the K-means algorithm [73], as this method can utilize any metric for

comparing data elements.

104

 However, K-means has the drawback of requiring the number of clusters be set

beforehand, reducing the capability of the method to be wholly data-driven. Additionally,

K-means is inherently an j�D_
 algorithm. A much more desirable, and indeed more

popular framework is that of Adaptive Resonance Theory (ART), which exhibits fast

(j�D
 complexity), stable, and completely data-driven operation. However, ART

frameworks do not typically deal well with data points represented in a 2D Euclidean

space. For this reason a modification of ART is presented here, enabling fast, data-driven

clustering with minimal user-set parameters.

The 2D Euclidean ART (E-ART) modification operates similarly to that of the

typical ART structure, with F1 and F2 nodes, category match, vigilance test, and

resonance phases. The modifications to E-ART lie in the format of input, and the way

that inputs are compared. E-ART takes as input an unordered set of points that have been

normalized using the tour normalization method described previously. This

normalization and bounding of components into the [0,1] range allows scale-independent

comparisons that are bounded to the [0,1] range. This enables the vigilance parameter to

remain in the same [0,1] range.

The E-ART comparison method replaces binary or fuzzy operators with the

Euclidean distance calculation, shown in Equation 17, where the input is represented by I,

and the template is represented by ��.

���

 1 � ^��%� � l%
_ � ��X� � lX
_ (17)

As this Euclidean comparison produces a result that is already in the [0,1] range, a

separate Equation for calculating vigilance match is not needed, so the best category

105

match is simply tested for being greater than the given vigilance value. If this best

category does not pass the vigilance test, a new node is committed using the input as the

initial value.

6.1.5. Tour-Hierarchy Creation. The normalized Euclidean ART method can be

used to construct a hierarchy of sub-tours by recursively normalizing and further

subdividing clusters using the same vigilance value. The process begins by normalizing

the entirety of a problem instance, and E-ART is used to divide the problem instance into

a set of clusters, each cluster containing a sub-set of the total problem instance, illustrated

in Figure 6.9. For each sub-set, a centroid is calculated using the non-normalized points.

This centroid is used to represent the subdivided point-sets. If a sub-set is larger than a

maximum threshold, the sub-set is then normalized and clustered using a new E-ART

unit, repeating recursively, creating a tree of sub-tours. This process is illustrated in

Figure 6.9. The lines connect the centroids of the colored sub-tours, showing the

hierarchy structure. Division hierarchy increases from left to right, top to bottom. In the

top-left of Figure 6.9, a first level division is shown, in top-right, a second level division,

in the bottom-left, a third-level division, and finally in bottom-right the multi-level

division of a TSP instance, with maximum sub-problem threshold of ten points.

The set of centroids at each level of the hierarchy are used as tours, representing

the optimization of high-level structure, while the final sub-threshold tour sets, at the

bottom of the hierarchy are optimized as low-level detail. Each level of the tour-

hierarchy (and thereby a tour of centroids, called hierarchy tours from this point forward)

adds to the total set of sub-problems to be optimized, but it is expected that the hierarchal

106

structure, optimization and merge procedures will mitigate the increased total problem

size.

Figure 6.9. Division of a TSP instance.

6.1.6. Exhaustive Optimization. The goal of the hierarchal subdivision process

is to divide the TSP instance into small pieces that may be precisely optimized, while

maintaining structural information.

It then becomes possible to use exact TSP solution methods. In the current

implementation, a simple permutation-based algorithm is utilized to optimize sub-tours.

107

This results in optimal solutions to sub-problems, but limits the size of a sub-problem to

be less than 12 points for reasonable computation on modern hardware. It is left as a

topic of future research to explore the effect on structure and performance of more

efficient exact methods (such as branch and bound, or dynamic programming) as well as

heuristic methods.

In the optimization phase, hierarchy tours are solved from the top-down, starting

with the first-level tour-cycle, the tour-tree is traversed depth-first, optimizing tours at

each node. It should be noted that through hierarchal construction, only the first-level

hierarchy tour is a cyclic tour. All lower-level tours, hierarchy tours or sub-tours, are

tour segments – where the problem switches from finding the shortest cycle to finding the

shortest path between two fixed points. In a tour segment, the endpoints of a path are

specified. These endpoints are chosen to be the ordered centroids of adjacent higher-

level hierarchal tours. The optimization of the top-level tour influences the optimization

of the tour-segments in the levels below, continuing until the bottom-most sub-tour

segments are reached. This process is illustrated in Figure 6.10. Colored lines connect

ordered tours within hierarchy levels.

6.1.7. Merge Operation. Once all tour sub-problems have been solved, they are

merged into a final tour that contains all points in the original problem instance.

Due to the proliferation of Divide and Conquer-based algorithms in the TSP

literature there are many methods for merging sub-tours, but very few methods reference

the merging of tour segments. Existing methods for merging tours have j�D_

complexity, as they compare all combinations edges in the two tours to be merged in

order to find the best merge process. This is further improved by enforcing a small

neighborhood [60].

 Figure 6.10. Optimization descending the tour hierarchy,

In Meta-TSP, tour

the merge operation naturally follows by simply connecting endpoints of segments at

every level. This leads to a very fast, constant

level, so that the overall complexity of the merge operation is

order to find the best merge process. This is further improved by enforcing a small

Figure 6.10. Optimization descending the tour hierarchy, left to right, top to bottom.

TSP, tour-segments are already ordered by higher-level optimization, so

the merge operation naturally follows by simply connecting endpoints of segments at

every level. This leads to a very fast, constant-time merge operation at each hierarchy

, so that the overall complexity of the merge operation is O(n log(n))

108

order to find the best merge process. This is further improved by enforcing a small

left to right, top to bottom.

level optimization, so

the merge operation naturally follows by simply connecting endpoints of segments at

erge operation at each hierarchy

), where n is the

total problem size, and m

is illustrated in Figure 6.11

Figure

Tour-Points are marked in green, colored lines represent the ordering of the sub

tours. The merge process ascends the hierarchy from left to right images, top to bottom,

starting with the bottom-most hierarchy

tour (red).

m is the maximum sub-problem limit. An example of this process

6.11.

Figure 6.11. Bottom-up merging of tours.

Points are marked in green, colored lines represent the ordering of the sub

tours. The merge process ascends the hierarchy from left to right images, top to bottom,

most hierarchy level (blue and violet lines), to the top

109

. An example of this process

Points are marked in green, colored lines represent the ordering of the sub-

tours. The merge process ascends the hierarchy from left to right images, top to bottom,

level (blue and violet lines), to the top-most, final

110

6.1.8. Algorithmic Complexity Analysis. The run-time complexity of the Meta-

TSP algorithm is non-trivial to calculate, as the run-time greatly depends on the interplay

of the clustering method with the characteristics of a tour-instance. Integrating memory

further complicates the analysis, as the complexity of the algorithm is then affected not

only by the current problem instance, but the algorithm’s experience or history of

problem solution. The complexity of the algorithmic components has been discussed

separately, so all that remains is to examine how these components interact in order to

determine the overall run-time complexity. For notational convenience, several

parameters are defined in Table 6.1.

Table 6.1. Definition of complexity analysis parameters.

Parameter Definition

D Size of TSP instance.

Z Sub-tour limit. The maximum allowed size of a sub-tour.

m Memory size.

N Memory hit-rate.

In Section 6.1.5 it was shown that the tour hierarchy construction process is

completed in jWD logB�D
Y time. This tour-hierarchy can be thought of as an Z-ary

tree with height logB�D
 and the maximum number of internal (non-leaf, non-root) nodes

is Zqrs t��
 � 1 [100]. By the hierarchal construction process, the number of leaves is

�B. Thus, the sum of leaf tours and hierarchy tours is Zqrs t��
 � 1 � �B . Utilizing a

111

permutation based exact solution method, each of these sub-tours takes j�Z!
 to solve,

giving j �D logB�D
 � �Zqrs t��
 � 1 � �B�Z!� time to create and solve the tree of

sub-tours. To reach a final tour, these sub-tours must be merged together, a simple

operation depending only on the number of nodes at a given level. As this merge

procedure is applied at all non-leaf depths, the time complexity becomes Equation 18.

j aD logB�D
 � �Zqrs t��
 � 1 � DZ�Z! � WZqrs t��
 � 1Yb (18)

This is the complexity of the algorithm without the use of memory. Memory is

integrated during the optimization phase, where a successful retrieval from takes the

place of a tour optimization. However, the computational overhead of hash-key

calculation and tour-comparison must be added. As a hash-map is utilized, the memory

retrieval process is amortized constant time, so it may be effectively ignored. The hash-

key calculation is linear with the maximum sub-tour size, j�Z
. If a corresponding tour

exists in memory, the input and memory tours are compared utilizing a j�Z_
 operation.

It is likely that these two operations occur for every sub-tour. The frequency of memory

access and retrieval resulting in a successfully remembered tour is represented by the

memory hit-rate, N, which is influenced by the memory threshold algorithm parameter.

By integrating memory affects into the overall complexity calculation, Equation 19

results.

j uD logB�D
 � a�1 � N
 �Zqrs t��
 � 1 � DZ�bZ! � WZqrs t��
 � 1Y
� Z �Zqrs t��
 � 1 � DZ� �Z_ �Zqrs t��
 � 1 � DZ�v

(19)

112

To find the overall complexity class of the algorithm some simplification is

necessary. It can be seen that the total number of tours, �Zlog w��
 � 1� �B� can be

simplified greatly, as m is a constant, and Zlog w��

 D, giving j�D � 1� D
 x j�D
.
Applying this simplification throughout results in Equation 20.

jWD logB�D
 � W�1 � N
DYZ! � nY (20)

Examining Equation 20, it is seen that as the hit-rate improves, the optimization

phase of the algorithm should become less significant and the other two phases of

hierarchy creation and merger dominate the run-time complexity. Most notably, for large

problem instances, the run-time complexity is primarily driven by the hierarchy creation

procedure, placing the Meta-TSP algorithm firmly in the j�D log�D

 complexity class.

Unfortunately, the memory hit-rate is dependent on the history of an implementation’s

experience, and the structure of the data itself, making more precise analysis extremely

difficult.

6.2. META-TSP EVALUATION

In order to evaluate the actual run-time performance of the Meta-TSP algorithm, a

test-bed consisting of 20 problem instances was sampled from the TSPLIB benchmark

library [101]. The test-bed consists of problem instances from a variety of sources,

natural and artificial, ranging in size from 48 to 100K points. All but the mona-lisa100k

problem have been solved to optimality, and even this remaining problem has a solution

that is within 0.0029% of the best-known lower-bound. This body of data allows for a

variety of benchmark comparisons, including time-to-solve, and how close the tested

113

methods come to the optimal solutions. Table 6.2 provides a brief description of the test-

bed problems.

The real-world TSP instances are particularly interesting, as they exhibit inherent

structure and form not found in the artificially generated TSP instances. Most notable of

the real-world problems is the Mona Lisa problem, created by Robert Bosch as a

100,000-point continuous line-drawing, shown in Figure 6.12.

Table 6.2. TSP instance descriptions.
Problem

Name

Size Source / Description Optimal Cost

att48 48 48 capitals of the U.S. 33523.7

eil51 51 Artificial 429.98

st70 70 Artificial 678.59

eil76 76 Artificial 545.38

pr76 76 Artificial 108159.43

kroA100 100 Artificial 21285.44

kroC100 100 Artificial 20750.76

kroD100 100 Artificial 21294.29

rd100 100 Artificial 7910.85

eil101 101 Artificial 642.30

lin105 105 Artificial 14385.99

ch130 130 Artificial 6110.86

ch150 150 Artificial 6532.28

tsp225 225 Artificial 3916.00

a280 280 PCB Drilling Problem 2586.76

pcb442 442 PCB Drilling Problem 50783.54

pr1002 1002 Artificial 259045.61

pr2392 2392 Artificial 378062.82

pla85900 85900 Programmed Logic Array 142382641

mona-lisa100k 100000 DaVinci’s Mona Lisa ~5757005

6.2.1. Experimental Setup. To study the Meta-TSP algorithm and the effect of

memory on TSP optimization three initial experimental configurations were used – Meta-

TSP with no memory component, Meta-TSP using memory with ascending problem size,

and Meta-TSP using memory with descending problem size.

114

Figure 6.12. Leonardo da Vinci’s Mona Lisa as a continuous line drawing.

The ordering of problem presentation was varied to examine the effect that this

would have on the optimization process. In ascending presentation, the largest problems

are presented after smaller problems have been solved and committed to memory,

making a body of pre-optimized sub-tours available for rapid deployment. Conversely, in

descending presentation the larger problems are presented without memory, and must

perform optimization without a set of pre-optimized tours.

To examine the biasing effect of memory, a fourth configuration is utilized where

the Meta-TSP method is trained on small problem instances by applying the optimal tour

and allowing the algorithm to decompose and integrate sub-tour solutions into memory

without utilizing the optimization procedure. Larger tours are then presented and the

115

algorithm is allowed to attempt solution utilizing known-optimal memory, recording the

system performance.

For each of the major problem configurations, the algorithm parameters of

maximum sub-tour size limit, E-ART vigilance, and for configurations with memory, the

memory match vigilance were varied. The range and resolution of these parameters is

presented in Table 6.3.

Each configuration of algorithm, parameters, and TSP instance was evaluated 30

times in order to obtain a reasonable statistical sample, as the E-ART method introduces

a stochastic element to the otherwise deterministic Meta-TSP method. For each

configuration the recorded performance metrics include the height of the generated tree,

the sum of all sub-tour sizes (hierarchal and leaf tours), the count of sub-tours (hierarchal

and leaf tours), completed tour cost, execution time, and for configurations using

memory, the memory size, count of memory accesses, and count of memory hits.

Table 6.3. Meta-TSP experimental parameter configurations.

Parameter Range Resolution

Maximum Tour Size 3 to 8 1

E-ART Vigilance 0.2 to 1.0 0.1

Memory Match Threshold 0.1 to 1.0 0.1

With the availability of optimal TSP solutions for most of the benchmark

problems and the integration of memory into TSP solution, it becomes possible to

construct a supervisory TSP solution architecture. The supervisory TSP solution process

takes as training a set of pre-optimized tours, deconstructs them into component sub-tours

using the hierarchal clustering procedure, and then saves those sub-tours in memory for

116

later use. The evaluation phase proceeds as normal, except that the memory is already

pre-initialized with known-optimal tours. This configuration is examined as a fourth

experimental configuration. The supervisory TSP architecture is trained on the optimal

tours of TSP instances listed in Table 6.4. After training, the full test-bed is applied in

ascending order. This process is completed for all combinations of parameters, as

detailed previously.

For all configurations and experiments, recorded measurements included the

resulting cost, evaluation time, tour size (total points in tour, including those added by

hierarchy), count of sub-tours, hierarchy depth, memory size, count of memory accesses,

and count of memory hits.

Table 6.4. TSP instances used for supervisory training.

Training TSP Instances

att48

eil51

st70

eil76

pr76

kroA100

kroC100

kroD100

eil101

lin105

ch130

ch150

tsp225

a280

pcb442

pr2392

117

6.2.2. Results. The effect of algorithm parameters of ART vigilance, memory

vigilance, and sub-tour size limit are examined relative to solution cost and execution

time. Next, the effect of problem presentation order on cost and evaluation time is

explored. Finally, the effect of integrating memory and overall algorithm performance is

investigated.

Where analysis of variance is performed, tables present the probability that the

null-hypothesis is true. The coloring of table cells is based on a confidence threshold

of H
 0.05, marked green if the content of the cell is below this threshold, indicating

significance, or marked red if the content falls above this threshold indicating lack of

significance. Each table presents the significance of effect (either cost or execution time)

driven by an algorithmic control parameter. For example, Table 6.5 analyzes the effect

of ART-vigilance on tour-cost. Each row corresponds to one vigilance setting, as does

each column. The cell at the intersection of a row and column contains the probability

that the null-hypothesis is true – the probability that the effect produced by the row-

column parameter settings is insignificant.

6.2.2.1 Effect of ART vigilance. As the E-ART method is principle to the

construction of the tour hierarchy, it was expected that the E-ART vigilance value would

have a pronounced effect on the count of sub-tours, and similarly, the total tour size as

well. Examining the results across all algorithm configurations, problem instances and

controlling for E-ART vigilance, this is not the case, as there is only slight significant

difference between the tour size and count of sub-tours between vigilance values. The

results of this analysis are shown in Tables 6.5 - 6.7. For all algorithm configurations,

most E-ART vigilance values do not significantly influence the resulting tour-cost.

118

However, for high vigilance values, this effect is significant, but undesirable, as cost

begins to increase as clusters become small, and instance information is lost in the

hierarchy construction. This trend is illustrated in Figure 6.13.

For large tours such as pla85900, the E-ART vigilance has a significant effect on

the hierarchy depth, as shown in Figure 6.14. For vigilance values less than 0.5, the E-

ART method is indiscriminant, creating few clusters at each level, necessitating more

levels to create sub-problems below the sub-tour size threshold. At vigilance values

greater than 0.9, many sub-tours would be created near the root, but the sub-tour size

threshold limits the number of sub-tours created at each level. The high vigilance

threshold then causes many levels to be created at the bottom of the tree, as clusters are

further sub-divided. The ideal vigilance threshold range for short trees (and thus small

hierarchies) appears to be the range 0.4 to 0.8.

Figure 6.15 details the proportion of total tour size after hierarchy creation by E-

ART vigilance. Note that regardless of tour size, the proportion of input tour size to

hierarchy tour size is generally between 1.5 and 1.65 with few exceptions. This indicates

that the tour-hierarchy creation has relatively constant overhead, regardless of tour-size

and vigilance setting. The effect of E-ART vigilance on execution time is illustrated in

Figures 6.16 - 6.19. A general trend can be discerned from these figures that as E-ART

vigilance increases, the execution time appears to follow proportional to the hierarchy

depth in Figure 6.13. This is likely due to the interplay between sub-tour size and

hierarchy depth. As sub-tours get larger, the hierarchy depth is decreased, and execution

time increases by the factorial of sub-tour size due to the use of an exhaustive

119

optimization method. The analyses in Tables 6.8 - 6.10 confirm the significance of E-

ART vigilance on execution time.

Table 6.5. Analysis of variance on effect of ART vigilance on cost for Meta-TSP without

memory.

Art Vig 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2 9.06E-01 8.53E-01 8.65E-01 9.65E-01 7.84E-01 4.19E-01 1.04E-01 1.85E-02

0.3 9.46E-01 9.58E-01 9.42E-01 6.95E-01 3.55E-01 8.20E-02 1.36E-02

0.4 9.88E-01 8.88E-01 6.46E-01 3.22E-01 7.11E-02 1.14E-02

0.5 9.00E-01 6.57E-01 3.29E-01 7.34E-02 1.18E-02

0.6 7.50E-01 3.95E-01 9.56E-02 1.65E-02

0.7 5.94E-01 1.76E-01 3.67E-02

0.8 4.10E-01 1.17E-01

0.9 4.51E-01

Table 6.6. Analysis of variance on effect of ART Vigilance on cost for Meta-TSP with

memory and ascending order.

ART

Vig 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2 9.24E-01 7.53E-01 5.24E-01 2.98E-01 1.15E-01 1.40E-02 5.22E-05 1.63E-15

0.3 8.27E-01 5.88E-01 3.45E-01 1.39E-01 1.81E-02 7.76E-05 3.24E-15

0.4 7.47E-01 4.69E-01 2.07E-01 3.19E-02 1.85E-04 1.50E-14

0.5 6.88E-01 3.48E-01 6.80E-02 6.18E-04 1.35E-13

0.6 5.91E-01 1.54E-01 2.45E-03 1.90E-12

0.7 3.74E-01 1.24E-02 5.53E-11

0.8 1.05E-01 9.73E-09

0.9 2.71E-05

120

Table 6.7. Analysis of variance on effect of ART vigilance on cost for Meta-TSP with

memory and descending order.

ART Vig 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2 9.25E-01 7.41E-01 5.19E-01 2.95E-01 1.13E-01 1.32E-02 5.00E-05 1.87E-15

0.3 8.14E-01 5.81E-01 3.41E-01 1.36E-01 1.71E-02 7.38E-05 3.65E-15

0.4 7.52E-01 4.74E-01 2.09E-01 3.15E-02 1.88E-04 1.88E-14

0.5 6.88E-01 3.47E-01 6.62E-02 6.12E-04 1.60E-13

0.6 5.89E-01 1.50E-01 2.42E-03 2.22E-12

0.7 3.69E-01 1.24E-02 6.55E-11

0.8 1.07E-01 1.19E-08

0.9 3.04E-05

Figure 6.13. Cost by E-ART vigilance for algorithm configurations.

15000000

17000000

19000000

21000000

23000000

25000000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o

st
 (

E
u

c.
 D

is
t)

ART Vigilance

Mean Cost by E-ART Vigilance

No Mem.

Ascending

Descending

121

Figure 6.14. Mean tour hierarchy depth by E-ART vigilance.

Figure 6.15. Generated tour size proportion by E-ART vigilance.

0

5

10

15

20

25

30

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H
ie

ra
rc

h
y

 D
e

p
th

E-ART Vigilance

Mean Tour Hierarchy Depth by E-ART

Vigilance

att48 eil51 st70 eil76
pr76 kroA100 kroC100 kroD100
rd100 eil101 lin105 ch130
ch150 tsp225 a280 pcb442
pr1002 pr2392 pla85900 mona-lisa100k

1.45

1.5

1.55

1.6

1.65

1.7

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

p
o

rt
io

n
 (

M
u

lt
ip

le
 o

f
In

p
u

t
T

o
u

r
S

iz
e

)

ART Vigilance

Generated Tour Size Proportion by E-ART

Vigilance

att48 eil51 st70 eil76
pr76 kroA100 kroC100 kroD100
rd100 eil101 lin105 ch130
ch150 tsp225 a280 pcb442
pr1002 pr2392 pla85900 mona-lisa100k

122

Figure 6.16. Execution time by E-ART vigilance, without memory.

Figure 6.17. Execution time by E-ART vigilance, with memory, ascending order.

1

10

100

1000

10000

100000

1000000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
x

e
cu

ti
o

n
 T

im
e

 (
1

/1
0

0
0

s)

ART Vigilance

Execution Time by E-ART Vigilance, No

Memory

att48 eil51 st70 eil76 pr76
kroA100 kroC100 kroD100 rd100 eil101
lin105 ch130 ch150 tsp225 a280
pcb442 pr1002 pr2392 pla85900 mona-lisa100k

1

10

100

1000

10000

100000

1000000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
x

e
cu

ti
o

n
 t

im
e

 (
1

/1
0

0
0

s)

ART Vigilance

Execution Time by E-ART Vigilance

(w/Memory, Ascending)

att48 eil51 st70 eil76 pr76

kroA100 kroC100 kroD100 rd100 eil101

lin105 ch130 ch150 tsp225 a280

pcb442 pr1002 pr2392 pla85900 mona-lisa100k

123

Figure 6.18. Execution time by E-ART vigilance, with memory, descending order.

Figure 6.19. Execution time by E-ART vigilance for algorithm configurations.

1

100

10000

1000000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
e

a
n

 E
x

e
cu

ti
o

n
 T

Im
e

 (
1

/1
0

0
0

s)

ART Vigilance

Mean Execution Time by E-ART Vigilance

(w/Memory, Descending)

mona-lisa100k pla85900 pr2392 pr1002 pcb442

a280 tsp225 ch150 ch130 lin105

eil101 rd100 kroD100 kroC100 kroA100

pr76 eil76 st70 eil51 att48

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
e

a
n

 T
im

e
 (

1
/1

0
0

0
s)

ART Vigilance

Mean Execution Time by E-ART Vigilance

No Mem.

Ascending

Descending

124

Table 6.8. Analysis of variance on effect of ART Vigilance on execution time for Meta-

TSP without memory.

Art Vig 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2 5.20E-01 5.28E-01 2.26E-06 4.25E-10 2.13E-11 6.78E-12 4.26E-12 9.62E-11

0.3 1.93E-01 2.36E-07 4.91E-11 3.34E-12 1.26E-12 8.38E-13 2.15E-11

0.4 1.39E-05 2.61E-09 1.06E-10 2.98E-11 1.80E-11 3.66E-10

0.5 2.33E-02 8.82E-04 1.42E-04 7.03E-05 3.47E-04

0.6 2.20E-01 6.79E-02 4.13E-02 9.18E-02

0.7 5.30E-01 3.93E-01 5.94E-01

0.8 8.19E-01 9.41E-01

0.9 7.68E-01

Table 6.9. Analysis of variance on effect of ART vigilance on execution time for Meta-

TSP with memory and ascending order.
ART

Vig 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2 7.24E-01 6.31E-01 2.80E-04 1.02E-06 2.41E-08 2.46E-09 7.31E-10 3.97E-10

0.3 3.99E-01 9.06E-05 3.10E-07 7.99E-09 8.73E-10 2.66E-10 1.39E-10

0.4 9.96E-04 4.03E-06 8.84E-08 8.52E-09 2.47E-09 1.39E-09

0.5 9.40E-02 5.03E-03 5.59E-04 1.69E-04 1.40E-04

0.6 2.16E-01 4.87E-02 2.00E-02 1.89E-02

0.7 4.45E-01 2.56E-01 2.54E-01

0.8 7.07E-01 7.09E-01

0.9 9.96E-01

Table 6.10. Analysis of variance on effect of ART vigilance on execution time for Meta-

TSP with memory and descending order.

ART Vig 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2 6.82E-01 6.37E-01 1.96E-04 5.84E-07 1.88E-08 2.05E-09 5.36E-10 2.26E-10

0.3 3.73E-01 5.36E-05 1.52E-07 5.46E-09 6.50E-10 1.73E-10 6.98E-11

0.4 6.91E-04 2.24E-06 6.63E-08 6.75E-09 1.74E-09 7.59E-10

0.5 8.40E-02 5.15E-03 5.56E-04 1.65E-04 1.10E-04

0.6 2.39E-01 5.34E-02 2.23E-02 1.81E-02

0.7 4.34E-01 2.51E-01 2.25E-01

0.8 7.14E-01 9.58E-01

0.9 6.73E-01

125

6.2.2.2 Effect of sub-tour limit. The sub-tour size limit parameter has a similar

effect to that of E-ART vigilance. This is expected, as both parameters control the

construction of the tour hierarchy. The sub-tour limit has no measureable effect on the

resulting tour cost. This is supported by the analysis presented in Tables 6.11 - 6.13.

However, the sub-tour limit has a significant effect on execution time, as can be

seen in Figures 6.20 - 6.23. The general trend is that execution time increases as sub-tour

sizes increase. Once again, this can be explained by the exhaustive optimization method

used. For small sub-tours, execution time is very low, but increases rapidly as sub-tour

size increases. The significance of this relationship is confirmed in Tables 6.14 - 6.16.

Of interesting note is the bowl-shaped profile for algorithm configurations utilizing

memory. This is likely due to memory overhead. For low sub-tour sizes, memorized

tours proliferate, increasing memory access time. For medium sub-tour sizes, less tours

need to be memorized, and the search process becomes much more efficient. For large

sub-tour sizes, the complexity of the optimization method greatly overshadows memory

overhead.

Table 6.11. Analysis of variance on effect of sub-tour limit on cost for Meta-TSP without

memory.

Max Tour 4 5 6 7 8

3 5.01E-01 3.02E-01 2.03E-01 1.50E-01 1.08E-01

4

7.19E-01 5.48E-01 4.42E-01 3.48E-01

5

8.10E-01 6.82E-01 5.63E-01

6

8.65E-01 8.67E-01

7

7.35E-01

126

Table 6.12. Analysis of variance on effect of sub-tour limit on cost for Meta-TSP with

memory and ascending order.

Max Tour 4 5 6 7 8

3 0.888464 0.701251 0.495235 0.353027 0.2403

4

0.807986 0.588559 0.431076 0.301787

5

0.765839 0.586225 0.429696

6

0.805183 0.62252

7

0.805907

Table 6.13. Analysis of variance on effect of sub-tour limit on cost for Meta-TSP with

memory and descending order.

Max Tour 4 5 6 7 8

3 8.51E-01 6.47E-01 4.22E-01 2.88E-01 1.77E-01

4

7.88E-01 5.39E-01 3.83E-01 2.46E-01

5

7.30E-01 5.46E-01 3.72E-01

6

7.96E-01 5.84E-01

7

7.73E-01

Figure 6.20. Execution time by sub-tour limit, without memory.

1

10

100

1000

10000

100000

1000000

3 4 5 6 7 8

T
im

e
 (

1
/1

0
0

0
s)

Sub-Tour Limit

Mean Execution Time by Sub-Tour Limit, No

Memory

att48 eil51 st70 eil76 pr76

kroA100 kroC100 kroD100 rd100 eil101

lin105 ch130 ch150 tsp225 a280

pcb442 pr1002 pr2392 pla85900 mona-lisa100k

127

Figure 6.21. Execution time by sub-tour limit, with memory, ascending order.

Figure 6.22. Execution time by sub-tour limit, with memory, descending order.

1

10

100

1000

10000

100000

3 4 5 6 7 8

E
v

a
lu

a
ti

o
n

 T
im

e
 (

1
/1

0
0

0
s)

Maximum Sub-Tour Limit

Mean Execution Time by Maximum Sub-Tour Limit

(w/ Memory, Ascending)

att48 eil51 st70 eil76 pr76

kroA100 kroC100 kroD100 rd100 eil101

lin105 ch130 ch150 tsp225 a280

pcb442 pr1002 pr2392 pla85900 mona-lisa100k

1

10

100

1000

10000

100000

1000000

3 4 5 6 7 8

E
x

e
cu

ti
o

n
 T

im
e

 (
1

/1
0

0
0

s)

Maximum Sub-Tour Limit

Mean Execution Time by Max Sub-Tour Limit

(w/ Memory, Descending)

mona-lisa100k pla85900 pr2392 pr1002 pcb442
a280 tsp225 ch150 ch130 lin105
eil101 rd100 kroD100 kroC100 kroA100

pr76 eil76 st70 eil51 att48

128

Figure 6.23. Execution time by sub-tour limit for algorithm configurations.

Table 6.14. Analysis of variance on effect of sub-tour limit on execution time for Meta-

TSP without memory.

Max Tour 4 5 6 7 8

3 3.09E-67 3.11E-67 3.19E-67 8.55E-67 1.16E-66

4

8.37E-04 2.18E-41 1.77E-86 2.28E-102

5

1.89E-29 1.23E-82 9.32E-102

6

2.50E-60 4.99E-98

7

1.98E-74

Table 6.15. Analysis of variance on effect of sub-tour limit on execution time for Meta-

TSP with memory and ascending order.

Max Tour 4 5 6 7 8

3 2.24E-18 4.76E-36 2.19E-40 5.98E-01 3.47E-61

4

4.74E-07 5.13E-10 1.80E-14 1.37E-75

5

1.65E-01 6.50E-29 6.82E-81

6

1.48E-32 4.55E-82

7

6.98E-62

0

10000

20000

30000

40000

50000

60000

3 4 5 6 7 8

T
im

e
 (

1
/1

0
0

0
s)

Max Sub-Tour Limit

Mean Execution Time by Sub-Tour Limit

No Mem.

Ascending

Descending

129

Table 6.16. Analysis of Variance on effect of sub-tour limit on cost for Meta-TSP with

memory and descending order.

Max Tour 4 5 6 7 8

3 2.76E-21 6.35E-41 1.80E-43 2.64E-01 7.14E-69

4

2.65E-07 5.35E-09 1.36E-20 1.65E-82

5

3.84E-01 9.00E-36 2.71E-87

6

8.20E-38 6.01E-88

7

3.20E-66

6.2.2.3 Effect of memory vigilance. To examine the effect of memory vigilance,

only the algorithm configurations utilizing initially empty memory were used, namely the

ascending and descending configurations.

The effect of memory vigilance on resultant tour cost is first examined. It can be

seen from Table 6.17 and Table 6.18 that only memory vigilance values greater than 0.7

have a significant effect on tour cost. As will be examined later, tour-cost decreases as

memory vigilance approaches 1.0. At a memory vigilance value of 1.0, only tours that

match perfectly can be retrieved from memory. The likelihood of this occurring is very

low, thus most sub-tours will be optimized. The fact that final tour cost decreases as

memory vigilance increases indicates that the stored tours are not always optimal for the

contexts that activate them, particularly for low vigilance values.

Conversely, Figure 6.24 and Figure 6.25 show that as memory vigilance

increases, execution time increases as well. This is explained by the same mechanism

described previously. As memory vigilance increases, less stored tours are activated out

of memory, and more tours thus need to be optimized, increasing evaluation time. This

relationship is confirmed by analysis in Table 6.19 and Table 6.20. Figure 6.24 and

Figure 6.25 also illustrate an effect of TSP instance presentation order on execution time.

130

Note that in the ascending case, (Figure 6.24) the spacing between problem profiles is

relatively wide, while in the descending case (Figure 6.25), the spacing between problem

profiles is very narrow. In the ascending case, this is due to the ‘bottom-up’ order of

presentation, each successive tour has only a small body of memorized tours to utilize,

while in the ascending case presentation proceeds from the ‘top-down’, and the majority

of memorized tours (and thus computation) are generated in the initial instance (mona-

lisa100K). This provides a full library for utilization by successive optimization

instances, decreasing the amount of computation required to solve a new instance.

For these measurements, memory is defined as the library of stored generalized

tours and memory size is measure in the count of generalized tours in the library, in

contrast to physical system memory, which is not measured directly for these

experiments.

This difference between ascending and descending TSP instance presentation is

further illustrated by examining the effect of memory vigilance on memory size, shown

in Figure 6.26 and Figure 6.27. In both cases, memory size increases with memory

vigilance, as expected and explained previously. In the ascending case, memory is

increased incrementally, and the amount of increase is dependent on the interaction

between tour-size and memory vigilance. In the descending case most of the memory

contents are created initially with the mona-lisa100k TSP instance, and successive

instances contribute very few additional memory elements.

Inspection of the trend of memory growth in Figure 6.28 and Figure 6.29 provides

more evidence of the effect of memory vigilance. In these figures, the change in memory

size is plotted against the TSP instances with each series representing a different memory

131

vigilance value. The instances are listed left to right in order of presentation for the

respective algorithm configurations. In the ascending case (Figure 6.28) there is the

expected ‘fan-out’ of memory growth, as each successive tour must add proportionally

more sub-tours to the memory. Contrarily, the descending procession (Figure 6.29) adds

a relatively small quantity of memory elements at each successive instance.

Examining the hit rate for the two memory configurations in Figure 6.30 and

Figure 6.31 yields additional insight into the operation of the memory mechanism. The

hit-rate is measured by dividing the number of tours restored from memory (hits) by the

number of memory accesses. Predictably, as memory vigilance increases, the hit-rate

decreases in both algorithm configurations. As further evidence of the effect of problem

ordering, in the ascending configuration the hit rate rises gradually by problem

presentation, while hit rate in the descending case remains relatively constant over all

problem instances. This should have the effect of improved execution time, as high hit

rates indicate less new computation.

A clear picture of the overall effect of memory vigilance on cost and time

performance is provided when these metrics are averaged over all problem instances, as

shown in Figure 6.32 and Figure 6.33. These figures show that overall there is very little

difference in either performance or cost between the two algorithm configurations.

132

Table 6.17. Analysis of variance on effect of memory vigilance on cost for Meta-TSP

with memory and ascending order.

Mem Vig 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 9.90E-01 9.72E-01 9.58E-01 9.15E-01 8.08E-01 5.46E-01 3.45E-02 8.65E-11 4.19E-21

0.2 9.82E-01 9.68E-01 9.24E-01 8.17E-01 5.54E-01 3.55E-02 9.28E-11 4.56E-21

0.3 9.85E-01 9.42E-01 8.34E-01 5.69E-01 3.74E-02 1.05E-10 5.31E-21

0.4 9.56E-01 8.48E-01 5.81E-01 3.91E-02 1.17E-10 6.06E-21

0.5 8.91E-01 6.19E-01 4.44E-02 1.59E-10 8.87E-21

0.6 7.18E-01 6.08E-02 3.48E-10 2.38E-20

0.7 1.29E-01 2.69E-09 3.39E-19

0.8 5.87E-06 1.67E-14

0.9 7.56E-04

Table 6.18. Analysis of variance on effect of memory vigilance on cost for Meta-TSP

with memory and descending order.

Mem Vig 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 9.83E-01 9.76E-01 9.75E-01 9.38E-01 8.51E-01 6.68E-01 1.49E-01 3.17E-09 2.88E-21

0.2 9.92E-01 9.91E-01 9.54E-01 8.67E-01 6.82E-01 1.55E-01 3.52E-09 3.28E-21

0.3 9.98E-01 9.60E-01 8.73E-01 6.88E-01 1.57E-01 3.68E-09 3.48E-21

0.4 9.61E-01 8.74E-01 6.89E-01 1.58E-01 3.71E-09 3.53E-21

0.5 9.12E-01 7.24E-01 1.72E-01 4.74E-09 4.83E-21

0.6 8.08E-01 2.08E-01 8.49E-09 1.05E-20

0.7 3.09E-01 3.05E-08 6.10E-20

0.8 4.59E-06 1.07E-16

0.9 6.00E-05

133

Figure 6.24. Execution time by memory vigilance, ascending order.

100

1000

10000

100000

1000000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
e

a
n

 E
x

e
cu

ti
o

n
 T

im
e

 (
1

/1
0

0
0

s)

Memory Vigilance

Mean Execution Time by Memory Vigilance

(Ascending)

att48 eil51 st70 eil76

pr76 kroA100 kroC100 kroD100

rd100 eil101 lin105 ch130

ch150 tsp225 a280 pcb442

pr1002 pr2392 pla85900 mona-lisa100k

134

Figure 6.25. Execution time by memory vigilance, descending order.

Table 6.19. Analysis of variance on effect of memory vigilance on execution time for

Meta-TSP with memory and ascending order.

Mem Vig 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 3.47E-01 1.36E-02 1.33E-04 6.74E-09 1.13E-22 1.42E-56 4.51E-71 4.73E-65 1.78E-80

0.2 1.24E-01 3.80E-03 1.07E-06 3.64E-19 1.05E-52 6.95E-70 9.22E-65 3.34E-80

0.3 1.72E-01 7.72E-04 4.89E-14 1.66E-46 7.03E-68 2.88E-64 9.76E-80

0.4 4.34E-02 3.41E-10 2.98E-41 4.65E-66 8.22E-64 2.63E-79

0.5 1.25E-05 1.10E-33 2.99E-63 4.21E-63 1.23E-78

0.6 2.17E-18 1.95E-56 2.37E-61 5.58E-77

0.7 1.54E-37 4.29E-56 5.78E-72

0.8 4.70E-33 5.72E-49

0.9 3.36E-04

1

10

100

1000

10000

100000

1000000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
x

e
cu

ti
o

n
 T

im
e

 (
1

/1
0

0
0

s)

Memory Vigilance

Mean Execution Time by Memory Vigilance

(Descending)

mona-lisa100k pla85900 pr2392 pr1002 pcb442

a280 tsp225 ch150 ch130 lin105

eil101 rd100 kroD100 kroC100 kroA100

pr76 eil76 st70 eil51 att48

135

Table 6.20. Analysis of variance on effect of memory vigilance on execution time for

Meta-TSP with memory and descending order.

Mem Vig 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 3.87E-01 1.26E-02 2.45E-05 4.21E-09 4.97E-18 1.39E-36 9.07E-53 8.52E-62 8.26E-77

0.2 1.00E-01 6.54E-04 3.07E-07 1.08E-15 1.79E-34 6.27E-52 1.71E-61 1.64E-76

0.3 6.98E-02 3.10E-04 1.88E-11 2.77E-30 3.25E-50 7.15E-61 6.64E-76

0.4 6.60E-02 2.92E-07 2.29E-25 4.42E-48 4.24E-60 3.81E-75

0.5 6.64E-04 2.89E-20 1.24E-45 3.36E-59 2.91E-74

0.6 3.55E-11 3.28E-40 3.76E-57 3.05E-72

0.7 2.44E-25 7.23E-51 5.49E-66

0.8 5.67E-27 7.71E-41

0.9 2.65E-03

Figure 6.26. Memory size by memory vigilance, ascending order.

10

100

1000

10000

100000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o

u
n

t
o

f
M

e
m

o
ry

 E
le

m
e

n
ts

Memory Vigilance

Memory Size by Memory Vigilance

(Ascending)

att48 eil51 st70 eil76 pr76

kroA100 kroC100 kroD100 rd100 eil101

lin105 ch130 ch150 tsp225 a280

136

Figure 6.27. Memory size by memory vigilance, descending order.

Figure 6.28. Memory growth by memory vigilance, ascending order.

100

1000

10000

100000

1000000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o

u
n

t
o

f
M

e
m

o
ry

 E
le

m
e

n
ts

Memory Vigilance

Memory Size by Memory Vigilance

(Descending)

mona-lisa100k pla85900 pr2392 pr1002

pcb442 a280 tsp225 ch150

ch130 lin105 eil101 rd100

kroD100 kroC100 kroA100 pr76

eil76 st70 eil51 att48

1

10

100

1000

10000

100000

a
tt

4
8

e
il

5
1

st
7

0

e
il

7
6

p
r7

6

k
ro

A
1

0
0

k
ro

C
1

0
0

k
ro

D
1

0
0

rd
1

0
0

e
il

1
0

1

li
n

1
0

5

ch
1

3
0

ch
1

5
0

ts
p

2
2

5

a
2

8
0

p
cb

4
4

2

p
r1

0
0

2

p
r2

3
9

2

p
la

8
5

9
0

0

m
o

n
a

-…

C
h

a
n

g
e

 i
n

 C
o

u
n

t
o

f
M

e
m

o
ry

 E
le

m
e

n
ts

Memory Growth By Memory Vigilance (Ascending)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mem.

Vig.

137

Figure 6.29. Memory growth by memory vigilance, descending order.

Figure 6.30. Memory hit rate by memory vigilance, ascending order.

0.1

1

10

100

1000

10000

100000

m
o

n
a

-…

p
la

8
5

9
…

p
r2

3
9

2

p
r1

0
0

2

p
cb

4
4

2

a
2

8
0

ts
p

2
2

5

ch
1

5
0

ch
1

3
0

li
n

1
0

5

e
il

1
0

1

rd
1

0
0

k
ro

D
1

0
0

k
ro

C
1

0
0

k
ro

A
1

0
0

p
r7

6

e
il

7
6

st
7

0

e
il

5
1

a
tt

4
8

C
h

a
n

g
e

 i
n

 C
o

u
n

t
o

f
M

e
m

o
ry

 E
le

m
e

n
ts

Memory Growth by Memory Vigilance (Descending)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mem.

Vig.

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
e

m
o

ry
 H

it
 R

a
te

Memory Vigilance

Mean Memory Hit Rate By Memory Vigilance (Ascending)

att48 eil51 st70 eil76

pr76 kroA100 kroC100 kroD100

rd100 eil101 lin105 ch130

ch150 tsp225 a280 pcb442

pr1002 pr2392 pla85900 mona-lisa100k

138

Figure 6.31. Memory hit rate by memory vigilance, descending order.

Figure 6.32. Cost by memory vigilance for algorithm configurations.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H
it

 R
a

te

Memory Vigilance

Memory Hit Rate by Memory Vigilance (Descending)

mona-lisa100k pla85900 pr2392 pr1002

pcb442 a280 tsp225 ch150

ch130 lin105 eil101 rd100

kroD100 kroC100 kroA100 pr76

eil76 st70 eil51 att48

10000000

11000000

12000000

13000000

14000000

15000000

16000000

17000000

18000000

19000000

20000000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
e

a
n

 C
o

st
 (

E
u

c.
 D

is
ta

n
ce

)

Memory Vigilance

Mean Cost by Memory Vigilance

Ascending Descending

139

Figure 6.33. Execution time by memory vigilance for algorithm configurations.

6.2.2.4 Effect of algorithm configuration. Some indirect comparison between

the algorithm configurations has already been completed in the previous sections,

particularly the difference in memory characteristics based on order of instance

presentation. In this section, the performance of all algorithm configurations are

compared directly in terms of execution time and cost.

The comparison between configurations is completed first across all parameter

combinations and between problem instances. Table 6.21 contains the result of the

analysis between algorithm configurations and problems based on cost, while Table 6.22

contains the result of the analysis between algorithm configurations and problems based

on execution time. In both analyses, the vast majority of configuration and problem

0

2000

4000

6000

8000

10000

12000

14000

16000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
e

a
n

 T
im

e
 (

1
/1

0
0

0
s)

Memory Vigilance

Execution Time by Memory Vigilance

Ascending Descending

140

combinations are significantly different. Notable exceptions include the evaluation time

between ascending and memory-less configurations. This is expected, as the ascending

configuration starts with no elements in memory, giving similar performance to that of

the memory-less configuration.

Table 6.21. Analysis of variance on effect of algorithm configuration on cost by test-bed

problem.

A
sc

e
n

d
in

g

v
s.

 N
o

 M
e

m

D
e

sc
e

n
d

in
g

v
s.

 N
o

 M
e

m

A
sc

e
n

d
in

g

v
s.

D
e

sc
e

n
d

in
g

S
u

p
e

rv
is

e
d

v
s.

A
sc

e
n

d
in

g

att48 2.03E-04 0.00E+00 0.00E+00 1.96E-08

eil51 7.60E-102 0.00E+00 0.00E+00 1.30E-18

st70 2.42E-219 0.00E+00 0.00E+00 1.79E-06

eil76 0.00E+00 0.00E+00 0.00E+00 4.34E-02

pr76 0.00E+00 0.00E+00 0.00E+00 1.19E-04

kroA100 0.00E+00 0.00E+00 0.00E+00 2.36E-01

kroC100 0.00E+00 0.00E+00 0.00E+00 3.73E-02

kroD100 0.00E+00 0.00E+00 0.00E+00 2.79E-04

rd100 0.00E+00 0.00E+00 0.00E+00 4.31E-05

eil101 0.00E+00 0.00E+00 0.00E+00 3.04E-06

lin105 0.00E+00 0.00E+00 0.00E+00 3.59E-04

ch130 0.00E+00 0.00E+00 0.00E+00 2.88E-06

ch150 0.00E+00 0.00E+00 0.00E+00 3.49E-07

tsp225 0.00E+00 0.00E+00 0.00E+00 1.84E-07

a280 0.00E+00 0.00E+00 0.00E+00 1.30E-06

pcb442 0.00E+00 0.00E+00 0.00E+00 9.42E-08

pr1002 0.00E+00 0.00E+00 1.17E-277 9.04E-07

pr2392 0.00E+00 0.00E+00 4.15E-172 8.39E-05

pla85900 0.00E+00 0.00E+00 2.13E-02 3.01E-03

mona_lisa100K 0.00E+00 0.00E+00 8.45E-16 6.69E-03

The optimality of the average tours generated by the algorithm configurations is

given in Table 6.23. The optimality measure is calculated by finding the percent

difference between the average instance cost for a configuration, and the optimal (or in

the case of mona_lista100k, the best known lower bound) tour cost. For TSP instances

141

smaller than 200 points, most of the tour costs come within 10% of the optimal cost, with

the memory-less configuration achieving optimality on the ‘st70’ TSP instance.

However, for larger tours the optimality drops rapidly. This is likely due to error

incurred by poor high-level planning in the tour-structure, which becomes more

significant as the tour hierarchy increases in depth.

Table 6.22. Analysis of variance on effect of algorithm configuration on execution time

by test-bed problem.

A
sc

e
n

d
in

g
 v

s.

N
o

 M
e

m

D
e

sc
e

n
d

in
g

 v
s.

N
o

 M
e

m

A
sc

e
n

d
in

g
 v

s.

D
e

sc
e

n
d

in
g

S
u

p
e

rv
is

e
d

 v
s.

A
sc

e
n

d
in

g

att48 6.90E-02 8.64E-37 2.71E-54 3.53E-06

eil51 2.55E-02 2.64E-31 5.17E-51 4.57E-06

st70 1.07E-01 9.61E-40 1.56E-56 2.81E-06

eil76 3.16E-01 6.65E-41 9.85E-55 7.22E-06

pr76 6.96E-01 1.45E-33 1.35E-41 9.27E-06

kroA100 8.17E-01 3.18E-39 3.33E-48 1.02E-05

kroC100 3.02E-01 3.30E-40 4.68E-43 1.07E-05

kroD100 1.89E-01 4.00E-46 5.82E-47 4.23E-06

rd100 1.11E-01 1.37E-43 4.44E-43 6.72E-06

eil101 4.10E-02 3.44E-48 1.29E-44 7.72E-06

lin105 1.31E-03 1.49E-53 2.08E-42 1.86E-06

ch130 1.81E-02 9.52E-39 3.48E-33 6.95E-06

ch150 2.45E-06 2.22E-51 1.88E-33 7.86E-06

tsp225 7.68E-07 2.58E-56 4.23E-36 6.10E-06

a280 3.67E-11 7.71E-63 4.79E-33 8.10E-06

pcb442 3.22E-13 8.30E-63 1.16E-30 2.13E-05

pr1002 1.10E-20 1.16E-62 3.03E-19 3.52E-05

pr2392 2.07E-32 2.04E-64 1.24E-09 1.98E-04

pla85900 2.23E-81 4.16E-77 3.74E-01 1.41E-03

mona_lisa100K 0.00E+00 0.00E+00 7.44E-01 6.65E-04

The average cost and execution time by problem is charted in Figure 6.34 and

Figure 6.35. Notice that in comparing the cost performance of the algorithm

configurations (Figure 6.34) the memory-less configuration generally approaches closest

to optimality, followed by the supervised configuration, ascending, and descending

142

configuration has generally the worst cost performance. Examining the execution time

performance (Figure 6.35) of the algorithm configurations, the memory-less

configuration exhibits the worst general performance, particularly on large problem sizes,

followed by ascending, descending, and supervisory with the best time performance. It

should be noted that the supervisory execution time performance does not include

training time.

Table 6.23. Optimality of mean costs by algorithm configuration.

Problem Ascending Descending No Memory

att48 5.78% 1.82% 4.43%

eil51 0.57% 0.95% 0.40%

st70 0.94% 0.80% 0.00%

eil76 5.18% 3.47% 4.15%

pr76 0.92% 2.48% 3.21%

kroA100 1.77% 4.00% 1.00%

kroC100 0.18% 1.60% 0.26%

kroD100 2.24% 0.06% 1.76%

rd100 2.47% 3.55% 2.98%

eil101 5.74% 7.23% 4.19%

lin105 0.25% 1.00% 0.48%

ch130 4.45% 5.88% 5.06%

ch150 7.91% 7.80% 6.82%

tsp225 7.84% 8.03% 9.51%

a280 13.31% 12.98% 13.87%

pcb442 14.93% 15.26% 13.43%

pr1002 14.84% 15.04% 13.85%

pr2392 18.82% 19.26% 17.02%

pla85900 21.51% 21.49% 20.45%

mona_lisa100K 11.58% 11.60% 11.70%

The statistics for the training phase of the supervisory configuration are shown in

Table 6.24. It should be noted that the hit-rate during training is zero for most training

instances, as the memory vigilance used for training was set to its maximum value. Even

so some tours matched perfectly for the larger training instances.

143

Table 6.24. Training statistics for supervised Meta-TSP configuration.

Problem Hier. Depth Tour Size Sub-Tours Mem. Size Mem. Accesses Mem. Hits

att48 3.46 70.46 23.46 8.08 8.08 0.00

eil51 2.23 74.69 24.69 16.15 16.15 0.00

st70 3.23 101.08 32.08 35.62 35.62 0.00

eil76 2.46 109.62 34.62 44.54 44.54 0.00

pr76 4.69 113.00 38.00 59.77 59.77 0.00

kroA100 3.23 142.69 43.69 77.69 77.69 0.00

kroC100 4.23 151.54 52.54 99.69 99.69 0.00

kroD100 3.00 147.15 48.15 121.00 121.00 0.00

eil101 3.46 152.08 52.08 134.62 134.62 0.00

lin105 3.69 148.54 44.54 160.85 160.85 0.00

ch130 4.46 195.69 66.69 184.85 184.85 0.00

ch150 4.46 227.46 78.46 220.77 220.77 0.00

tsp225 5.23 338.31 114.31 260.15 260.15 0.00

a280 5.46 419.38 140.38 314.00 314.23 0.23

pcb442 5.92 653.38 212.38 396.85 398.08 1.23

pr2392 12.46 3576.00 1185.00 912.00 928.38 16.38

Figure 6.34 shows the overall execution time by problem size for the algorithm

configurations. Of primary interest is the fact that all of the execution time profiles are

linear with the problem size, up to the largest evaluated instance at 100,000 points. This

strongly suggests that the overall time-complexity for Meta-TSP optimization variants is

j�D
. Also note the effects of memory, and the contents of memory on algorithm run-

time. In the ascending case, memory is constructed over time, starting with similar

performance to the memory-less configuration, eventually progressing to performance

similar to that of the descending configuration. Note that the descending configuration

starts with improved time performance, as the memory store is used internally to process

complete the largest instance, ‘mona-lisa100k’. Finally, the supervisory configuration

144

exhibits the best time performance, likely through the utilization of the store of pre-

optimized tours, enabling the configuration to complete instances rapidly with little

computation beyond the construction of the tour hierarchy and memory access overhead.

Figure 6.34. Costs by problem across all algorithm configurations, and optimality.

6.2.3. Discussion. The results demonstrate that the Meta-TSP algorithm is

capable of generating good solutions to the TSP in linear time, and that the addition of

memory can greatly influence and in some cases greatly improve the execution time of an

algorithm without large impact on the value of produced solutions.

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

a
tt

4
8

e
il

5
1

st
7

0

e
il

7
6

p
r7

6

k
ro

A
1

0
0

k
ro

C
1

0
0

k
ro

D
1

0
0

rd
1

0
0

e
il

1
0

1

li
n

1
0

5

ch
1

3
0

ch
1

5
0

ts
p

2
2

5

a
2

8
0

p
cb

4
4

2

p
r1

0
0

2

p
r2

3
9

2

p
la

8
5

9
0

0

m
o

n
a

_
li

sa
1

0
0

K

C
o

st
 (

E
u

c.
 D

is
ta

n
ce

)

Mean Costs by Problem

Optimal

No Mem.

Ascending

Descending

Supervised

145

Figure 6.35. Execution time by problem, across all algorithm configurations.

Figure 6.36. Execution time by problem size and algorithm configuration.

1

10

100

1000

10000

100000

1000000

a
tt

4
8

e
il

5
1

st
7

0

e
il

7
6

p
r7

6

k
ro

A
1

0
0

k
ro

C
1

0
0

k
ro

D
1

0
0

rd
1

0
0

e
il

1
0

1

li
n

1
0

5

ch
1

3
0

ch
1

5
0

ts
p

2
2

5

a
2

8
0

p
cb

4
4

2

p
r1

0
0

2

p
r2

3
9

2

p
la

8
5

9
0

0

m
o

n
a

_
li

sa
1

0
0

K

E
x

e
c.

 T
im

e
 (

1
/1

0
0

0
s)

Mean Exec. Time by Problem

No Mem.

Ascending

Descending

Supervised

1

10

100

1000

10000

100000

1000000

10 100 1000 10000 100000

E
x

e
cu

ti
o

n
 T

im
e

 (
1

/1
0

0
0

s)

Problem Size (n)

Mean Execution Time by Problem Size

No Mem.

Ascending

Descending

Supervised

146

In a time-cost comparison with other TSP solution methods (Figure 6.37), the

Meta-TSP algorithm is faster than all methods, including greedy methods like Nearest-

Neighbor tour construction. This efficiency comes at the cost of tour-quality. Though

Meta-TSP produces good quality tours – comparable to those produced by k-opt based

methods, the tours are rarely optimal, especially for larger instances. Even so, the Meta-

TSP method is a significant increase in heuristic TSP solution methods, as it comes closer

to the ideal algorithm efficiency (upper left corner of Figure 6.37) than any other

compared method.

Figure 6.37. Time and Cost comparison of TSP solution methods.

Meta-TSP

Nearest-Neighbor

Lin-Kernighan

Evolutionary LK

K-Opt

Branch and Bound

Concorde Brute Force

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0 1 2 3 4 5 6

M
e

a
n

 %

o
p

ti
m

a
l

co
st

Time Complexity

TSP Solution Method Comparison

O(n log(n)) O(n2) O(n3) O(nk) O(2n) O(n!)

147

6.3. FUTURE DEVELOPMENT

Though the performance of the Meta-TSP algorithm has excellent performance

relative to existing methods, the method can be greatly improved through several avenues

of research. The greatest contribution may be to analytically determine the thresholds

and critical points of tours, in order to develop a better method for comparing and storing

tours. One avenue for this investigation may be to examine how lower-bounds are

calculated and employ a method for determining which points contribute most to the

lower bound.

Additionally, the tour hash method can be greatly improved, as the discrete tour-

hash used here is severely flawed. The core optimizer may also be improved from a

j�D!
 method to a more efficient j�2�
 operation while still maintaining optimal sub-

tour performance. Non-optimal heuristic methods could also be used to further increase

the sub-tour size, and it would be interesting to investigate the effect this has on overall

tour optimization.

148

7. DISCUSSION

7.1. PRESENTED CAPABILITIES

The desire for a new and robust computational intelligence paradigm spans many

problem domains, including real time robotic systems which must deal with increasing

complexity on a daily basis, deep data mining such as natural language processing with

applications in information retrieval and machine understanding, human-computer

interaction, and long-term optimization. These new, complex frontiers of machine

learning and optimization could all benefit from the higher order memetic computing

methods described here.

The primary difficulty of designing meta-learning systems lies in the construction

of valid representations which enable the construction of selection, generalization, and

memory mechanisms. By providing generalization, memory, optimization, and selection

mechanisms, a meta-learning architecture can operate on high-level features of a problem

instance, selecting generalized solutions that have been used previously with high utility

in the problem context. Utilizing these features, a system should be able to learn not only

the solution to a problem, but learn about solving problems. Such systems may enable a

quantum leap in the performance of real-world adaptive systems as they provide the

central components of higher level, meta-adaptive systems to be constructed.

An overview of important definitions and architectures in memetic computing has

been presented, and the power of next-generation memetic algorithms has been

demonstrated through the development of two meta-learning architectures – Meta-GP and

Meta-TSP. In the Meta-GP architecture, memory, selection, and recognition components

149

were added to a core evolutionary optimizer, enabling increased performance through the

abstraction and selection of solution components. The Meta-TSP architecture integrated

similar memory, recognition and selection components around an exact optimizer,

yielding results similar to human performance on the TSP.

In both of these architectures, the integration of memory provides a trade-off of

speed for performance. Additionally, in the Meta-TSP architecture it was demonstrated

that by providing high-fitness memories from a supervisory source, the gains of speed

can be realized with very little cost to performance.

7.2. LIMITATIONS

In any case, a first-order meta-learning method will suffer decreased performance

on problem instances or types that are significantly different from previously experienced

instances. Due to memory bias, performance may be decreased compared to a similar

non-meta learning method, or even a meta-learning method with empty memory, as

memes that are poorly suited to a situation are activated, producing poor results.

However, the likelihood of this situation occurring decreases as the breadth of curriculum

increases, as more memes are available across a wider range of situations. Thus the

careful construction of curricula is critical to deriving high performance from a meta-

learning system.

Additional, the total time to develop a system, including training time and

evaluation time, may be longer than that of a simpler system for a given level of

performance. For instance, in the Meta-GP parity experiment, the training time for the

full meta-learning method was twice as long as the baseline GP evaluation process, and

150

ultimately took several thousand generations longer to reach the same level of

performance as the baseline. However, the meta-learning process was then able to

further improve its performance, while the baseline method stagnated.

Evaluated on the time scale of a single instance, the examined meta-learning

systems outperform their non meta-learning counterparts, though this may not be the case

when the entire training history is considered.

7.3. RESEARCH CHALLENGES

Future research challenges in the study of memetic and meta-learning algorithms

span a wide range of topics. In the field of cognitive modeling, the biological models for

memetic computational processes can be developed. On a more design front, the design

and construction of increasingly high-level, n-meta learning architectures present a

significant challenge to design, representation, implementation and evaluation. One

avenue for n-meta learning architectures may be to investigate the use of a uniform

computational component. In the architectures presented here, different computational

components such as Artificial Neural Networks, Adaptive Resonance Theory, and

Evolutionary Algorithms are integrated together in a cohesive architecture. This limits

both the scope of problems that a given architecture can approach efficiently, and the

amount and type of information that can be stored and shared. By utilizing a uniform

computational component and thus a uniform representation, information should be able

to be stored, retrieved, modified and shared between computational components with

much greater flexibility. As the complexity of computational architectures grows, the

151

computational requirements also grow dramatically. The use of uniform computational

components may lend itself well to parallel processing implementations.

Overall, the study and design of memetic and meta-learning methods is in its

infancy with great opportunities for development, scientific exploration, and rewarding

applications.

152

BIBLIOGRAPHY

[1] J.-L. Gaudiot, J.-Y. Kang, and W. W. Ro, "Techniques to Improve Performance

Beyond Pipelining: Superpipelining, Superscalar, and VLIW, ," Advances in

Computers, 2005.

[2] J. Kolodner, Case-Based Reasoning. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 1993.

[3] L. M. Wills and J. Kolodner, "Towards More Creative Case-Based Design

Systems," Proceedings of the Twelfth Annual National Conference on Artificial

Intelligence (AAAI-94), pp. 50-55, 1994.

[4] D. H. Woldpert and W. G. Macready, "No Free Lunch Theorms for

Optimization," IEEE Transactions on Evolutionary Computation, vol. 1, pp. 67-

82, 1997.

[5] Y. S. Ong and A. J. Keane, "Meta-Lamarckian learning in memetic algorithms,"

IEEE Transactions on Evolutionary Computation, vol. 8, pp. 99--110, 2004.

[6] O. Francois and C. Lavergne, "Design of evolutionary algorithms-A statistical

perspective," Evolutionary Computation, IEEE Transactions on, vol. 5, pp. 129-

148, 2001.

[7] N. Krasnogor and J. Smith, "A tutorial for competent memetic algorithms: model,

taxonomy, and design issues," Evolutionary Computation, IEEE Transactions on,

vol. 9, pp. 474-488, 2005.

[8] Y. Xin, "Evolving artificial neural networks," Proceedings of the IEEE, vol. 87,

pp. 1423-1447, 1999.

[9] L. I. Kuncheva and L. C. Jain, "Designing classifier fusion systems by genetic

algorithms," Evolutionary Computation, IEEE Transactions on, vol. 4, pp. 327-

336, 2000.

[10] J. T. Lee, E. Lau, and H. Yu-Chi, "The Witsenhausen counterexample: a

hierarchical search approach for nonconvex optimization problems," Automatic

Control, IEEE Transactions on, vol. 46, pp. 382-397, 2001.

[11] S. A. Kazarlis, S. E. Papadakis, J. B. Theocharis, and V. Petridis, "Microgenetic

algorithms as generalized hill-climbing operators for GA optimization,"

Evolutionary Computation, IEEE Transactions on, vol. 5, pp. 204-217, 2001.

153

[12] M. Milano and A. Roli, "MAGMA: a multiagent architecture for metaheuristics,"

Systems, Man, and Cybernetics, Part B, IEEE Transactions on, vol. 34, pp. 925-

941, 2004.

[13] Y.-S. Ong, M.-H. Lim, N. Zhu, and K.-W. Wong, "Classification of Adaptive

Memetic Algorithms: A Comparative Study," IEEE Transactions on Systems,

Man and Cybernetics Part B, vol. 36, 2006.

[14] M.-H. Lim, S. Gustafson, N. Krasnogor, and Y.-S. Ong, "Editorial to the first

issue," Memetic Computing Journal, 2008.

[15] D. Shahaf and E. Amir, "Towards a Theory of AI Completeness," 8th Interational

Symposium on Logic Formalizations of Commonsense Reasoning, 2007.

[16] D. Lenat and R. V. Guha, Building Large Knowledge-Based Systems: Addison-

Wesley, 1989.

[17] J. R. Koza, "Hierarchical genetic algorithms operating on populations of computer

programs," in International Joint Conference on Artificial Intelligence, 1989, pp.

768-774.

[18] A. D. De Groot and F. Gobet, Perception and Memory in Chess: Assen: Van

Gorcum, 1996.

[19] Z. Pizlo, E. Stefanov, J. Saalweachter, Z. Li, Y. Haxhimusa, and W. G.

Kropatsch, "Traveling Salesman Problem: A Foveating Pyramid Model," The

Journal of Problem Solving, vol. 1, 2006.

[20] F. Gobet, Moves in Mind. East Sussex: Psychology Press, 2004.

[21] D. Holding, The Psychology of the Chess Skill. Hillsdale: L. Erlbaum Assoc.,

1985.

[22] P. Saariluouma, Chess Players' Thinking. New York: Routlege, 1995.

[23] D. Dennett, Darwin's Dangerous Idea. New York: Touchstone Press, 2005.

[24] P. Moscato, "On evolution, search, optimization, genetic algorithms and martial

arts: Towards memetic algorithms," Caltech Concurrent Computation Program,

C3P Report, 826.1989.

[25] Q. H. Nguyen, Y. S. Ong, and N. Krasnogor, "A study on the design issues of

Memetic Algorithm " presented at the IEEE Congress on Evolutionary

Computation Singapore, 2007.

[26] N. Krasnogor, "Studies on the Theory and Design Space of Memetic Algorithms,"

Ph.D, Faculty Comput., Math. Eng, Univ.West of England, Bristol, U.K. , 2002.

154

[27] G. Kendall, E. Soubeiga, and P. Cowling, "Choice function and random

hyperheuristics," presented at the 4th Asia-Pacific Conference on Simulated

Evolution And Learning, 2002.

[28] Q.-H. Nguyen, Y.-S. Ong, and M.-H. Lim, "Non-Genetic Transmission of Memes

by Diffusion," presented at the 10th Annual Conference on Genetic and

Evolutionary Computation (GECCO'08), Atlanta, GA, 2008.

[29] N. Krasnogor and S. Gustafson, "A Study on the use of "self-generation'' in

memetic algorithms," Natural Computing, vol. 3, pp. 53 - 76, 2004.

[30] J. E. Smith, " Coevolving Memetic Algorithms: A Review and Progress Report,"

IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 37, pp. 6-17,

2007.

[31] M. G. Norman and P. Moscato, "A Competitive and Cooperative Approach to

Comple Combinatorial Search," CalTech Concurrent Computation Program, C3P

Report 7901989.

[32] W. E. Hart, "Adaptive Global Optimization with Local Search," University of

California, 1994.

[33] M. W. S. Land, "Evolutionary Algorithms with Local Search for Combinatorial

Optimization," UNIVERSITY OF CALIFORNIA, 1998.

[34] D. V. a. S. Arnold, R., "Evolutionary Gradient Search Revisited," IEEE

Transactions on Evolutionary Computation, vol. 11, pp. 480 - 495, 2007.

[35] J. Tang, M. H. Lim, and Y. S. Ong, "Diversity-Adaptive Parallel Memetic

Algorithm for Solving Large Scale Combinatorial Optimization Problems," Soft

Computing, vol. 11, pp. 873–888, 2007.

[36] R. J. Meuth and D. C. Wunsch, II, "Divide and Conquer Evolutionary TSP

Solution for Vehicle Path Planning," presented at the Congress on Evolutionary

Computation (WCCI'08), 2008.

[37] H. Wang, D. Wang, and S. Yang, "A memetic algorithm with adaptive hill

climbing strategy for dynamic optimization problems," Soft Computing, 2009.

[38] G. Gutin and D. Karapetyan, "A selection of useful theoretical tools for the design

and analysis of optimization heuristics," Memetic Computing Journal, 2008.

[39] A. S. S. M. B. Ullah, R. A. Sarker, D. Cornforth, and C. Lokan, "An agent-based

memetic algorithm (AMA) for solving constrained optimazation problems," in

IEEE Congress on Evolutionary Computation, Singapore, 2007, pp. 999-1006.

155

[40] S. M. K. Hasan, R. Sarker, D. Essam, and D. Cornforth, "Memetic Algorithms for

Solving Job-Shop Scheduling Problems," Memetic Computing Journal, 2008.

[41] E. L. Beinenstock, L. Cooper, and P. Munro, "Theory for the development of

neuron selectivity: orientation specifity and binocular interaction in the visual

cortex," Journal of Neuroscience, vol. 2, pp. 32-48, 1982.

[42] C. Johansson and A. Lansner, "Towards cortex sized artificial neural systems,"

Neural Networks, vol. 20, pp. 48-61, 2007.

[43] J. H. Holland, Adaptation in natural and artificial systems. Ann Arbor: University

of Michigan Press, 1975.

[44] R. Poli, "Exact Schema Theory for Genetic Programming and Variable-Length

Genetic Algorithms with One-Point Crossover," Genetic Programming and

Evolvable Machines vol. 2, pp. 123-163, 2001.

[45] D. E. Rumelhart, "Schemata: The building blocks of cognition. ," in Theoretical

Issues in Reading And Comprehension, B. B. R.J. Sprio, & W.F. Brewer, Ed., ed

NJ: Erlbaum, 1980.

[46] W. Smart and M. Zhang, "Applying Online Gradient Descent Search to Genetic

Programming for Object Recognition," in Second workshop on Australasian

information security, Data Mining and Web Intelligence, and Software

Internationalisation, Dunedin, New Zealand, 2004.

[47] A. Topchy and W. F. Punsch, "Faster Genetic Programming based on Local

Gradient Search of Numeric Leaf Values," in Genetic and Evolutionary

Computation Conference, 2001.

[48] R. Dawkins, The Selfish Gene: Oxford University Press, USA, 1989.

[49] M. O'Neill and C. Ryan, "Automatic Generation of High Level Functions using

Evolutionary Algorithms," in 1st International Workshop on Soft Computing

Applied to Software Engineering, 1999.

[50] J. P. Rosca, "Genetic Programming Exploratory Power and the Discovery of

Functions," in Conference on Evolutionary Programming, 1995, pp. 719-736.

[51] M. O'Neill and C. Ryan, "Grammatical Evolution," IEEE Transactions on

Evolutionary Computation, vol. 5, pp. 349-358, 2001.

[52] M. Minsky, The Society of Mind: Simon & Schuster Inc., 1986.

156

[53] M. Abramson and H. Wechsler, "Competitive reinforcement learning for

combinatorial problems," in International Joint Conference on Neural Networks,

2001. Proceedings. IJCNN '01. , 2001, pp. 2333-2338 vol.4.

[54] A. Agarwal, M.-H. Lim, M.-J. Er, and C.-Y. Chew, "ACO for a new TSP in

region coverage," in IEEE/RSJ International Conference on Intelligent Robots

and Systems, 2005, pp. 1717-1722.

[55] P. J. Angeline, "Evolutionary Algorithms and Emergent Intelligence," Doctoral

Thesis, Ohio State University, Columbus, OH, 1993.

[56] R. Baraglia, J. I. Hidalgo, and R. Perego, "A hybrid heuristic for the traveling

salesman problem," IEEE Transactions on Evolutionary Computation, vol. 5, pp.

613-622, 2001.

[57] J. Dang and Z. Zhang, "A Polynomial Time Evolutionary Algorithm for the

Traveling Salesman Problem," in International Conference on Neural Networks

and Brain, 2005, pp. 47-49.

[58] J. R. Koza, "Evolution and co-evolution of computer programs to control

independent-acting agents," in From Animals to Animats: Proceedings of the First

International Conference on Simulation of Adaptive Behavior, 1991.

[59] P. Merz and B. Freisleben, "Genetic Local Search for the TSP: new results," in

IEEE Conference on Evoluationary Computation, 1997, pp. 159-164.

[60] S. Mulder and D. C. Wunsch, "Million City Traveling Salesman Problem Solution

by Divide and Conquer Clustering with Adaptive Resonance Neural Networks,"

Neural Networks, July 2003.

[61] H. D. Nguyen, I. Yoshihara, K. Yamamori, and M. Yasunaga, "Modified Edge

Recombination Operators of Genetic Algorithms for the Traveling Salesman

Problem," in 26th Annual Conference of the IEEE Industrial Electronics Society,

2000, 2000, pp. 2815-2820.

[62] G. A. Carpenter and S. Grossberg, "A massively parallel architecture for a self-

organizing neural pattern recognition machine," Computer Vision, Graphics, and

Image Processing, vol. 37, pp. 54-115, 1987.

[63] G. A. Carpenter and S. Grossberg, "Fuzzy ART: Fast Stable Learning and

Categorization of analog patters by an adaptive resonance system," Neural

Networks, vol. 4, pp. 759-771, 1991.

[64] J. R. Williamson, "Gaussian ARTMAP: A neural network for fast incremental

learning of noisy multidimensional maps.," Neural Networks, vol. 9, pp. 881-897,

1996.

157

[65] M. J. Healy, R. D. Olinger, R. J. Young, T. P. Caudell, and K. W. Larson,

"Modification of the ART1 architecture based on category theoretic design

principles," Neural Networks, vol. 1, pp. 457-462, 2005.

[66] W. B. Langdon and R. Poli, Foundations of Genetic Programming. New York:

Springer Verlag, 2002.

[67] J. R. Koza, "The genetic programming paradigm: Genetically breeding

populations of computer programs to solve problems," in Dynamic, Genetic and

Chaotic Programming, ed: John Wiley, 1992, pp. 201-321.

[68] J. R. Koza, "Simultaneous Discovery of Detectors and a Way of Using the

Detectors via Genetic Programming," in International Conference on Neural

Networks, 1993.

[69] J. P. Rosca, "Hierarchical Learning with Procedural Abstraction Mechanisms,"

1997.

[70] J. R. Koza, "Hierarchical Automatic Function Definition in Genetic

Programming," in Foundations of Genetic Algorithms 2, ed: Morgan Kaufmann,

1992, pp. 297-318.

[71] I. Dempsey, M. O'Neill, and A. Barbazon, Foundations in Grammatical Evolution

for Dynamic Environments: Springer, 2009.

[72] G. A. Carpenter, S. Grossberg, and D. B. Rosen, "ART 2-A: An adaptive

resonance algorithm for rapid category learning and recognition," Neural

Networks, vol. 4, pp. 493-504, 1991.

[73] R. Xu and D. Wunsch, II, "Survey of clustering algorithms," Neural Networks,

IEEE Transactions on, vol. 16, pp. 645-678, 2005.

[74] G. A. Carpenter and N. Markuzon, "ARTMAP-IC and medical diagnosis:

Instance counting and inconsistent cases," Neural Networks, vol. 11, pp. 323-336,

1998.

[75] G. C. Anagnostopoulos and M. Georgiopoulos, "Ellipsoidal ART and ARTMAP

for incremental clustering and classification," in Int. Joint Conference on Neural

Networks, 2001, pp. 1221-1226.

[76] S. Grossberg, "Adaptive Pattern Recognition and Universal encoding II:

Feedback, Expectation, Olfaction and Illusions," Biological Cybernetics, vol. 23,

pp. 187-202, 1976.

[77] J. Huang, M. Georgiopoulos, and G. Heileman, "Fuzzy ART Properties," Neural

Networks, vol. 8, pp. 203-213, 1995.

158

[78] M. Georgiopoulos, I. Dagher, G. L. Heileman, and G. Bebis, "Properties of

Learning in a Fuzzy ART Variant," Neural Networks, vol. 12, pp. 837-850, 1999.

[79] G. Anagnostopoulos and M. Georgiopoulos, "Category regions as new

geometrical concepts in Fuzzy-ART and Fuzzy-ARTMAP," Neural Networks,

vol. 15, pp. 1205-1221, 2002.

[80] W. J. Conover, Practical Nonparametric Statistics. New York: John Wiley and

Sons, 1999.

[81] A. Asuncion and D. J. Newman. Fisher's Iris Dataset [Online]. Available:

http://www.ics.uci.edu/~mlearn/MLRepository.html

[82] R. A. Fisher, "The use of multiple measurements in taxonomic problems," Annual

Eugenics, vol. 7, pp. 179-188, 1936.

[83] J. Schlimmer, G. H. Lincoff, and A. A. Knopf. Mushroom Database [Online].

Available: http://www.ics.uci.edu/~mlearn/MLRepository.html

[84] W. Duch, R. Adamczak, and K. Grabczewski, "Extraction of Logical Rules from

Training data using backpropagation networks," Proceedings of the 1st Online

Workshop on Soft Computing, pp. 25-30, 1996.

[85] B. d. l. Iglesia, G. Richards, M. S. Philpott, and V. J. Rayward-Smith, "The

application and effectiveness of a multi-objective metaheuristic algorithm for

partial classification," European Journal of Operational Research, vol. 169, pp.

898-917, 2006.

[86] J. Wang and G. Karypis, "On efficiently summarizing categorical databases,"

Knowledge and Information Systems, vol. 9, pp. 19-37, 2006.

[87] G. A. Carpenter, S. Grossberg, and J. H. Reynolds, "ARTMAP: Supervised real-

time learning and classification of nonstationary data by a self-organizing neural

network.," Neural Networks, vol. 4, pp. 565-588, 1991.

[88] C. L. Blake and C. J. Merz. UNIX User Dataset [Online]. Available:

http://archive.ics.uci.edu/ml/datasets/UNIX+User+Data

[89] S. Aeberhard, D. Coomans, and O. d. Vel, "The Performance of Statistical Pattern

Recognition Methods in High Dimensional Settings," presented at the IEEE

Signal Processing Workshop on Higher Order Statistics, Ceasarea, 1994.

[90] D. Sculley and C. E. Brodley, "Compression and machine learning: a new

perspective on feature space vectors," in Data Compression Conference, 2006.

DCC 2006. Proceedings, 2006, pp. 332-341.

159

[91] S. Lin and B. W. Kernighan, "An Effective Heuristic Algorithm for the Traveling

Salesman Problem," Operations Research, vol. 21, pp. 498-516, March-April

1973 1973.

[92] D. C. Wunsch and S. Mulder, "Using Adaptive Resonance Theory and Local

optimization to divide and conquer large scale traveling salesman problems," in

International Joint Conference on Neural Networks, 2003, pp. 1408-1411.

[93] H.-K. Tsai, J.-M. Yang, and C.-Y. Kao, "An evolutionary algorithm for large

traveling salesman problems," IEEE Transactions on Systems, Man and

Cybernetics Part B, vol. 34, pp. 1718-1729, August 2004.

[94] H.-K. Tsai, J.-M. Yang, and C.-Y. Kao, "Solving traveling salesman problems by

combining global and local search mechanisms," in Conference on Evolutionary

Computation, 2002, pp. 12-17.

[95] L. Wang, A. A. Maciejewski, H. J. Seigel, and V. P. Roychowdhury, "A

comparitive study of five parallel genetic algorithms using the traveling salesman

problem," in First Merged International Conference and Symposium on Parallel

and Distributed Processing, 1998, pp. 345-349.

[96] H. D. Nguyen, I. Yoshihara, K. Yamamori, and M. Yasunaga, "Implementation of

an Effective Hybrid GA for Large Scale Traveling Salesman Problems," IEEE

Transactions on Systems, Man and Cybernetics Part B, vol. 37, pp. 92-99, 2007.

[97] D. Applegate, W. Cook, and A. Rohe, "Chained Lin-Kernighan for Large

Traveling Salesman Problems," INFORMS Journal on Computing, vol. 15, pp.

82-92, 2003.

[98] A. Agarwal, M.-H. Lim, M. J. Er, and T. N. Nguyen, "Rectilinear workspace

partitioning for parallel coverage using multiple UAVs," Advanced Robotics, vol.

21, 2007.

[99] A. L. Zobrist, "A Hashing Method with Applications for Game Playing,"

University of Wisconsin, Madison, Wisconsin1969.

[100] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms: Prentice-Hall, 2001.

[101] G. Reinelt, "TSPLIB - A Traveling Salesman Problem Library," ORSA Journal on

Computing, vol. 3, pp. 376-384, 1991.

160

VITA

Ryan James Meuth was born April 11, 1982. He received his Bachelors and

Masters degrees in Computer Engineering from Missouri University of Science and

Technology (formerly the University of Missouri – Rolla) in 2005 and 2007, respectively.

He received his PhD in Computer Engineering from Missouri University of Science and

Technology in December 2009. His research interests include optimizing the behavior of

robot swarms, large scale optimization problems such as computer Go, and high

performance computing methods utilizing video game consoles and graphics processing

units.

	Meta-learning computational intelligence architectures
	Recommended Citation

	Microsoft Word - RMeuth_DissertationDraft3d.docx

